Neurocardiac Crosstalk: Sympathetic Remodeling and Arrhythmogenesis After Myocardial Infarction
Abstract
1. Introduction
2. Methods
3. The Multi-Level Anatomical Structure of the Cardiac Sympathetic Nervous System
3.1. Cardiac Nervous System
3.1.1. Extracardiac Nervous System
3.1.2. Intracardiac Nervous System
3.1.3. Regulation of Cardiac Function by the Cardiac Nervous System
3.2. Cardiac Sympathetic Nerve Innervation System
3.2.1. Paraventricular Nucleus (PVN)
3.2.2. Rostral Ventrolateral Medulla (RVLM)
3.2.3. Nucleus of the Solitary Tract (NTS)
4. Central Regulatory Mechanisms of Sympathetic Remodeling Following MI
4.1. The Role of the TLR4/MyD88/NF-κB Signaling Pathway in the PVN in Post-MI Sympathetic Nerve Remodeling
4.2. The Role of P2X7 Receptor Activation in the PVN in Post-MI Sympathetic Neural Remodeling
4.3. GABAergic Inhibition in the PVN Attenuates Sympathetic Hyperinnervation Post-MI
4.4. Peripheral Amplification: Stellate Ganglion Remodeling
5. Clinical Translation and Future Perspectives
5.1. Neuromodulation Strategies
5.2. Molecular Therapeutic Targets
5.3. TBiomarkers for Risk Stratification
5.4. Distinguishing Clinical from Preclinical Evidence
5.5. Research Priorities and Clinical Implementation
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACh | Acetylcholine |
| APD | Action potential duration |
| ATP | Adenosine triphosphate |
| CNS | Central nervous system |
| CSD | Cardiac sympathetic denervation |
| CSPG | Chondroitin sulfate proteoglycan |
| ECM | Extracellular matrix |
| GABA | Gamma-aminobutyric acid |
| GAT-3 | GABA transporter 3 |
| GP | Ganglion plexi |
| HF | Heart failure |
| ICNS | Intrinsic cardiac nervous system |
| IGFBP2 | Insulin-like growth factor binding protein 2 |
| IL-1β | Interleukin-1 β |
| IML | Intermediolateral cell column |
| Itonic | Tonic inhibitory current |
| LAD | Left anterior descending coronary artery |
| m6A | N6-methyladenosine |
| MI | Myocardial infarction |
| MIBG | Metaiodobenzylguanidine |
| NF-κB | Nuclear factor κB |
| NGF | Nerve growth factor |
| NLRP3 | NOD-like receptor family, pyrin domain-containing protein 3 |
| NOX2 | NADPH oxidase 2 |
| NTS | Nucleus of the solitary tract |
| P2X7R | P2X7 receptor |
| PVC | Premature ventricular contraction |
| PVN | Paraventricular nucleus |
| ROS | Reactive oxygen species |
| RVLM | Rostral ventrolateral medulla |
| SCD | Sudden cardiac death |
| SGB | Stellate ganglion block |
| TLR4 | Toll-like receptor 4 |
| TNF-α | Tumor necrosis factor -α |
| VAs | Ventricular arrhythmias |
| VNS | Vagal nerve stimulation |
| VT | Ventricular tachycardia |
References
- Salari, N.; Morddarvanjoghi, F.; Abdolmaleki, A.; Rasoulpoor, S.; Khaleghi, A.A.; Hezarkhani, L.A.; Shohaimi, S.; Mohammadi, M. The global prevalence of myocardial infarction: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2023, 23, 206. [Google Scholar] [CrossRef]
- Hu, J.R.; Abdullah, A.; Nanna, M.G.; Soufer, R. The Brain-Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr. Cardiol. Rep. 2023, 25, 1745–1758. [Google Scholar] [CrossRef]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef]
- Wang, K.; You, S.; Hu, H.; Li, X.; Yin, J.; Shi, Y.; Qi, L.; Li, P.; Zhao, Y.; Yan, S. Effect of TLR4/MyD88/NF-kB axis in paraventricular nucleus on ventricular arrhythmias induced by sympathetic hyperexcitation in post-myocardial infarction rats. J. Cell. Mol. Med. 2022, 26, 2959–2971. [Google Scholar] [CrossRef]
- Chen, P.S.; Fishbein, M.C. Neural Remodeling After Myocardial Infarction: The Importance of Heterogeneity. JACC Clin. Electrophysiol. 2023, 9, 1665–1667. [Google Scholar] [CrossRef]
- Tampakakis, E.; Gangrade, H.; Glavaris, S.; Htet, M.; Murphy, S.; Lin, B.L.; Liu, T.; Saberi, A.; Miyamoto, M.; Kowalski, W.; et al. Heart neurons use clock genes to control myocyte proliferation. Sci. Adv. 2021, 7, eabh4181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, M.; Jiao, L.; Liu, C.; Chen, H.; Zhou, L.; Wang, Y.; Wang, Y.; Liu, Z.; Liu, Z.; et al. Ultrasound-guided injection of botulinum toxin type A blocks cardiac sympathetic ganglion to improve cardiac remodeling in a large animal model of chronic myocardial infarction. Heart Rhythm 2022, 19, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Yin, Z.; Ding, W.; Zhao, M.; Liu, J.; Xu, Y.; Xu, S.; Pan, W.; Wei, C.; et al. Microglia-Mediated Neuroimmune Response Regulates Cardiac Remodeling After Myocardial Infarction. J. Am. Heart Assoc. 2023, 12, e029053. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Wang, M.; Kang, X.; Xu, H.; Cao, Z.; Yu, T.; Huang, K.; Wu, J.; Wei, X.; Lei, Q. Macrophage-mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res. Cardiol. 2020, 115, 56. [Google Scholar] [CrossRef] [PubMed]
- Giannino, G.; Braia, V.; Griffith Brookles, C.; Giacobbe, F.; D’Ascenzo, F.; Angelini, F.; Saglietto, A.; De Ferrari, G.M.; Dusi, V. The Intrinsic Cardiac Nervous System: From Pathophysiology to Therapeutic Implications. Biology 2024, 13, 105. [Google Scholar] [CrossRef]
- Li, Y.L. Stellate Ganglia and Cardiac Sympathetic Overactivation in Heart Failure. Int. J. Mol. Sci. 2022, 23, 13311. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.S.; Bauer, T.C.; Li, M.H.; Hegarty, D.M.; Mota, C.M.D.; Amaefuna, C.J.; Ingram, S.L.; Habecker, B.A.; Aicher, S.A. Ischemia-reperfusion myocardial infarction induces remodeling of left cardiac-projecting stellate ganglia neurons. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H166–H179. [Google Scholar] [CrossRef]
- Chen, X.; Gu, J.; Zhang, X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology 2024, 149, 369–382. [Google Scholar] [CrossRef]
- Bisaccia, G.; Ricci, F.; Recce, V.; Serio, A.; Iannetti, G.; Chahal, A.A.; Ståhlberg, M.; Khanji, M.Y.; Fedorowski, A.; Gallina, S. Post-Acute Sequelae of COVID-19 and Cardiovascular Autonomic Dysfunction: What Do We Know? J. Cardiovasc. Dev. Dis. 2021, 8, 156. [Google Scholar] [CrossRef]
- Ajijola, O.A.; Chatterjee, N.A.; Gonzales, M.J.; Gornbein, J.; Liu, K.; Li, D.; Paterson, D.J.; Shivkumar, K.; Singh, J.P.; Herring, N. Coronary Sinus Neuropeptide Y Levels and Adverse Outcomes in Patients with Stable Chronic Heart Failure. JAMA Cardiol. 2020, 5, 318–325. [Google Scholar] [CrossRef]
- Zhou, X.F.; Song, X.Y.; Zhong, J.H.; Barati, S.; Zhou, F.H.; Johnson, S.M. Distribution and localization of pro-brain-derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. J. Neurochem. 2004, 91, 704–715. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, Y.; Fu, K.; Xiao, X.; Jia, M.Q.; Sun, J.; Wang, J.; Zhu, G.; Lyu, D.; Lu, Q.; et al. An orexin-receptor-2-mediated heart-brain axis in cardiac pain. iScience 2024, 27, 109067. [Google Scholar] [CrossRef]
- Vaseghi, M.; Barwad, P.; Malavassi Corrales, F.J.; Tandri, H.; Mathuria, N.; Shah, R.; Sorg, J.M.; Gima, J.; Mandal, K.; Sàenz Morales, L.C.; et al. Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias. J. Am. Coll. Cardiol. 2017, 69, 3070–3080, Correction in: J. Am. Coll. Cardiol. 2017, 70, 811.. [Google Scholar] [CrossRef]
- Chouairi, F.; Rajkumar, K.; Benak, A.; Qadri, Y.; Piccini, J.P.; Mathew, J.; Ray, N.D.; Toman, J.; Kautzner, J.; Ganesh, A.; et al. A Multicenter Study of Stellate Ganglion Block as a Temporizing Treatment for Refractory Ventricular Arrhythmias. JACC Clin. Electrophysiol. 2024, 10, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kobayashi, K.; Joung, B.; Piccirillo, G.; Maruyama, M.; Vinters, H.V.; March, K.; Lin, S.F.; Shen, C.; Fishbein, M.C.; et al. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J. Am. Coll. Cardiol. 2012, 59, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, H.; Wang, Y.; Hu, H.; Wang, K.; Li, P.; Yin, J.; Shi, Y.; Wang, Y.; Zhao, Y.; et al. New insights into the central sympathetic hyperactivity post-myocardial infarction: Roles of METTL3-mediated m6A methylation. J. Cell. Mol. Med. 2022, 26, 1264–1280. [Google Scholar] [CrossRef]
- Chin, S.H.; Allen, E.; Brack, K.E.; Ng, G.A. Autonomic neuro-cardiac profile of electrical, structural and neuronal remodeling in myocardial infarction-induced heart failure. J. Mol. Cell. Cardiol. Plus 2023, 5, 100044. [Google Scholar] [CrossRef]
- Senapati, S.G.; Bhanushali, A.K.; Lahori, S.; Naagendran, M.S.; Sriram, S.; Ganguly, A.; Pusa, M.; Damani, D.N.; Kulkarni, K.; Arunachalam, S.P. Mapping of Neuro-Cardiac Electrophysiology: Interlinking Epilepsy and Arrhythmia. J. Cardiovasc. Dev. Dis. 2023, 10, 433. [Google Scholar] [CrossRef]
- Chen, B.; Wen, J.; You, D.; Zhang, Y. Implication of cognitive-behavioral stress management on anxiety, depression, and quality of life in acute myocardial infarction patients after percutaneous coronary intervention: A multicenter, randomized, controlled study. Ir. J. Med. Sci. 2024, 193, 101–109. [Google Scholar] [CrossRef]
- Koba, S.; Hanai, E.; Kumada, N.; Watanabe, T. Sympathoexcitatory input from hypothalamic paraventricular nucleus neurons projecting to rostral ventrolateral medulla is enhanced after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1197–H1207. [Google Scholar] [CrossRef] [PubMed]
- Gelosa, P.; Castiglioni, L.; Rzemieniec, J.; Muluhie, M.; Camera, M.; Sironi, L. Cerebral derailment after myocardial infarct: Mechanisms and effects of the signaling from the ischemic heart to brain. J. Mol. Med. 2022, 100, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.M.; Zhang, A.Q.; Zhao, X.F.; Cardinale, J.P.; Elks, C.; Cao, X.M.; Zhang, Z.W.; Francis, J. Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res. Cardiol. 2011, 106, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Fedele, L.; Brand, T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J. Cardiovasc. Dev. Dis. 2020, 7, 54. [Google Scholar] [CrossRef]
- Hanna, P.; Rajendran, P.S.; Ajijola, O.A.; Vaseghi, M.; Andrew Armour, J.; Ardell, J.L.; Shivkumar, K. Cardiac neuroanatomy—Imaging nerves to define functional control. Auton. Neurosci. 2017, 207, 48–58. [Google Scholar] [CrossRef]
- Yin, X.; Cai, D.; Song, Z.; Song, C. Nourishment of Nerves and Innervation: A Novel Approach for the Treatment of Myocardial Infarction. Cardiology 2025, 150, 678–700. [Google Scholar] [CrossRef]
- Brown, A.M. Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J. Physiol. 1967, 190, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.J.; Mueller, T.M.; Davies, B.G.; Zipes, D.P. Phenol topically applied to canine left ventricular epicardium interrupts sympathetic but not vagal afferents. Circ. Res. 1984, 55, 532–544. [Google Scholar] [CrossRef]
- Hansen, M.K.; Taishi, P.; Chen, Z.; Krueger, J.M. Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1beta. J. Neurosci. 1998, 18, 2247–2253. [Google Scholar] [CrossRef]
- Banks, W.A.; Kastin, A.J.; Broadwell, R.D. Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 1995, 2, 241–248. [Google Scholar] [CrossRef]
- Francis, J.; Chu, Y.; Johnson, A.K.; Weiss, R.M.; Felder, R.B. Acute myocardial infarction induces hypothalamic cytokine synthesis. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H2264–H2271. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.; Zhang, Z.H.; Weiss, R.M.; Felder, R.B. Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H791–H797. [Google Scholar] [CrossRef]
- Francis, J.; Weiss, R.M.; Johnson, A.K.; Felder, R.B. Central mineralocorticoid receptor blockade decreases plasma TNF-alpha after coronary artery ligation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R328–R335. [Google Scholar] [CrossRef] [PubMed]
- Armour, J.A.; Yuan, B.X.; Butler, C.K. Cardiac responses elicited by peptides administered to canine intrinsic cardiac neurons. Peptides 1990, 11, 753–761. [Google Scholar] [CrossRef]
- Gan, X.B.; Duan, Y.C.; Xiong, X.Q.; Li, P.; Cui, B.P.; Gao, X.Y.; Zhu, G.Q. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure. PLoS ONE 2011, 6, e25784. [Google Scholar] [CrossRef]
- Aksu, T.; Gopinathannair, R.; Gupta, D.; Pauza, D.H. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the “heart brain”? J. Cardiovasc. Electrophysiol. 2021, 32, 1737–1747. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, Z.; Deng, K.Q.; Zhang, H.; Zeng, Z.; Zhang, Y.; He, B.; Cai, H.; Lu, Z. Ventricular Arrhythmias and Myocardial Infarction: Electrophysiological and Neuroimmune Mechanisms. Biomedicines 2025, 13, 1290. [Google Scholar] [CrossRef]
- Hadaya, J.; Ardell, J.L. Autonomic Modulation for Cardiovascular Disease. Front. Physiol. 2020, 11, 617459. [Google Scholar] [CrossRef]
- Blake, M.R.; Parrish, D.C.; Staffenson, M.A.; Johnson, M.A.; Woodward, W.R.; Habecker, B.A. Loss of chondroitin sulfate proteoglycan sulfation allows delayed sympathetic reinnervation after cardiac ischemia-reperfusion. Physiol. Rep. 2023, 11, e15702. [Google Scholar] [CrossRef]
- Maron, B.J.; Doerer, J.J.; Haas, T.S.; Tierney, D.M.; Mueller, F.O. Sudden deaths in young competitive athletes: Analysis of 1866 deaths in the United States, 1980–2006. Circulation 2009, 119, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Gourine, A.; Gourine, A.V. Neural mechanisms of cardioprotection. Physiology 2014, 29, 133–140. [Google Scholar] [CrossRef]
- Wang, A.; Dorey, T. Stellate ganglion neuromodulation: A novel approach to cardiac dysfunction in myocardial infarction and beyond. J. Physiol. 2025, 603, 2165–2166. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Jiang, Z.; Shao, Y.; Liu, X.; Li, X. Stellate ganglion, inflammation, and arrhythmias: A new perspective on neuroimmune regulation. Front. Cardiovasc. Med. 2024, 11, 1453127. [Google Scholar] [CrossRef]
- Pyner, S. The paraventricular nucleus and heart failure. Exp. Physiol. 2014, 99, 332–339. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Moroni, F.; Montone, R.A.; Azzalini, L.; Sanna, T.; Abbate, A. Ischemic Cardiomyopathy and Heart Failure After Acute Myocardial Infarction. Curr. Cardiol. Rep. 2022, 24, 1505–1515. [Google Scholar] [CrossRef]
- Herring, N.; Kalla, M.; Paterson, D.J. The autonomic nervous system and cardiac arrhythmias: Current concepts and emerging therapies. Nat. Rev. Cardiol. 2019, 16, 707–726, Correction in: Nat. Rev. Cardiol. 2019, 16, 760.. [Google Scholar] [CrossRef] [PubMed]
- Hadaya, J.; Buckley, U.; Gurel, N.Z.; Chan, C.A.; Swid, M.A.; Bhadra, N.; Vrabec, T.L.; Hoang, J.D.; Smith, C.; Shivkumar, K.; et al. Scalable and reversible axonal neuromodulation of the sympathetic chain for cardiac control. Am. J. Physiol. Heart Circ. Physiol. 2022, 322, H105–H115. [Google Scholar] [CrossRef]
- Holt, M.K. The ins and outs of the caudal nucleus of the solitary tract: An overview of cellular populations and anatomical connections. J. Neuroendocrinol. 2022, 34, e13132. [Google Scholar] [CrossRef]
- Guyenet, P.G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 2006, 7, 335–346. [Google Scholar] [CrossRef]
- Niu, L.G.; Sun, N.; Liu, K.L.; Su, Q.; Qi, J.; Fu, L.Y.; Xin, G.R.; Kang, Y.M. Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension. Cardiovasc. Toxicol. 2022, 22, 898–909. [Google Scholar] [CrossRef]
- Murphy, S.P.; Ibrahim, N.E.; Januzzi, J.L., Jr. Heart Failure with Reduced Ejection Fraction: A Review. JAMA 2020, 324, 488–504. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; Yin, J.; Shi, Y.; Tan, J.; Zheng, L.; Wang, C.; Li, X.; Xue, M.; Liu, J.; et al. TLR4 participates in sympathetic hyperactivity Post-MI in the PVN by regulating NF-kappaB pathway and ROS production. Redox Biol. 2019, 24, 101186. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Wei, Z.; Xia, C.; Wang, J.; Shen, L.; Wang, J. TLR4/MyD88/NF-κB Signaling in the Rostral Ventrolateral Medulla Is Involved in the Depressor Effect of Candesartan in Stress-Induced Hypertensive Rats. ACS Chem. Neurosci. 2020, 11, 2978–2988. [Google Scholar] [CrossRef]
- Parati, G.; Lombardi, C.; Pengo, M.; Bilo, G.; Ochoa, J.E. Current challenges for hypertension management: From better hypertension diagnosis to improved patients’ adherence and blood pressure control. Int. J. Cardiol. 2021, 331, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Spencer, C.B.; Ortoga, L.; Zhang, H.; Miao, C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol. 2024, 74, 103194, Erratum in: Redox Biol. 2025, 82, 103616.. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, C.; Xu, S.; Wang, J.; Guo, F.; Duan, S.; Deng, Q.; Sun, J.; Yu, F.; Zhou, Y.; et al. Metabolism regulator adiponectin prevents cardiac remodeling and ventricular arrhythmias via sympathetic modulation in a myocardial infarction model. Basic Res. Cardiol. 2022, 117, 34. [Google Scholar] [CrossRef]
- Shokoples, B.G.; Paradis, P.; Schiffrin, E.L. P2X7 Receptors: An Untapped Target for the Management of Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 186–199. [Google Scholar] [CrossRef]
- Mo, B.; Ding, Y.; Ji, Q. NLRP3 inflammasome in cardiovascular diseases: An update. Front. Immunol. 2025, 16, 1550226. [Google Scholar] [CrossRef] [PubMed]
- Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol. Rev. 2019, 99, 1765–1817. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Wu, Q.; Ooi, K.; Feng, Y.; Xia, C.; Zhu, D. Paraventricular Nucleus P2X7 Receptors Aggravate Acute Myocardial Infarction Injury via ROS-Induced Vasopressin-V1b Activation in Rats. Neurosci. Bull. 2021, 37, 641–656. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, S.; Sheng, X.; Liu, Z.; Lai, Y.; Wang, M.; Wang, Z.; Zhou, L.; Meng, G.; Chen, H.; et al. Interactions between metabolism regulator adiponectin and intrinsic cardiac autonomic nervous system: A potential treatment target for atrial fibrillation. Int. J. Cardiol. 2020, 302, 59–66. [Google Scholar] [CrossRef]
- Gourine, A.V.; Ackland, G.L. Cardiac Vagus and Exercise. Physiology 2019, 34, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.S.; Mischel, N.A.; Mueller, P.J. Revisiting differential control of sympathetic outflow by the rostral ventrolateral medulla. Front. Physiol. 2023, 13, 1099513. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.A.; Engelhardt, S.; Carnevale, D.; McAlpine, C.S.; Guzik, T.J.; Dimmeler, S.; Swirski, F.K. Neural Mechanisms in Cardiovascular Health and Disease. Circ. Res. 2025, 136, 1233–1261. [Google Scholar] [CrossRef]
- Piccolo, S.; Casal, M.; Rossi, V.; Ferrigni, F.; Piccoli, A.; Bolzan, B.; Setti, M.; Butturini, C.; Benfari, G.; Ferrero, V.; et al. Ventricular arrhythmias and primary prevention of sudden cardiac death in Anderson-Fabry disease. Int. J. Cardiol. 2024, 415, 132444. [Google Scholar] [CrossRef]
- Olshansky, B.; Cannom, D.; Fedorowski, A.; Stewart, J.; Gibbons, C.; Sutton, R.; Shen, W.K.; Muldowney, J.; Chung, T.H.; Feigofsky, S.; et al. Postural Orthostatic Tachycardia Syndrome (POTS): A critical assessment. Prog. Cardiovasc. Dis. 2020, 63, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Cheshire, W.P., Jr. Roles of cardiac sympathetic neuroimaging in autonomic medicine. Clin. Auton. Res. 2018, 28, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef] [PubMed]





| Pathway | Model | Key Findings | Effect on Arrhythmias |
|---|---|---|---|
| TLR4/MyD88/NF-κB | Rat MI (LAD ligation) | TLR4 activation → NF-κB translocation → inflammatory cytokine release (IL-1β, TNF-α) | Increases VT inducibility; TLR4 inhibition reduces arrhythmias |
| P2X7R/NLRP3 | Rat MI (LAD ligation) | ATP → P2X7R activation → NLRP3 inflammasome → IL-1β release → NGF upregulation | P2X7R blockade reduces PVCs and VT; decreases nerve sprouting |
| GABA Disinhibition | Rat HF post-MI | Astrocytic GAT-3 upregulation → reduced GABA → loss of tonic inhibition | Increases stress-triggered arrhythmias; GAT-3 blockade restores inhibition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, T. Neurocardiac Crosstalk: Sympathetic Remodeling and Arrhythmogenesis After Myocardial Infarction. Curr. Issues Mol. Biol. 2025, 47, 1037. https://doi.org/10.3390/cimb47121037
Yu T. Neurocardiac Crosstalk: Sympathetic Remodeling and Arrhythmogenesis After Myocardial Infarction. Current Issues in Molecular Biology. 2025; 47(12):1037. https://doi.org/10.3390/cimb47121037
Chicago/Turabian StyleYu, Tianshui. 2025. "Neurocardiac Crosstalk: Sympathetic Remodeling and Arrhythmogenesis After Myocardial Infarction" Current Issues in Molecular Biology 47, no. 12: 1037. https://doi.org/10.3390/cimb47121037
APA StyleYu, T. (2025). Neurocardiac Crosstalk: Sympathetic Remodeling and Arrhythmogenesis After Myocardial Infarction. Current Issues in Molecular Biology, 47(12), 1037. https://doi.org/10.3390/cimb47121037

