SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients’ Clinical Characterization
- Onset of seizures typically between 3 and 9 months, in rare cases 1–20 months.
- Standard head size during the first years of life.
- Intellectual disability or regression of psychomotor development.
- Type of seizures: recurrent focal clonic (hemiclonic) febrile and afebrile seizures (which often alternate sides from seizure to seizure), focal to bilateral tonic–clonic and/or generalized clonic seizures.
- Additional seizure types (not mandatory): myoclonic seizures, focal impaired awareness seizures, focal to the bilateral tonic–clonic seizures, atypical absence seizures, atonic seizures, nonconvulsive status epilepticus, tonic and tonic–clonic seizures mainly in sleep and in clusters.
- Drug-resistant epilepsy.
- Course of illness: drug-resistant seizures with potential episodes of status epilepticus.
- Epileptic spasms.
- Early infantile SCN1A DEE.
- No history of prolonged seizures (>10 min).
- Lack of fever sensitivity as a seizure trigger.
- Typical EEG background without interictal discharges after age two years.
- Focal neurological findings.
- MRI showing a causal focal lesion: brain malformation, hypoxic-ischemic brain injury, brain tumor, neurocutaneous disorders, etc.
- First seizure diagnosis during the neonatal period.
2.2. SCN1A Variants Analysis
3. Results
3.1. Clinical Features of Patients
3.2. Molecular Features of Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escayg, A.; MacDonald, B.T.; Meisler, M.H.; Baulac, S.; Huberfeld, G.; An-Gourfinkel, I.; Brice, A.; LeGuern, E.; Moulard, B.; Chaigne, D.; et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 2000, 24, 343–345. [Google Scholar] [CrossRef] [PubMed]
- van Hugte, E.J.H.; Lewerissa, E.I.; Wu, K.M.; Scheefhals, N.; Parodi, G.; van Voorst, T.W.; Puvogel, S.; Kogo, N.; Keller, J.M.; Frega, M.; et al. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain 2023, 146, 5153–5167. [Google Scholar] [CrossRef] [PubMed]
- Bryso, A.; Petrou, S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol. 2023, 14, 1173460. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Nizzari, M.; Zanardi, I.; Pusch, M.; Gavazzo, P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life 2023, 13, 1191. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Nabbout, R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia 2019, 3, S17–S24. [Google Scholar] [CrossRef]
- Szlendak, R. Developmental and Epileptic Encephalopathies as a Synaptpathies-assesment of the Role of NMDA Receptor in the Ethiopathogenesis of the Disease. Ph.D. Desideration, Institute of Mother and Child/Institute de Genomique Functionelle, Prague, Czech Republic, 2023. [Google Scholar]
- Krygier, M.; Pietruszka, M.; Zawadzka, M.; Sawicka, A.; Lemska, A.; Limanówka, M.; Żurek, J.; Talaśka-Liczbik, W.; Mazurkiewicz-Bełdzińska, M. Next-generation sequencing testing in children with epilepsy reveals novel clinical, diagnostic and therapeutic implications. Front. Genet. 2024, 14, 1300952. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.; Benítez, A.; Roth, J.; Andrews, J.S.; Shah, D.; Butcher, E.; Jones, A.; Cross, J.H. A systematic literature review on the global epidemiology of Dravet syndrome and Lennox-Gastaut syndrome: Prevalence, incidence, diagnosis, and mortality. Epilepsia 2024, 22. [Google Scholar] [CrossRef]
- Dravet, C. Dravet syndrome history. Dev. Med. Child Neurol. 2011, 53, e5006. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Pérez-Palma, E.; Bruenger, T.; Ghanty, I.; Brilstra, E.; Ceulemans, B.; Chemaly, N.; de Lange, I.; Depienne, C.; Guerrini, R.; et al. Genotype-phenotype associations in 1018 individuals with SCN1A-related epilepsies. Epilepsia 2024, 65, 1046–1059. [Google Scholar] [CrossRef]
- Sameer, M.; Zuberi, S.M.; Wirrell, E.; Yozawitz, E.; Wilmshurst, J.M.; Specchio, N.; Riney, K.; Pressler, R.; Auvin, S.; Samia, P.; et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1349–1397. [Google Scholar]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Ohmori, I.; Kahlig, K.M.; Rhodes, T.H.; Wang, D.W.; George, A.L., Jr. Nonfunctional SCN1A is common in severe myoclonic epilepsy of infancy. Epilepsia 2006, 47, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.P.; Shi, Y.W.; Long, Y.S.; Zeng, Y.; Li, T.; Yu, M.J.; Su, T.; Deng, P.; Lei, Z.G.; Xu, S.J.; et al. Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: Associated with loss of function of Na(v) 1.1. Epilepsia 2010, 51, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Rusconi, R.; Combi, R.; Cestèle, S.; Grioni, D.; Franceschetti, S.; Dalprà, L.; Mantegazza, M. A rescuable folding defective Nav1.1 (SCN1A) sodium channel mutant causes GEFS+: Common mechanism in Nav1.1 related epilepsies? Hum. Mutat. 2009, 30, E747–E760. [Google Scholar] [CrossRef] [PubMed]
- Kluckova, D.; Kolnikova, M.; Lacinova, L.; Jurkovicova-Tarabova, B.; Foltan, T.; Demko, V.; Kadasi, L.; Ficek, A.; Soltysova, A. A Study among the Genotype, Functional Alternations, and Phenotype of 9 SCN1A Mutations in Epilepsy Patients. Sci. Rep. 2020, 10, 10288. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, G.; Szulczyk, B.; Nurowska, E.; Jurek, M.; Pasierski, M.; Lipiec, A.; Charzewska, A.; Dawidziuk, M.; Milewski, M.; Owsiak, S.; et al. Functional Characteristics of the Nav1.1 p.Arg1596Cys Mutation Associated with Varying Severity of Epilepsy Phenotypes. Int. J. Mol. Sci. 2024, 25, 1745. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Zhang, Y.H.; Jansen, F.E.; Dibbens, L. Dravet syndrome or genetic (generalized) epilepsy with febrile seiz.ures plus? Brain Dev. 2009, 31, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Sawires, R.; Buttery, J.; Fahey, M. A Review of Febrile Seizures: Recent Advances in Understanding of Febrile Seizure Pathophysiology and Commonly Implicated Viral Triggers. Front. Pediatr. 2022, 9, 801321. [Google Scholar] [CrossRef] [PubMed]
- Cetica, V.; Chiari, S.; Mei, D.; Parrini, E.; Grisotto, L.; Marini, C.; Pucatti, D.; Ferrari, A.; Sicca, F.; Specchio, N.; et al. Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neurology. 2017, 14, 1037–1044. [Google Scholar] [CrossRef]
- Li, W.; Schneider, A.L.; Scheffer, I.E. Defining Dravet syndrome: An essential pre-requisite for precision medicine trials. Epilepsia 2021, 62, 2205–2217. [Google Scholar] [CrossRef]
- Berkovic, S.F.; Harkin, L.; McMahon, J.M.; Pelekanos, J.T.; Zuberi, S.M.; Wirrell, E.C.; Gill, D.S.; Iona, X.; Mulley, J.C.; Scheffer, I.E. De-novo mutations of the sodium channel gene SCN1A in alleged vacine encephalopathy: A retrospective study. Lancet Neurol. 2006, 5, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Charzewska, A.; Terczyńska, I.; Lipiec, A.; Mazurczak, T.; Górka-Skoczylas, P.; Szlendak, R.; Kanabus, K.; Tataj, R.; Dawidziuk, M.; Wojtaś, B.; et al. Genetic Risk Factors for Neurological Disorders in Children with Adverse Events Following Immunization: A Descriptive Study of a Polish Case Series. Int. J. Mol. Sci. 2023, 24, 1117. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.; Bjurulf, B.; Hallböök, T. Intellectual functioning and adaptive behaviour in children with Dravet syndrome: A population-based study. Dev. Med. Child Neurol. 2023, 65, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.S.; Hallböök, T.; Reilly, C. Intellectual functioning and behavior in Dravet syndrome: A systematic review. Epilepsy Behav. 2020, 108, 107079. [Google Scholar] [CrossRef] [PubMed]
- Tiraboschi, E.; Martina, S.; van der Ent, W.; Grzyb, K.; Gawel, K.; Cordero-Maldonado, M.L.; Poovathingal, S.K.; Heintz, S.; Satheesh, S.V.; Brattespe, J.; et al. New insights into the early mechanisms of epileptogenesis in a zebrafish model of Dravet syndrome. Epilepsia 2020, 61, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Berkvens, J.J.L.; Veugen, I.; Veendrick-Meekes, M.J.B.M.; Snoeijen-Schouwenaars, F.M.; Schelhaas, H.J.; Willemsen, M.H.; Tan, I.Y.; Aldenkamp, A.P. Autism and behavior in adult patients with Dravet syndrome (DS). Epilepsy Behav. 2015; 47, 11–16. [Google Scholar]
- Ouss, L.; Leunen, D.; Lasche, J.; Chemaly, N.; Barcia, G.; Losito, E.M.; Aouidad, A.; Barrault, Z.; Desguerre, I.; Breuillard, D.; et al. Autism spectrum disorder and cognitive profile in children with Dravet syndrome: Delineation of a specific phenotype. Epilepsia Open. 2018, 4, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Dravet, C. The core Dravet syndrome phenotype. Epilepsia 2011, 52, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Takayama, R.; Fujiwara, T.; Shigematsu, H.; Imai, K.; Takahashi, Y.; Yamakawa, K.; Inoue, Y. Long-term course of Dravet syndrome: A study from an epilepsy center in Japan. Epilepsia 2014, 55, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, Y.; Sun, H.; Liu, X.; Yang, X.; Xiong, H.; Jiang, Y.; Bao, X.; Wang, S.; Yang, Z.; et al. Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev. 2014, 36, 676–681. [Google Scholar] [CrossRef]
- Wu, Y.W.; Sullivan, J.; McDaniel, S.S.; Meisler, M.H.; Walsh, E.M.; Li, S.X.; Kuzniewicz, M.W. Incidence of Dravet Syndrome in a US Population. Pediatrics 2015, 136, 1310–1315. [Google Scholar] [CrossRef]
- Claes, L.; Del-Favero, J.; Ceulemans, B.; Lagae, L.; Van Broeckhoven, C.; De Jonghe, P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 2001, 68, 1327–1332. [Google Scholar] [CrossRef]
N = 50 | |
---|---|
Mean age in 2023 | 14.9 (3–30 years) |
The mean age of the first symptoms | 5.3 (2–9 months) |
Type of the first epileptic seizure: | |
Focal clonic/hemiclonic | 53% |
Tonic–clonic | 39% |
Convulsive status epilepticus (tonic–clonic) | 6% |
Tonic during sleep | 2% |
Neurodevelopmental disorders: | |
Autism | 18% |
ADHD | 10% |
Intellectual disability—total | 71% |
mild | 22% |
moderate | 32% |
severe | 12% |
Types of Seizures | N = 50 |
---|---|
Focal clonic | 80% |
Hemiclonic | 8% |
Focal clonic generalized to tonic–clonic | 7% |
Mioclonic | 55% |
Atypic absence | 40% |
Tonic–clonic | 60% |
Focal tonic | 15% |
Status epilepticus | 100% |
convulsive | 82% |
nonconvulsive | 26% |
Triggers: | |
Hyperthermia | 100% |
During Infection | 90% |
After vaccination | 16% |
High ambient temperature/overheating/hot water | 12% |
Infection without fever | 22% |
Emotional | 4% |
c.DNA (NM_001165963.4) | Protein | Inheritance | Nav1.1 Localization | ACMG Classification | ClinVar | HGMD | Pathogenicity Classification | |
---|---|---|---|---|---|---|---|---|
S_1 | 235A>G | Asp79Gly | de novo | N-ter | LPat | Pat (EIEE) | -; Asp79Asn—NDD/DRVT | Pat |
S_2 | 241G>A | Asp81Asn | de novo | N-ter | LPat | - | + DRVT | Pat |
S_3 | 278T>A | Leu93* | de novo | N-ter | Lpat | - | - | Pat |
S_4 | 298T>A | Phe100Ile | nd | N-ter | LPat | - | -; Phe100.Val—DRVT/EOE/GEFS+ | Pat |
S_5 | 302G>A | Arg101Gln | de novo | N-ter | LPat | Pat (EIEE) | + DRVT | Pat |
S_6 | 429_430delGT | Val143Tyrfs*148 | nd | DI-S1 | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_7 | 680T>G | Ile227Ser | de novo | DI-S4 | Pat | Pat (DRVT) | + DRVT | Pat |
S_8 | 686delT | Val229Alafs*5 | de novo | DI-S4 | LPat | - | - | Pat |
S_9 | 773T>C | Leu258Pro | nd (ma. -/-) | DI-S5 | LPat | - | - | LPat |
S_10 | 1025C>T | Ala342Val | de novo | Exter (Loop, IS5-S6) | Pat | Pat (DRVT) | + DRVT | Pat |
S_11 | 1247A>G | Asn416Ser | de novo | DI-S6 | Pat | LPat (DRVT) | + DRVT | Pat |
S_12 | 1738C>T | Arg580* | de novo | L1 | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_13 | 1837C>T | Arg613* | de novo | L1 | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_14 | 2134C>T | Arg712* | de novo | L1 | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_51 | 2134C>T | Arg712* | de novo | L1 | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_15 | 2420dupT | Thr808Hisfs*29 | de novo | DII-S1 | Pat | Pat (nd) | - | Pat |
S_16 | 2585G>A | Arg862Gln | de novo | DII-S4 | Pat | Pat (DRVT/EIEE) | + VUS DRVT/Epi | Pat |
S_42 | 2692_2706dupGCCATCATCGTCTTC | Ala898_Phe902dup | de novo | DII-S5 | LPat | - | - | Pat |
S_17 | 2791C>T | Arg931Cys | de novo | Exter (Loop, IIS5-S6) | LPat | Pat (nd) | + DRVT | Pat |
S_18 | 2837G>A | Arg946His | de novo | Exter (pore-forming) | LPat | Pat (DRVT/EIEE) | + NDD; DRVT, GEFS+ | Pat |
S_19 | 3225T>A(;)4793A>T | Tyr1075*(;)Tyr1598Phe | de novo; ma. | L2 | LPat; LPat | -; VUS | -; + (Schiz + Aut, GEFS+, DRVT) | Pat/LPat |
S_21 | 3734_3735ins TGATCAGC | Lys1246Aspfs*27 | pat moz | Exter(Loop) | Pat | - | - | Pat |
S_22 | 4168G>A | Val1390Met | de novo | Exter (Loop IIIS5-S6) | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
S_23 | 4274T>A | Leu1425* | de novo | Exter (pore-forming) | LPat | - | - | Pat |
S_24 | 4388T>C | Phe1463Ser | ma. moz | DIII-S6 | LPat | Pat (DRVT) | + DRVT | Pat |
S_25 | 4459_4460del | Asn1487Profs*22 | de novo | L3 | LPat | - | - | Pat |
S_26 | 4532T>G | Met1511Arg | nd | L3 | LPat | LPat (nd) | + DRVT/NDD | Pat |
S_27 | 4539delA | Lys1513Asnfs*2 | de novo | L3 | LPat | - | - | Pat |
S_28 | 4547C>A | Ser1516* | de novo | L3 | Pat | Pat (DRVT/EIEE/HM) | + DRVT | Pat |
S_29 | 4783_4784delCT | Leu1595Thrfs*13 | de novo | Cyto (Loop IV S2-S3) | Pat | Pat/LPat (AD EPI/nd) | - | Pat |
S_30 | 4787G>A | Arg1596His | pat (epi fam) | Cyto (Loop IV S2-S3) | LPat | ConfIntPat, Pat (DRVT/EIEE) Lpat (-) VUS (-) | + GEFS+ (VUS EIEE) | Pat VUS (DRVT) |
S_31 | 4786C>T | Arg1596Cys | pat (epi fam) | Cyto (Loop IV S2-S3) | Pat | Pat/LPat (FE/GEFS+/EIEE) | + FE/GEFS+/DRVT | Pat VUS (DRVT) |
S_32 | 4906C>T | Arg1636* | de novo | DIV-S4 | Pat | Pat (DEE6B/DRVT/GEFS+) | + DRVT | Pat |
S_33 | 4964G>T | Gly1655Val | de novo | Cyto (Loop IV S4-S5) | LPat | - | - p.Gly1655Ala—Epi | Pat |
S_34 | 5107G>T | Asp1703Tyr | de novo | Exter (Loop IVS5-S6) | LPat | - | + DRVT | Pat |
S_35 | 5129T>C | Phe1710Ser | de novo | Exter (poreforming) | LPat | - | + VUS DRVT | Pat |
S_36 | 5178G>A | Trp1726* | de novo | Exter (poreforming) | Lpat | - | + DRVT | Pat |
S_50 | 5383G>T | Glu1795* | pa moz | C-ter | LPat | Pat (EIEE) | - | Pat |
S_37 | 5432T>A | Val1811Asp | nd | C-ter | LPat | - | + CAE | LPat |
S_38 | 5536_5539delAAAC | Lys1846Serfs*11 | de novo | C-ter | Pat | Pat (DEE6B/DRVT/GEFS+) | + DRVT/GEFS+/ASD | Pat |
S_49 | 5536_5539delAAAC | Lys1846Serfs*11 | de novo | C-ter | Pat | Pat (DEE6B/DRVT/GEFS+) | + DRVT/GEFS+/ASD | Pat |
S_39 | 5734C>T | Arg1912* | de novo | C-ter | LPat | Pat (HM, AD Epi, EIEE) | + DRVT/GEFS+, FS+ | Pat |
S_40 | 5779A>G | Arg1927Gly | de novo | C-ter | LPat | - | + ASD/NDD | LPat |
S_20 | 3421_3429+7del | p.? | nd | LPat | - | - | Pat | |
S_43 | 2589+2dupT | p.? | de novo | LPat | LPat (DEE6B/DRVT/GEFS+/HM) | + DRVT (c.2589+3A>T) | Pat | |
S_44 | Ex19_26del | P.? | nd (pa. -/-) | Pat | Pat (DRVT/EIEE) | + del DRVT | Pat | |
S_45 | 2947-1G>A | p.? | de novo | LPat | Pat (-) | + DRVT | Pat | |
S_46 | Ex1_26 del | - | de novo | Pat | Pat (DRVT/EIEE) | + del DRVT | Pat | |
S_47 | 4338+1G>A | p.? | nd | LPat | Pat (EIEE) | + DRVT | Pat | |
S_48 | Ex1_26del | - | de novo | Pat | Pat (DRVT/EIEE) | + DRVT | Pat |
c.DNA | Protein | Inher. | gnomAD freq. | CADD (1–49) | Paralogous Pathogenic Variant Gene/Variant/Phenotype | Pathogenicity/ Funct.pred. | Functional Studies | |
---|---|---|---|---|---|---|---|---|
S_1 | 235A>G | Asp79Gly | de novo | 0 | 27.9 | - | Pat/LOF | - |
S_2 | 241G>A | Asp81Asn | de novo | 0 | 26.3 | SCN2A/p.Asp82Gly/ASD | Neut/prob. LOF* | - |
S_4 | 298T>A | Phe100Ile | pat moz | 0 | 27.1 | - | Neut/prob. LOF* | - |
S_5 | 302G>A | Arg101Gln | de novo | 0 | 28.5 | - | Pat/LOF | - |
S_7 | 680T>G | Ile227Ser | de novo | 0 | 30.0 | SCN8A/p.Ile231Thr/DEE | Pat/LOF | LOF [13] |
S_9 | 773T>C | Leu258Pro | nd (ma. -/-) | 0 | 29.0 | - | Pat/GOF | - |
S_10 | 1025C>T | Ala342Val | de novo | 0 | 32.0 | - | Neut/prob. LOF* | - |
S_11 | 1247A>G | Asn416Ser | de novo | 0 | 26.1 | - | Pat/GOF | - |
S_16 | 2585G>A | Arg862Gln | de novo | 0 | 24.1 | SCN2A/p.Arg853/DEE | Pat/LOF | - |
S_17 | 2791C>T | Arg931Cys | de novo | 0 | 32.0 | - | Pat/LOF | - |
S_18 | 2837G>A | Arg946His | de novo | 0 | 28.1 | SCN2A/p.Arg937Cys/His/ASD,Epi SCN8A/p.Arg931Gln/NNDwoE/GGE | Pat/LOF | LOF [14] |
S_22 | 4168G>A | Val1390Met | de novo | 0 | 24.1 | - | Neut/prob. LOF* | - |
S_24 | 4388T>C | Phe1463Ser | ma.moz | 0 | 29.8 | - | Pat/LOF | - |
S_26 | 4532T>G | Met1511Arg | nd | 0 | 27.1 | SCN2A/p.Met1501Val/DEE SCN8A/p.Met1492Thr/UE | Pat/GOF | - |
S_30 | 4787G>A | Arg1596His | pa. (fam) | 4 × 10−6 | 26.1 | - | Neut/prob. LOF* | |
S_31 | 4786C>T | Arg1596Cys | pa. (fam) | 0 | 29.6 | - | Neut/prob. LOF* | LOF/pLOF [16,17] |
S_33 | 4964G>T | Gly1655Val | de novo | 0 | 26.1 | - | Pat/LOF | |
S_34 | 5107G>T | Asp1703Tyr | de novo | 0 | 24.8 | SCN3A/p.Asp1688Tyr/UE | Pat/LOF | - |
S_35 | 5129T>C | Phe1710Ser | de novo | 0 | 29.1 | - | Pat/LOF | - |
S_37 | 5432T>A | Val1811Asp | nd | 0 | 27.9 | - | Pat/GOF | - |
S_40 | 5779A>G | Arg1927Gly | de novo | 0 | 27.2 | - | Pat/LOF | LOF [15] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawicka, E.; Zielińska, A.; Górka-Skoczylas, P.; Kanabus, K.; Tataj, R.; Mazurczak, T.; Hoffman-Zacharska, D. SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience. Curr. Issues Mol. Biol. 2024, 46, 4437-4451. https://doi.org/10.3390/cimb46050269
Stawicka E, Zielińska A, Górka-Skoczylas P, Kanabus K, Tataj R, Mazurczak T, Hoffman-Zacharska D. SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience. Current Issues in Molecular Biology. 2024; 46(5):4437-4451. https://doi.org/10.3390/cimb46050269
Chicago/Turabian StyleStawicka, Elżbieta, Anita Zielińska, Paulina Górka-Skoczylas, Karolina Kanabus, Renata Tataj, Tomasz Mazurczak, and Dorota Hoffman-Zacharska. 2024. "SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience" Current Issues in Molecular Biology 46, no. 5: 4437-4451. https://doi.org/10.3390/cimb46050269
APA StyleStawicka, E., Zielińska, A., Górka-Skoczylas, P., Kanabus, K., Tataj, R., Mazurczak, T., & Hoffman-Zacharska, D. (2024). SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience. Current Issues in Molecular Biology, 46(5), 4437-4451. https://doi.org/10.3390/cimb46050269