The Relationship between Serum Concentrations of Pro- and Anti-Inflammatory Cytokines and Nutritional Status in Patients with Traumatic Head Injury in the Intensive Care Unit
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Webb, A. Gattinoni, L. Oxford Textbook of Critical Care; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Kubrak, C.; Jensen, L. Malnutrition in acute care patients: A narrative review. Int. J. Nurs. Stud. 2007, 44, 1036–1054. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Lee, J.S.; Chae, S.H.; Ahn, B.S.; Chang, D.J.; Shin, C.S. Prealbumin is Not Sensitive Indicator of Nutrition and Prognosis in Critical Ill Patients. Yonsei Med. J. 2005, 46, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Hasenboehler, E.; Williams, A.; Leinhase, I.; Morgan, S.J.; Smith, W.R.; Moore, E.E.; Stahel, P.F. Metabolic changes after polytrauma: An imperative for early nutritional support. World J. Emerg. Surg. 2006, 1, 29. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.C.; Bagley, S.; Siegel, J.H. Relationships between resting and total energy expenditure in injured and septic patients. Crit. Care Med. 1994, 22, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Klein, D.; Herndon, D.N. Insulin Treatment Improves the Systemic Inflammatory Reaction to Severe Trauma. Ann. Surg. 2004, 239, 553. [Google Scholar] [CrossRef]
- Keel, M.; Trentz, O. Pathophysiology of polytrauma. Injury 2005, 36, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Plank, L.D.; Hill, G.L. Energy balance in critical illness. Proc. Nutr. Soc. 2003, 62, 545–552. [Google Scholar] [CrossRef]
- Foley, N.; Marshall, S.; Pikul, J.; Salter, K.; Teasell, R. Poster 4: Hypermetabolism Following Moderate-to-Severe Traumatic Acute Brain Injury: A Systematic Review. Arch. Phys. Med. Rehabil. 2008, 89, e29. [Google Scholar] [CrossRef]
- Genton, L.; Pichard, C. Protein Catabolism and Requirements in Severe Illness. Int. J. Vitam. Nutr. Res. 2011, 81, 143–152. [Google Scholar] [CrossRef]
- Costello, L.; Chapman, M.; Deane, A.; Lange, K.; Heyland, D. Nutrition support practices in critically ill head injured patients: A global perspective. Intensiv. Care Med. Exp. 2015, 3, A984. [Google Scholar] [CrossRef]
- Barton, R.G. Invited Review: Nutrition Support in Critical Illness. Nutr. Clin. Pract. 1994, 9, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Roumen, R.M.; Hendriks, T.; van der Ven-Jongekrijg, J.; Nieuwenhuijzen, G.A.; Sauerwein, R.W.; Van der Meer, J.W.; Goris, R.J. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann. Surg. 1993, 218, 769. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Boisson, C.; Haccoun, M.; Thomachot, L.; Mège, J.-L. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit. Care Med. 1997, 25, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Endo, S.; Inada, K. Plasma cytokine levels in patients with severe burn injury-with reference to the relationship between infection and prognosis. Burns 1996, 22, 587–593. [Google Scholar] [CrossRef]
- Dimopoulou, I.; Orfanos, S.; Kotanidou, A.; Livaditi, O.; Giamarellos-Bourboulis, E.; Athanasiou, C.; Korovesi, I.; Sotiropoulou, C.; Kopterides, P.; Ilias, I.; et al. Plasma pro- and anti-inflammatory cytokine levels and outcome prediction in unselected critically ill patients. Cytokine 2008, 41, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Gebhard, F.; Pfetsch, H.; Steinbach, G.; Strecker, W.; Kinzl, L.; Brückner, U.B. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch. Surg. 2000, 135, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Frink, M.; Van Griensven, M.; Kobbe, P.; Brin, T.; Zeckey, C.; Vaske, B.; Krettek, C.; Hildebrand, F. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Biffl, W.L.; Moore, E.E.; Moore, F.A.; Peterson, V.M. Interleukin-6 in the Injured Patient. Marker of injury or mediator of inflammation? Ann. Surg. 1996, 224, 647–664. [Google Scholar] [CrossRef]
- Hergenroeder, G.W.; Moore, A.N.; McCoy, J.P.; Samsel, L.; Ward, N.H.; Clifton, G.L.; Dash, P.K. Serum IL-6: A candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J. Neuroinflamm. 2010, 7, 19. [Google Scholar] [CrossRef]
- Okeny, P.K.; Ongom, P.; Kituuka, O. Serum interleukin-6 level as an early marker of injury severity in trauma patients in an urban low-income setting: A cross-sectional study. BMC Emerg. Med. 2015, 15, 22. [Google Scholar] [CrossRef]
- Kalanda, O.P. Serum Interleukin-6 Level as an Early Marker of Injury Severity in Trauma Patients in Mulago Hospital: A Cross-Sectional Study. Master’s Thesis, School of Medicine Makerere University, Kampala, Uganda, 2014. [Google Scholar]
- Antunes, A.A.; Sotomaior, V.S.; Sakamoto, K.S.; Neto, C.P.D.C.; Martins, C.; Aguiar, L.R. Interleukin-6 Plasmatic Levels in Patients with Head Trauma and Intracerebral Hemorrhage. Asian J. Neurosurg. 2010, 5, 68–77. [Google Scholar] [PubMed]
- Di Battista, A.P.; Rhind, S.G.; Hutchison, M.G.; Hassan, S.; Shiu, M.Y.; Inaba, K.; Topolovec-Vranic, J.; Neto, A.C.; Rizoli, S.B.; Baker, A.J. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J. Neuroinflamm. 2016, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Knoblach, S.M.; Faden, A.I. Cortical interleukin-1β elevation after traumatic brain injury in the rat: No effect of two selective antagonists on motor recovery. Neurosci. Lett. 2000, 289, 5–8. [Google Scholar] [CrossRef]
- Tasçı, A.; Okay, Ö.; Gezici, A.R.; Ergün, R.; Ergüngör, F. Prognostic value of interleukin-1 beta levels after acute brain injury. Neurol. Res. 2003, 25, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.T.; Wang, Y.W.; Yang, J.T.; Yang, Y.L.; Chen, H.I. Effect of Interleukin-1 on Traumatic Brain Injury–Induced Damage to Hippocampal Neurons. J. Neurotrauma 2005, 22, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Csuka, E.; Morganti-Kossmann, M.C.; Lenzlinger, P.M.; Joller, H.; Trentz, O.; Kossmann, T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: Relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 1999, 101, 211–221. [Google Scholar] [CrossRef]
- Bell, M.J.; Kochanek, P.M.; Doughty, L.A.; Carcillo, J.A.; Adelson, P.D.; Clark, R.S.B.; Wisniewski, S.R.; Whalen, M.J.; DeKosky, S.T. Interleukin-6 and Interleukin-10 in Cerebrospinal Fluid after Severe Traumatic Brain Injury in Children. J. Neurotrauma 1997, 14, 451–457. [Google Scholar] [CrossRef]
- Kirchhoff, C.; Buhmann, S.; Bogner, V.; Stegmaier, J.; Leidel, B.A.; Braunstein, V.; Mutschler, W.; Biberthaler, P. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med Res. 2008, 13, 464–468. [Google Scholar]
- Shiozaki, T.; Hayakata, T.; Tasaki, O.; Hosotubo, H.; Fuijita, K.; Mouri, T.; Tajima, G.; Kajino, K.; Nakae, H.; Tanaka, H.; et al. Cerebrospinal Fluid Concentrations of Anti-Inflammatory Mediators in Early-Phase Severe Traumatic Brain Injury. Shock 2005, 23, 406–410. [Google Scholar] [CrossRef]
- Maier, B.; Laurer, H.L.; Rose, S.; Buurman, W.; Marzi, I. Physiological Levels of Pro- and Anti-Inflammatory Mediators in Cerebrospinal Fluid and Plasma: A Normative Study. J. Neurotrauma 2005, 22, 822–835. [Google Scholar] [CrossRef]
- Woiciechowsky, C.; Schöning, B.; Cobanov, J.; Lanksch, W.R.; Volk, H.D.; Döcke, W.D. Early IL-6 Plasma Concentrations Correlate with Severity of Brain Injury and Pneumonia in Brain-Injured Patients. J. Trauma Inj. Infect. Crit. Care 2002, 52, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Lo, T.Y.M.; Jones, P.A.; Minns, R.A. Combining Coma Score and Serum Biomarker Levels to Predict Unfavorable Outcome following Childhood Brain Trauma. J. Neurotrauma 2010, 27, 2139–2145. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.M.; Lindell, A.; Murdock, K.R.; Kufera, J.A.; Menaker, J.; Keledjian, K.; Bochicchio, G.V.; Aarabi, B.; Scalea, T.M. Relationship of Serum and Cerebrospinal Fluid Biomarkers With Intracranial Hypertension and Cerebral Hypoperfusion After Severe Traumatic Brain Injury. J. Trauma: Inj. Infect. Crit. Care 2011, 70, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.M.S.; de Souza, N.M.; Schwarzbold, M.L.; Diaz, A.P.; Nunes, J.C.; Hohl, A.; da Silva, P.N.A.; Vieira, J.; De Souza, R.L.; Bertotti, M.M.; et al. Interleukin-10 Is an Independent Biomarker of Severe Traumatic Brain Injury Prognosis. Neuroimmunomodulation 2012, 19, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Caporossi, F.S.; Caporossi, C.; Dock-Nascimento, D.B.; de Aguilar-Nascimento, J.E. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients. Nutr. Hosp. 2012, 27, 490–495. [Google Scholar] [PubMed]
- Gupta, R.; Arora, V.K. Performance evaluation of APACHE II score for an Indian patient with respiratory problems. Indian J. Med Res. 2004, 119, 273–282. [Google Scholar] [PubMed]
- Ludwigs, U.; Csatlos, M.; Hulting, J. Predicting in-hospital mortality in acute myocardial infarction: Impact of thrombolytic therapy on APACHE II performance. Scand. Cardiovasc. J. 2000, 34, 371–376. [Google Scholar] [PubMed]
- Minne, L.; Abu-Hanna, A.; De Jonge, E. Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review. Crit. Care 2008, 12, R161. [Google Scholar] [CrossRef]
- Moreno, R.; Vincent, J.L.; Matos, R.; Mendonca, A.; Cantraine, F.; Thijs, L.; Takala, J.; Sprung, C.; Antonelli, M.; Bruining, H.; et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensive Care Med. 1999, 25, 686–696. [Google Scholar] [CrossRef]
- Masha’al, D.A. The Change in Nutritional Status in Traumatic Brain Injury Patients: A Retrospective Descriptive A Retrospective Descriptive Study. Doctoral Thesis, University of South Florida, Tampa, FL, USA, 2016. [Google Scholar]
- Kim, H.; Choi-Kwon, S. Changes in nutritional status in ICU patients receiving enteral tube feeding: A prospective descriptive study. Intensiv. Crit. Care Nurs. 2011, 27, 194–201. [Google Scholar] [CrossRef]
- Aadal, L.; Mortensen, J.; Nielsen, J.F. Weight reduction after severe brain injury: A challenge during the rehabilitation course. J. Neurosci. Nurs. 2015, 47, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, N.; Mazloom, Z.; Zand, F.; Rezaianzadeh, A.; Amini, A. Nutritional Assessment in Critically Ill Patients. Iran. J. Med Sci. 2016, 41, 171–179. [Google Scholar] [PubMed]
- Izquierdo, M.F.; Miranda, M.P.; Díaz, J.N.; Mora, V.M.; Martínez, G.E.; Bueno, J.C. Assessment of changes in body composition in critically ill patients. Enferm. Intensiva 2010, 21, 113–119. [Google Scholar]
- Langhans, C.; Weber-Carstens, S.; Schmidt, F.; Hamati, J.; Kny, M.; Zhu, X.; Wollersheim, T.; Koch, S.; Krebs, M.; Schulz, H.; et al. Inflammation-Induced Acute Phase Response in Skeletal Muscle and Critical Illness Myopathy. PLoS ONE 2014, 9, e92048. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.P.; Keller, H.; Jeejeebhoy, K.N.; Laporte, M.; Duerksen, D.R.; Gramlich, L.; Payette, H.; Bernier, P.; Davidson, B.; Teterina, A.; et al. Decline in nutritional status is associated with prolonged length of stay in hospitalized patients admitted for 7 days or more: A prospective cohort study. Clin. Nutr. 2016, 35, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Eagan, T.M.; Gabazza, E.C.; D’Alessandro-Gabazza, C.; Gil-Bernabe, P.; Aoki, S.; Hardie, J.A.; Bakke, P.S.; Wagner, P.D. TNF-α is associated with loss of lean body mass only in already cachectic COPD patients. Respir. Res. 2012, 13, 48. [Google Scholar] [CrossRef] [PubMed]
- Salgado, R.; Junius, S.; Benoy, I.; Van Dam, P.; Vermeulen, P.; Van Marck, E.; Huget, P.; Dirix, L.Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer 2003, 103, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.F.; Pietrani, N.T.; Bosco, A.A.; Campos, F.M.F.; Sandrim, V.C.; Gomes, K.B. IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch. Endocrinol. Metab. 2017, 61, 438–446. [Google Scholar] [CrossRef]
- Moinard, C.; Delpierre, E.; Loï, C.; Neveux, N.; Butel, M.-J.; Cynober, L.; Charrueau, C. An Oligomeric Diet Limits the Response to Injury in Traumatic Brain-Injured Rats. J. Neurotrauma 2013, 30, 975–980. [Google Scholar] [CrossRef]
- Nematy, M.; Mohajeri, S.A.; Moghadam, S.A.; Safarian, M.; Norouzy, A.; Parizadeh, S.M.; Azarpazhooh, M.R.; Siadat, Z.; Gharbi, N.S.; Mobarhan, M.G. Nutritional status in intensive care unit patients: A prospective clinical cohort pilot study. Mediterr. J. Nutr. Metab. 2012, 5, 163–168. [Google Scholar] [CrossRef]
- Huang, Y.C.; Yen, C.; Cheng, C.; Jih, K.; Kan, M. Nutritional status of mechanically ventilated critically ill patients: Comparison of different types of nutritional support. Clin. Nutr. 2000, 19, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sungurtekin, H.; Sungurtekin, U.; Oner, O.; Okke, D. Nutrition Assessment in Critically Ill Patients. Nutr. Clin. Pr. 2008, 23, 635–641. [Google Scholar] [CrossRef] [PubMed]
- SILVA, S.A. Adductor pollicis muscle as predictor of malnutrition in surgical patients. ABCD Arquivos Brasileiros de Cirurgia Digestiva (São Paulo) 2014, 27, 13–17. [Google Scholar]
- Ghorabi, S.; Ardehali, H.; Amiri, Z.; Shariatpanahi, Z.V. Association of the Adductor Pollicis Muscle Thickness with Clinical Outcomes in Intensive Care Unit Patients. Nutr. Clin. Pract. 2016, 31, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.G.; da Silva Fink, J.; Silva, F.M. Thickness of the adductor pollicis muscle: Accuracy in predicting malnutrition and length of intensive care unit stay in critically ill surgical patients: Thickness of the adductor pollicis muscle in surgical critically patients. Clin. Nutr. ESPEN. 2018, 24, 165–169. [Google Scholar] [CrossRef]
- Anthony, D.C.; Couch, Y.; Losey, P.; Evans, M.C. The systemic response to brain injury and disease. Brain, Behav. Immun. 2012, 26, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Woodcock, T.; Morganti-Kossmann, M.C. The Role of Markers of Inflammation in Traumatic Brain Injury. Front. Neurol. 2013, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, R.N.; Pitts, S.L.; Maish, I.I.I.G.O.; Schroeppel, T.J.; Magnotti, L.J.; Croce, M.A.; Minard, G.; Brown, R.O. A reappraisal of nitrogen requirements for patients with critical illness and trauma. J. Trauma Acute Care Surg. 2012, 73, 549–557. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef]
- Lew, C.; Wong, G.; Cheung, K.; Chua, A.; Chong, M.; Miller, M. Association between malnutrition and 28-day mortality and intensive care length-of-stay in the critically ill: A prospective cohort study. Nutrients 2018, 10, 10. [Google Scholar] [CrossRef]
Variables | No. (%) |
---|---|
Age (Mean ± SD)/years | 35.9 ± 11 |
Age range/years | 20–64 |
Sex | |
Male | 38 (59.4) |
Female | 26 (40.6) |
Address | |
Inside city | 37 (57.8) |
Outside city | 27 (42.2) |
NUTRIC score at admission | |
Low malnutrition risk | 52 (81.2) |
High malnutrition risk | 12 (18.8) |
BMI kg/m2 | |
(Mean ± SD) | 28.01±3.51 |
MUAC/cm | |
Median (IQR) | 27.2 (3) |
APM/cm | |
Median (IQR) | 21 (5) |
FBM/kg | |
(Mean±SD) | 26.9 ± 6.35 |
LBM/kg | |
(Mean±SD) | 48.2 ± 7.04 |
APACHE II score | |
Median (IQR) | 18.0 (10) |
SOFA score | |
Median (IQR) | 12 (5) |
Measurements | BMI KG/M2 | #p-Value | FBM | p-Value | LBM | # p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h after Admission Mean ± SD | At Day 6 Mean ± SD | At Day 13 Mean ± SD | 24 h after Admission Mean ± SD | At Day 6 Mean ± SD | At Day 13 Mean ± SD | 24 h after Admission Mean ± SD | At Day 6 Mean ± SD | At Day 13 Mean ± SD | |||||
IL-6 ng/L | Low level (n = 32) | 27.66 ± 3.91 | 27.55 ± 4.00 | 27.58 ± 3.95 | 0.52 | 24.97 ± 6.08 | 24.55 ± 6.04 | 24.52 ± 5.86 | 0.002 | 50.47 ± 6.49 | 50.03 ± 6.40 | 49.61 ± 6.00 | 0.08 |
High level (n = 32) | 28.33 ± 3.12 | 27.22 ± 3.03 | 26.59 ± 2.99 | <0.001 | 28.76 ± 6.14 | 27.18 ± 5.84 | 25.67 ± 5.83 | <0.001 | 46.18 ± 7.00 | 44.42 ± 6.75 | 43.66 ± 6.45 | <0.001 | |
IL-10 pg/mL | Low level (n = 32) | 28.47 ± 4.03 | 27.99 ± 4.16 | 27.87 ± 4.13 | 0.02 | 26.70 ± 6.98 | 25.91 ± 6.62 | 25.70 ± 6.49 | 0.001 | 48.68 ± 6.57 | 47.69 ± 6.84 | 47.31 ± 6.37 | 0.009 |
High level (n = 32) | 27.51 ± 2.85 | 26.73 ± 2.55 | 26.22 ± 2.45 | <0.001 | 27.16 ± 5.72 | 25.90 ± 5.45 | 24.48 ± 5.05 | <0.001 | 47.81 ± 7.59 | 46.54 ± 7.47 | 45.73 ± 7.39 | <0.001 | |
IL-1β pg/L | Low level (n = 32) | 27.98 ± 3.94 | 27.82 ± 3.99 | 27.77 ± 3.94 | 0.13 | 25.71 ± 6.17 | 25.19 ± 6.02 | 25.00 ± 5.82 | <0.001 | 50.65 ± 6.50 | 49.79 ± 6.73 | 49.78 ± 5.98 | 0.051 |
High level (n = 32) | 28.03 ± 3.12 | 26.97 ± 2.99 | 26.41 ± 2.93 | <0.001 | 28.06 ± 6.41 | 26.58 ± 6.07 | 25.21 ± 5.91 | <0.001 | 46.02 ± 6.79 | 44.64 ± 6.63 | 43.74 ± 6.54 | <0.001 | |
TNF ng/L | Low level (n = 32) | 28.57 ± 4.24 | 28.15 ± 4.12 | 28.03 ± 4.03 | 0.03 | 27.03 ± 7.14 | 26.18 ± 6.76 | 25.88 ± 6.62 | 0.001 | 49.21 ± 6.53 | 48.11 ± 6.79 | 47.75 ± 6.19 | 0.008 |
High level (n = 32) | 27.41 ± 2.47 | 26.56 ± 2.52 | 26.05 ± 2.49 | <0.001 | 26.81 ± 5.52 | 25.61 ± 5.25 | 24.29 ± 4.82 | <0.001 | 47.25 ± 7.53 | 46.09 ± 7.42 | 45.26 ± 7.41 | <0.001 |
Measurements | MUAC | * p-Value | APM | * p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
24 h after Admission Mean (IQR) | At Day 6 Mean (IQR) | At Day 13 Mean (IQR) | 24 h after Admission Mean (IQR) | At Day 6 Mean (IQR) | At Day 13 Mean (IQR) | ||||
IL-6 ng/L | Low level (n = 32) | 26.57(3.93) | 26.94 (4.50) | 27.17 (3.19) | <0.001 | 21.13 (5.00) | 21.14 (5.00) | 21.20 (4.80) | 0.344 |
High level (n = 32) | 28.05(2.60) | 26.93 (2.95) | 25.77 (3.11) | <0.001 | 21.42 (4.50) | 20.01 (4.55) | 19.46 (5.05) | <0.001 | |
IL-10 pg/mL | Low level (n = 32) | 27.73 (3.65) | 27.53 (3.97) | 27.46 (3.85) | 0.607 | 22.08 (4.45) | 21.73 (4.65) | 21.52 (5.05) | 0.075 |
High level (n = 32) | 26.87 (2.80) | 26.30 (2.10) | 25.42 (2.60) | <0.001 | 20.43 (5.30) | 19.31 (5.10) | 19.00 (5.20) | <0.001 | |
IL-1β pg/L | Low level (n = 32) | 27.32 (3.48) | 27.52 (3.75) | 27.59 (3.45) | 0.005 | 21.70 (4.60) | 21.57 (4.00) | 21.48 (4.70) | 0.930 |
High level (n = 32) | 27.31 (2.95) | 26.36 (2.15) | 25.38 (2.45) | <0.001 | 20.89 (5.45) | 19.60 (5.10) | 19.19 (5.20) | <0.001 | |
TNFα ng/L | Low level (n = 32) | 27.80 (4.50) | 27.60 (4.37) | 27.54 (4.25) | 0.653 | 22.15 (5.10) | 21.66 (4.65) | 21.72 (5.10) | 0.23 |
High level (n = 32) | 26.80 (2.70) | 26.23 (2.01) | 25.34 (2.50) | <0.001 | 20.35 (4.50) | 19.38 (5.10) | 18.80 (5.20) | <0.001 |
Measurements | APACHE II Score | * p-Value | SOFA Score | * p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
24 h after Admission Mean (IQR) | At Day 6 Mean (IQR) | At Day 13 Mean (IQR) | 24 h after Admission Mean (IQR) | At day 6 Mean (IQR) | At day 13 Mean (IQR) | ||||
IL-6 ng/L | Low level (n = 32) | 16.63 (12.00) | 12.28 (4.00) | 14.28 (4.00) | <0.001 | 10.06 (5.00) | 8.59 (4.00) | 9.91 (3.00) | <0.001 |
High level (n = 32) | 20.63 (6.00) | 24.19 (5.50) | 24.19 (4.00) | <0.001 | 13.84 (4.00) | 15.34 (4.00) | 16.06 (4.00) | <0.001 | |
IL-10 pg/mL | Low level (n = 32) | 17.69 (7.50) | 16.06 (8.50) | 14.94 (5.00) | <0.001 | 11.38 (5.00) | 10.28 (4.50) | 9.56 (4.50) | <0.001 |
High level (n = 32) | 20.87 (8.00) | 20.41 (8.00) | 22.31 (7.00) | 0.01 | 14.34 (4.00) | 13.66 (7.00) | 14.59 (7.00) | 0.034 | |
IL-1β pg/L | Low level (n = 32) | 16.03 (5.00) | 13.91 (4.00) | 15.75 (4.00) | <0.001 | 10.50 (4..00) | 9.06 (4.00) | 9.81 (4.00) | <0.001 |
High level (n = 32) | 21.22 (7.00) | 22.56 (6.00) | 22.72 (5.50) | <0.001 | 14.09 (4.00) | 14.88 (5.50) | 15.47 (4.00) | <0.001 | |
TNFα ng/L | Low level (n = 32) | 17.41 (4) | 15.81 (8.00) | 14..88 (6.00) | <0.001 | 11.41 (5.00) | 10.31 (5.00) | 9.69 (4.50) | <0.001 |
High level (n = 32) | 21.06 (9.00) | 20.66 (8.00) | 22.38 (7.00) | 0.01 | 14.22 (4.00) | 13.63 (7.00) | 14.56 (7.00) | 0.035 |
Measurements | NUTRIC score | * p-Value | |||
---|---|---|---|---|---|
24 h after Admission Mean (IQR) | At Day 6 Mean (IQR) | At Day 13 Mean (IQR) | |||
IL-6 ng/L | Low level (n = 32) | 1.50 (1.00) | 1.50 (1.00) | 1.50 (1.00) | 0.900 |
High level (n = 32) | 5.09 (1.00) | 6.06 (1.00) | 7.03 (1.00) | <0.001 | |
IL-10 pg/mL | Low level (n = 32) | 2.48 (3.00) | 2.76 (4.00) | 3.03 (5.00) | 0.01 |
High level (n = 32) | 4.32 (4.00) | 5.06 (5.00) | 5.81 (6.00) | 0.001 | |
IL-1β pg/L | Low level (n = 32) | 1.82 (1.00) | 1.92 (1.00) | 2.03 (1.00) | 0.23 |
High level (n = 32) | 4.82 (0.5) | 5.70 (0.50) | 6.58 (0.50) | <0.001 | |
TNFα ng/L | Low level (n = 32) | 2.48 (3.00) | 2.76 (4.00) | 3.01 (5.00) | <0.001 |
High level (n = 32) | 4.32 (3.00) | 5.06 (4.00) | 5.81 (5.00) | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gubari, M.I.M.; Norouzy, A.; Hosseini, M.; Mohialdeen, F.A.; Hosseinzadeh-Attar, M.J. The Relationship between Serum Concentrations of Pro- and Anti-Inflammatory Cytokines and Nutritional Status in Patients with Traumatic Head Injury in the Intensive Care Unit. Medicina 2019, 55, 486. https://doi.org/10.3390/medicina55080486
Gubari MIM, Norouzy A, Hosseini M, Mohialdeen FA, Hosseinzadeh-Attar MJ. The Relationship between Serum Concentrations of Pro- and Anti-Inflammatory Cytokines and Nutritional Status in Patients with Traumatic Head Injury in the Intensive Care Unit. Medicina. 2019; 55(8):486. https://doi.org/10.3390/medicina55080486
Chicago/Turabian StyleGubari, Mohammed I. M., Abdolreza Norouzy, Mostafa Hosseini, Fadhil A. Mohialdeen, and Mohammad Javad Hosseinzadeh-Attar. 2019. "The Relationship between Serum Concentrations of Pro- and Anti-Inflammatory Cytokines and Nutritional Status in Patients with Traumatic Head Injury in the Intensive Care Unit" Medicina 55, no. 8: 486. https://doi.org/10.3390/medicina55080486
APA StyleGubari, M. I. M., Norouzy, A., Hosseini, M., Mohialdeen, F. A., & Hosseinzadeh-Attar, M. J. (2019). The Relationship between Serum Concentrations of Pro- and Anti-Inflammatory Cytokines and Nutritional Status in Patients with Traumatic Head Injury in the Intensive Care Unit. Medicina, 55(8), 486. https://doi.org/10.3390/medicina55080486