The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Association of Studied SNPs with MetS, Anthropometric and Laboratory Parameters in the Overall Group of Patients
2.2. Association of Studied SNPs with MetS, Anthropometric and Laboratory Parameters in the Group of Patients Receiving First-Generation Antipsychotics
2.3. Association of Studied SNPs with MetS, Anthropometric and Laboratory Parameters in the Group of Patients Receiving Second-Generation Antipsychotics
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Laboratory Methods
- Minor allele frequency of at least 5%.
- Availability of information on previous studies of this polymorphism.
- Marker localization.
4.3. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
CI | Confidence interval |
FGA | First-generation antipsychotic |
GST | Glutathione-S-transferase |
MetS | Metabolic syndrome |
OR | Odds ratio |
SGA | Second-generation antipsychotic |
SNP | Single-nucleotide polymorphism |
References
- Goldfarb, M.; De, H.M.; Detraux, J.; Di, P.K.; Munir, H.; Music, S.; Piña, I.; Ringen, P.A. Severe Mental Illness and Cardiovascular Disease. JACC 2022, 80, 918–933. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Wang, S.; Qu, C.; Zheng, K.; Sun, P. Schizophrenia and Type 2 Diabetes Risk: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2024, 15, 1395771. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Liu, Q.; Fang, H.; Zhou, Y.; Forster, M.T.; Li, Z.; Zhang, X. The Prevalence and Clinical Correlates of Metabolic Syndrome and Cardiometabolic Alterations in 430 Drug-Naive Patients in Their First Episode of Schizophrenia. Psychopharmacology 2021, 238, 3643–3652. [Google Scholar] [CrossRef]
- Chang, S.-C.; Goh, K.K.; Lu, M.-L. Metabolic Disturbances Associated with Antipsychotic Drug Treatment in Patients with Schizophrenia: State-of-the-Art and Future Perspectives. World J. Psychiatry 2021, 11, 696–710. [Google Scholar] [CrossRef]
- Saddichha, S.; Manjunatha, N.; Ameen, S.; Akhtar, S. Metabolic Syndrome in First Episode Schizophrenia—A Randomized Double-Blind Controlled, Short-Term Prospective Study. Schizophr. Res. 2008, 101, 266–272. [Google Scholar] [CrossRef]
- Bajaj, S.; Varma, A.; Srivastava, A.; Verma, A.K. Association of Metabolic Syndrome with Schizophrenia. Indian J. Endocrinol. Metab. 2013, 17, 890. [Google Scholar] [CrossRef]
- Sugawara, N.; Yasui-Furukori, N.; Sato, Y.; Umeda, T.; Kishida, I.; Yamashita, H.; Saito, M.; Furukori, H.; Nakagami, T.; Hatakeyama, M.; et al. Prevalence of Metabolic Syndrome among Patients with Schizophrenia in Japan. Schizophr. Res. 2010, 123, 244–250. [Google Scholar] [CrossRef]
- De Hert, M.A.; van Winkel, R.; Van Eyck, D.; Hanssens, L.; Wampers, M.; Scheen, A.; Peuskens, J. Prevalence of the Metabolic Syndrome in Patients with Schizophrenia Treated with Antipsychotic Medication. Schizophr. Res. 2006, 83, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Saari, K.M.; Lindeman, S.M.; Viilo, K.M.; Isohanni, M.K.; Jarvelin, M.-R.; Lauren, L.H.; Savolainen, M.J.; Koponen, H.J. A 4-Fold Risk of Metabolic Syndrome in Patients with Schizophrenia: The Northern Finland 1966 Birth Cohort Study. J. Clin. Psychiatry 2005, 66, 559–563. [Google Scholar] [CrossRef]
- Suvisaari, J.M.; Saarni, S.I.; Perala, J.; Suvisaari, J.V.; Harkanen, T.; Lonnqvist, J.; Reunanen, A. Metabolic Syndrome among Persons with Schizophrenia and Other Psychotic Disorders in a General Population Survey. J. Clin. Psychiatry 2007, 68, 1045–1055. [Google Scholar] [CrossRef]
- McEvoy, J.P.; Meyer, J.M.; Goff, D.C.; Nasrallah, H.A.; Davis, S.M.; Sullivan, L.; Meltzer, H.Y.; Hsiao, J.; Scott Stroup, T.; Lieberman, J.A. Prevalence of the Metabolic Syndrome in Patients with Schizophrenia: Baseline Results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Schizophrenia Trial and Comparison with National Estimates from NHANES III. Schizophr. Res. 2005, 80, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Challa, F.; Getahun, T.; Sileshi, M.; Geto, Z.; Kelkile, T.S.; Gurmessa, S.; Medhin, G.; Mesfin, M.; Alemayehu, M.; Shumet, T.; et al. Prevalence of Metabolic Syndrome among Patients with Schizophrenia in Ethiopia. BMC Psychiatry 2021, 21, 620. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Maghami, N.; Ammari, T.; Mosafer, H.; Abdullahi, R.; Rasoulpoor, S.; Babajani, F.; Mahmodzadeh, B.; Mohammadi, M. Global Prevalence of Metabolic Syndrome in Schizophrenia Patients: A Systematic Review and Meta-Analysis. J. Prev. 2024, 45, 973–986. [Google Scholar] [CrossRef]
- Coodin, S. Body Mass Index in Persons with Schizophrenia. Can. J. Psychiatry 2001, 46, 549–555. [Google Scholar] [CrossRef]
- Cameron, I.M.; Hamilton, R.J.; Fernie, G.; MacGillivray, S.A. Obesity in Individuals with Schizophrenia: A Case Controlled Study in Scotland. BJPsych Open 2017, 3, 254–256. [Google Scholar] [CrossRef] [PubMed]
- Sneller, M.H.; De Boer, N.; Everaars, S.; Schuurmans, M.; Guloksuz, S.; Cahn, W.; Luykx, J.J. Clinical, Biochemical and Genetic Variables Associated with Metabolic Syndrome in Patients with Schizophrenia Spectrum Disorders Using Second-Generation Antipsychotics: A Systematic Review. Front. Psychiatry 2021, 12, 625935. [Google Scholar] [CrossRef]
- Moreno, T.S.-A.; Ruiz-Doblado, S.; Hernández-Fleta, J.L.; Touriño-Gonzalez, R.; León-Pérez, P. Quality of Life in a Sample of Schizophrenic Patients with and without Metabolic Syndrome. J. Psychiatr. Intensive Care 2010, 6, 101–108. [Google Scholar] [CrossRef]
- Chandra, I.S.; Kumar, K.L.; Reddy, M.P.; Reddy, C.M.P.K. Attitudes toward Medication and Reasons for Non-Compliance in Patients with Schizophrenia. Indian J. Psychol. Med. 2014, 36, 294–298. [Google Scholar] [CrossRef]
- Perkins, D.O. Predictors of Noncompliance in Patients with Schizophrenia. J. Clin. Psychiatry 2002, 63, 1121–1128. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic Syndrome in Psychiatric Patients: Overview, Mechanisms, and Implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Malan-Müller, S.; Kilian, S.; van den Heuvel, L.L.; Bardien, S.; Asmal, L.; Warnich, L.; Emsley, R.A.; Hemmings, S.M.J.; Seedat, S. A Systematic Review of Genetic Variants Associated with Metabolic Syndrome in Patients with Schizophrenia. Schizophr. Res. 2016, 170, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mednova, I.A.; Pozhidaev, I.V.; Tiguntsev, V.V.; Bocharova, A.V.; Paderina, D.Z.; Boiko, A.S.; Fedorenko, O.Y.; Kornetova, E.G.; Bokhan, N.A.; Stepanov, V.A. NOS1AP Gene Variants and Their Role in Metabolic Syndrome: A Study of Patients with Schizophrenia. Biomedicines 2024, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; De Hert, M.; Moons, T.; Claes, S.J.; Correll, C.U.; van Winkel, R. CNR1 Gene and Risk of the Metabolic Syndrome in Patients with Schizophrenia. J. Clin. Psychopharmacol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, P.-Y.; Chen, C.Y.-A.; Chiu, C.-C.; Lu, M.-L.; Huang, M.-C.; Lin, Y.-K.; Chen, Y.-H. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. Int. J. Environ. Res. Public Health 2021, 18, 11333. [Google Scholar] [CrossRef]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased Oxidative Stress in Obesity and Its Impact on Metabolic Syndrome. J. Clin. Investig. 2017, 114, 1752–1761. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed]
- Otani, H. Oxidative Stress as Pathogenesis of Cardiovascular Risk Associated with Metabolic Syndrome. Antioxid. Redox Signal. 2011, 15, 1911–1926. [Google Scholar] [CrossRef]
- Baez-Duarte, B.G.; Zamora-Ginez, I.; De Jésus, K.L.; Torres-Rasgado, E.; González-Mejía, M.E.; Porchia, L.; Ruiz-Vivanco, G.; Pérez-Fuentes, R. Association of the Metabolic Syndrome with Antioxidant Defense and Outstanding Superoxide Dismutase Activity in Mexican Subjects. Metab. Syndr. Relat. Disord. 2016, 14, 154–160. [Google Scholar] [CrossRef]
- Vávrová, L.; Kodydková, J.; Zeman, M.; Dušejovská, M.; Macášek, J.; Staňková, B.; Tvrzická, E.; Žák, A. Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome. Obes. Facts 2013, 6, 39–47. [Google Scholar] [CrossRef]
- Cardona, F.; Tunez, I.; Tasset, I.; Murri, M.; Tinahones, F.J. Similar Increase in Oxidative Stress after Fat Overload in Persons with Baseline Hypertriglyceridemia with or without the Metabolic Syndrome. Clin. Biochem. 2008, 41, 701–705. [Google Scholar] [CrossRef]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative Stress and the Pathophysiology and Symptom Profile of Schizophrenia Spectrum Disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef] [PubMed]
- Juchnowicz, D.; Dzikowski, M.; Rog, J.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M.; Karakuła-Juchnowicz, H. Oxidative Stress Biomarkers as a Predictor of Stage Illness and Clinical Course of Schizophrenia. Front. Psychiatry 2021, 12, 728986. [Google Scholar] [CrossRef]
- Nayok, S.B.; Shivakumar, V.; Sreeraj, V.S. Oxidative Stress in Schizophrenia. In Handbook of the Biology and Pathology of Mental Disorders; Martin, C.R., Preedy, V.R., Patel, V.B., Rajendram, R., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1–19. ISBN 978-3-031-32035-4. [Google Scholar]
- Ermakov, E.A.; Dmitrieva, E.M.; Parshukova, D.A.; Kazantseva, D.V.; Vasilieva, A.R.; Smirnova, L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid. Med. Cell. Longev. 2021, 2021, 8881770. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione Levels and Activities of Glutathione Metabolism Enzymes in Patients with Schizophrenia: A Systematic Review and Meta-Analysis. J. Psychopharmacol. 2019, 33, 1199–1214. [Google Scholar] [CrossRef]
- Rupérez, A.; Gil, A.; Aguilera, C. Genetics of Oxidative Stress in Obesity. Int. J. Mol. Sci. 2014, 15, 3118–3144. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Lee, H. Pharmacogenetic Studies Investigating the Adverse Effects of Antipsychotics. Psychiatry Investig. 2007, 4, 66. [Google Scholar]
- Hayes, J.D.; McLellan, L.I. Glutathione and Glutathione-Dependent Enzymes Represent a Co-Ordinately Regulated Defence against Oxidative Stress. Free Radic. Res. 1999, 31, 273–300. [Google Scholar] [CrossRef]
- Moyer, A.M.; Salavaggione, O.E.; Wu, T.-Y.; Moon, I.; Eckloff, B.W.; Hildebrandt, M.A.T.; Schaid, D.J.; Wieben, E.D.; Weinshilboum, R.M. Glutathione S-Transferase P1: Gene Sequence Variation and Functional Genomic Studies. Cancer Res. 2008, 68, 4791–4801. [Google Scholar] [CrossRef]
- Menon, D.; Board, P.G. A Role for Glutathione Transferase Omega 1 (GSTO1-1) in the Glutathionylation Cycle. J. Biol. Chem. 2013, 288, 25769–25779. [Google Scholar] [CrossRef]
- Tanaka-Kagawa, T.; Jinno, H.; Hasegawa, T.; Makino, Y.; Seko, Y.; Hanioka, N.; Ando, M. Functional Characterization of Two Variant Human GSTO 1-1s (Ala140Asp and Thr217Asn). Biochem. Biophys. Res. Commun. 2003, 301, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Lepping, P.; Delieu, J.; Mellor, R.; Williams, J.H.; Hudson, P.R.; Hunter-Lavin, C. Antipsychotic Medication and Oxidative Cell Stress: A Systematic Review. J. Clin. Psychiatry 2010, 71, 1093. [Google Scholar] [CrossRef]
- BioGPS—Your Gene Portal System. Available online: http://biogps.org/#goto=welcome (accessed on 8 April 2025).
- Gene Ontology Resource. Available online: http://geneontology.org/ (accessed on 8 April 2025).
- GTEx Portal. Available online: https://www.gtexportal.org/home/ (accessed on 8 April 2025).
- Saadat, M. Evaluation of Glutathione S-Transferase P1 (GSTP1) Ile105Val Polymorphism and Susceptibility to Type 2 Diabetes Mellitus, a Meta-Analysis. EXCLI J. 2017, 16, 1188. [Google Scholar] [CrossRef]
- Chielle, E.O.; Trott, A.; Rosa, B.d.S.; Casarin, J.N.; Fortuna, P.C.; da Cruz, I.B.M.; Moretto, M.B.; Moresco, R.N. Impact of the Ile105Val Polymorphism of the Glutathione S-Transferase P1 (GSTP1) Gene on Obesity and Markers of Cardiometabolic Risk in Young Adult Population. Exp. Clin. Endocrinol. Diabetes 2016, 125, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Villamil-Ramírez, H.; León-Mimila, P.; Macias-Kauffer, L.R.; Canizalez-Román, A.; Villalobos-Comparán, M.; León-Sicairos, N.; Vega-Badillo, J.; Sánchez-Muñoz, F.; López-Contreras, B.; Morán-Ramos, S.; et al. A Combined Linkage and Association Strategy Identifies a Variant near the GSTP1 Gene Associated with BMI in the Mexican Population. J. Hum. Genet. 2017, 62, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Saruwatari, J.; Yasui-Furukori, N.; Kamihashi, R.; Yoshimori, Y.; Oniki, K.; Tsuchimine, S.; Noai, M.; Sato, Y.; Nakagami, T.; Sugawara, N.; et al. Possible Associations between Antioxidant Enzyme Polymorphisms and Metabolic Abnormalities in Patients with Schizophrenia. NDT 2013, 9, 1683–1698. [Google Scholar] [CrossRef]
- Oniki, K.; Kamihashi, R.; Tomita, T.; Ishioka, M.; Yoshimori, Y.; Osaki, N.; Tsuchimine, S.; Sugawara, N.; Kajiwara, A.; Morita, K.; et al. Glutathione S-Transferase K1 Genotype and Overweight Status in Schizophrenia Patients: A Pilot Study. Psychiatry Res. 2016, 239, 190–195. [Google Scholar] [CrossRef]
- Oniki, K.; Ishioka, M.; Osaki, N.; Sakamoto, Y.; Yoshimori, Y.; Tomita, T.; Kamihashi, R.; Tsuchimine, S.; Sugawara, N.; Otake, K.; et al. Association between Oxidative Stress-Related Genes Polymorphisms and Metabolic Abnormalities among Schizophrenia Patients. Clin. Neuropsychopharmacol. Ther. 2017, 8, 25–37. [Google Scholar] [CrossRef]
- Chiliza, B.; Asmal, L.; Oosthuizen, P.; Van Niekerk, E.; Erasmus, R.; Kidd, M.; Malhotra, A.; Emsley, R. Changes in Body Mass and Metabolic Profiles in Patients with First-Episode Schizophrenia Treated for 12 Months with A First-Generation Antipsychotic. Eur. Psychiatr. 2015, 30, 277–283. [Google Scholar] [CrossRef]
- Pakkiyalakshmi, N.; Suriyamoorthi, M.; Ravishankar, J. A Comparative Study between First Generation and Second Generation Antipsychotics over the Development of Metabolic Syndrome in Persons with First Episode Drug Naive Schizophrenia. Int. J. Res. Med. Sci. 2018, 6, 3693. [Google Scholar]
- Panati, D.; Sudhakar, T.P.; Swetha, P.; Sayeli, V.K. A Comparative Study on Metabolic Syndrome in Patients with Schizophrenia Treated Using First-Generation and Second-Generation Antipsychotics. Arch. Ment. Health 2020, 21, 4. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Xia, N. The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Front. Cardiovasc. Med. 2021, 8, 650214. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, K.R.H.; Katshu, M.Z.U.H.; Chakrabarti, L. Second-Generation Antipsychotics and Metabolic Syndrome: A Role for Mitochondria. Front. Psychiatry 2023, 14, 1257460. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic Syndrome—A New World-wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
Gene, Polymorphism | Genotype, Allele | Patients with Normal Weight | Patients with Overweight | Patients with Obesity | OR1 (95% CI) | χ21, p-Value1 | OR2 (95% CI) | χ22, p-Value2 |
---|---|---|---|---|---|---|---|---|
GSTP1 rs614080 | A/A | 64 (28.7%) | 35 (31.2%) | 37 (38.5%) | 1.13 (0.69–1.85) | 5.027; 0.081 | 1.56 (0.94–2.58) | 2.979; 0.225 |
G/A | 112 (50.2%) | 43 (38.4%) | 41 (42.7%) | 0.62 (0.39–0.98) | 0.74 (0.46–1.2) | |||
G/G | 47 (21.1%) | 34 (30.4%) | 18 (18.8%) | 1.63 (0.97–2.73) | 0.86 (0.47–1.58) | |||
A | 0.536 | 0.500 | 0.593 | 0.87 (0.63–1.2) | 0.767; 0.381 | 1.28 (0.91–1.81) | 1.796; 0.18 | |
G | 0.464 | 0.500 | 0.407 | 1.14 (0.83–1.58) | 0.78 (0.55–1.1) | |||
GSTP1 rs1695 | A/A | 138 (45%) | 64 (43.5%) | 65 (53.7%) | 0.94 (0.64–1.4) | 6.749; 0.034 | 0.8 (0.35–1.82) | 2.433; 0.296 |
A/G | 144 (46.9%) | 58 (39.5%) | 48 (39.7%) | 0.74 (0.49–1.1) | 1.28 (0.92–1.79) | |||
G/G | 25 (8.1%) | 25 (17%) | 8 (6.6%) | 2.31 (1.28–4.19) | 0.78 (0.56–1.09) | |||
A | 0.681 | 0.632 | 0.732 | 0.8 (0.59–1.07) | 2.167; 0.141 | 1.42 (0.93–2.17) | 2.117; 0.146 | |
G | 0.319 | 0.368 | 0.268 | 1.26 (0.94–1.68) | 0.74 (0.49–1.14) | |||
GSTO1 rs4925 | C/C | 160 (52.5%) | 68 (46.6%) | 62 (51.2%) | 0.79 (0.53–1.17) | 1.687; 0.43 | 0.95 (0.62–1.45) | 0.64; 0.726 |
A/C | 122 (40%) | 67 (45.9%) | 47 (38.8%) | 1.27 (0.85–1.89) | 0.95 (0.62–1.47) | |||
A/A | 23 (7.5%) | 11 (7.5%) | 12 (9.9%) | 1 (0.47–2.11) | 1.35 (0.65–2.81) | |||
C | 0.723 | 0.693 | 0.711 | 0.87 (0.64–1.18) | 0.875; 0.35 | 0.92 (0.66–1.27) | 0.12; 0.729 | |
A | 0.277 | 0.307 | 0.289 | 1.15 (0.85–1.57) | 1.09 (0.79–1.52) |
Model | Genotype | Patients with Normal Weight | Patients with Overweight | OR (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|
Codominant | A/A | 138 (45%) | 64 (43.5%) | 1.00 | 0.018 | 571.5 | 596.2 |
A/G | 144 (46.9%) | 58 (39.5%) | 0.90 (0.58–1.38) | ||||
G/G | 25 (8.1%) | 25 (17%) | 2.23 (1.19–4.21) | ||||
Dominant | A/A | 138 (45%) | 64 (43.5%) | 1.00 | 0.65 | 577.3 | 597.9 |
A/G-G/G | 169 (55%) | 83 (56.5%) | 1.10 (0.73–1.63) | ||||
Recessive | A/A-A/G | 282 (91.9%) | 122 (83%) | 1.00 | 0.0054 | 569.7 | 590.3 |
G/G | 25 (8.1%) | 25 (17%) | 2.36 (1.30–4.29) | ||||
Overdominant | A/A-G/G | 163 (53.1%) | 89 (60.5%) | 1.00 | 0.17 | 575.6 | 596.2 |
A/G | 144 (46.9%) | 58 (39.5%) | 0.76 (0.51-1.13) |
rs614080 GSTP1 | ||||
Parameter | A/A | G/A | G/G | p-Value |
Fasting glucose (mg/dL) | 5 (4.4–5.5) | 4.91 (4.3–5.5) | 5.1 (4.65–5.6) | 0.138 |
Total cholesterol (mg/dL) | 4.4 (3.79–5) | 4.5 (3.85–5.11) | 4.76 (4.05–5.41) | 0.046 (A/A vs. G/G 0.017) |
Triglyceride (mg/dL) | 1.3 (0.9–1.82) | 1.26 (0.89–1.8) | 1.3 (1–1.75) | 0.839 |
High-density lipoprotein (mg/dL) | 1.02 (0.86–1.3) | 1 (0.8–1.24) | 1.01 (0.8–1.4) | 0.493 |
Low-density lipoprotein (mg/dL) | 2.74 (2.19–3.31) | 2.64 (2.2–3.33) | 3 (2.5–3.8) | 0.028 (A/A vs. G/G 0.031; (A/G vs. G/G 0.011) |
rs4925 GSTO1 | ||||
Parameter | A/A | A/C | C/C | p-value |
Fasting glucose (mg/dL) | 4.9 (4.6–5.4) | 5.05 (4.6–5.5) | 5 (4.4–5.6) | 0.853 |
Total cholesterol (mg/dL) | 4.51 (4.1–5.08) | 4.5 (3.8–5.26) | 4.51 (3.95–5.28) | 0.882 |
Triglyceride (mg/dL) | 1.3 (0.98–2.01) | 1.36 (1–1.75) | 1.3 (0.94–1.91) | 0.955 |
High-density lipoprotein (mg/dL) | 1.02 (0.79–1.27) | 1 (0.82–1.3) | 1.08 (0.8–1.3) | 0.568 |
Low-density lipoprotein (mg/dL) | 2.75 (2.41–3.28) | 2.71 (2.2–3.59) | 2.9 (2.29–3.5) | 0.861 |
rs1695 GSTP1 | ||||
Parameter | A/A | A/G | G/G | p-value |
Fasting glucose (mg/dL) | 5.1 (4.5–5.5) | 5 (4.5–5.52) | 4.9 (4.34–5.35) | 0.367 |
Total cholesterol (mg/dL) | 4.48 (3.89–5.22) | 4.5 (3.81–5.27) | 4.7 (4–5.25) | 0.923 |
Triglyceride (mg/dL) | 1.3 (0.89–1.81) | 1.31 (1–1.95) | 1.31 (0.95–1.7) | 0.536 |
High-density lipoprotein (mg/dL) | 1.05 (0.82–1.32) | 1.02 (0.82–1.29) | 0.96 (0.8–1.3) | 0.634 |
Low-density lipoprotein (mg/dL) | 2.77 (2.2–3.61) | 2.79 (2.27–3.41) | 2.98 (2.39–3.7) | 0.562 |
rs614080 GSTP1 | ||||
Parameter | A/A | G/A | G/G | p-Value |
Waist circumference, cm | 88 (79.5–98) | 85 (78–97) | 87 (80–97.5) | 0.443 |
The body fat percentage result | 30.05 (20.8–40.1) | 27.6 (20.45–37.75) | 29.6 (19.3–39.9) | 0.665 |
Visceral fat level | 6 (5–9) | 7 (4–9) | 7 (5–10) | 0.455 |
Total fat fold | 76 (52–103) | 74 (55.5–101) | 78 (50–106) | 0.994 |
Abdominal fat fold | 29 (20–38) | 32 (21–40) | 29 (23–37) | 0.664 |
rs4925 GSTO1 | ||||
Parameter | A/A | A/C | C/C | p-value |
Waist circumference, cm | 86 (81–98) | 85 (78.5–96) | 85 (77–97) | 0.542 |
The body fat percentage result | 26.15 (19.8–41.6) | 28.9 (21.35–37.6) | 28.9 (18.7–38.3) | 0.968 |
Visceral fat level | 6.5 (4–8) | 7 (4.5–9) | 6.5 (4–9) | 0.761 |
Total fat fold | 65 (49–99) | 70.5 (53–101) | 78 (51–103) | 0.668 |
Abdominal fat fold | 30 (22–44) | 28.5 (19.5–39) | 30.5 (21–38) | 0.724 |
rs1695 GSTP1 | ||||
Parameter | A/A | A/G | G/G | p-value |
Waist circumference, cm | 85 (78–97) | 85 (78–96) | 86 (78–95.5) | 0.973 |
The body fat percentage result | 29.1 (20.75–38.3) | 27.4 (18.7–36.4) | 30.5 (25.2–37.95) | 0.275 |
Visceral fat level | 6 (4–8) | 6 (4–9) | 8 (6–10) | 0.16 |
Total fat fold | 74.5 (48–99) | 72 (53–101) | 85 (71–103) | 0.358 |
Abdominal fat fold | 29 (21–38) | 28 (18–37) | 35 (27.5–43) | 0.023 (A/A vs. G/G 0.027; A/G vs. G/G 0.007) |
Gene, Polymorphism | Genotype, Allele | Patients with Normal Weight | Patients with Overweight | Patients with Obesity | OR1 (95% CI) | χ21, p-Value1 | OR2 (95% CI) | χ22, p-Value2 |
---|---|---|---|---|---|---|---|---|
GSTP1 rs614080 | A/A | 41 (28.9%) | 14 (25%) | 20 (35.1%) | 0.82 (0.41–1.66) | 4.401; 0.111 | 1.33 (0.69–2.56) | 0.728; 0.695 |
G/A | 71 (50%) | 22 (39.3%) | 26 (45.6%) | 0.65 (0.34–1.21) | 0.84 (0.45–1.55) | |||
G/G | 30 (21.1%) | 20 (35.7%) | 11 (19.3%) | 2.07 (1.05–4.09) | 0.89 (0.41–1.93) | |||
A | 0.539 | 0.446 | 0.579 | 0.69 (0.44–1.07) | 2.739; 0.098 | 1.18 (0.76–1.83) | 0.532; 0.466 | |
G | 0.461 | 0.554 | 0.421 | 1.45 (0.93–2.25) | 0.85 (0.55–1.32) | |||
GSTP1 rs1695 | A/A | 85 (45.2%) | 31 (40.8%) | 36 (48.6%) | 0.83 (0.49–1.43) | 13.792; 0.001 | 1.15 (0.67–1.97) | 0.586; 0.746 |
A/G | 93 (49.5%) | 29 (38.2%) | 33 (44.6%) | 0.63 (0.37–1.09) | 0.82 (0.48–1.41) | |||
G/G | 10 (5.3%) | 16 (21.1%) | 5 (6.8%) | 4.75 (2.04–11.02) | 1.29 (0.43–3.91) | |||
A | 0.699 | 0.599 | 0.709 | 0.64 (0.43–0.95) | 4.976; 0.026 | 1.05 (0.69–1.59) | 0.051; 0.822 | |
G | 0.301 | 0.401 | 0.291 | 1.56 (1.05–2.31) | 0.95 (0.63–1.45) | |||
GSTO1 rs4925 | C/C | 93 (49.5%) | 36 (47.4%) | 40 (54.8%) | 0.92 (0.54–1.57) | 0.097; 0.953 | 1.24 (0.72–2.13) | 0.74; 0.691 |
A/C | 81 (43.1%) | 34 (44.7%) | 29 (39.7%) | 1.07 (0.63–1.83) | 0.87 (0.5–1.51) | |||
A/A | 14 (7.4%) | 6 (7.9%) | 4 (5.5%) | 1.07 (0.39–2.88) | 0.72 (0.23–2.27) | |||
C | 0.710 | 0.697 | 0.747 | 0.94 (0.62–1.42) | 0.085; 0.771 | 1.2 (0.78–1.86) | 0.694; 0.405 | |
A | 0.290 | 0.303 | 0.253 | 1.06 (0.7–1.6) | 0.83 (0.54–1.28) |
Model | Genotype | Patients with Normal Weight | Patients with Overweight | OR (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|
Codominant | A/A | 85 (45.7%) | 31 (41.9%) | 1.00 | 6.00 × 10−4 | 299.6 | 321 |
A/G | 92 (49.5%) | 27 (36.5%) | 0.87 (0.47–1.59) | ||||
G/G | 9 (4.8%) | 16 (21.6%) | 5.07 (2.00–12.87) | ||||
Dominant | A/A | 85 (45.7%) | 31 (41.9%) | 1.00 | 0.42 | 311.9 | 329.7 |
A/G-G/G | 101 (54.3%) | 43 (58.1%) | 1.26 (0.72–2.20) | ||||
Recessive | A/A-A/G | 177 (95.2%) | 58 (78.4%) | 1.00 | 1.00 × 10−4 | 297.8 | 315.6 |
G/G | 9 (4.8%) | 16 (21.6%) | 5.43 (2.24–13.16) | ||||
Overdominant | A/A-G/G | 94 (50.5%) | 47 (63.5%) | 1.00 | 0.1 | 309.9 | 327.7 |
A/G | 92 (49.5%) | 27 (36.5%) | 0.63 (0.36–1.10) |
rs614080 GSTP1 | ||||
Parameter | A/A | G/A | G/G | p-Value |
Waist circumference, cm | 84 (79–95) | 85 (78–95) | 86 (80–99) | 0.537 |
The body fat percentage result | 25.8 (18–38.1) | 27.4 (19.5–37.5) | 26.8 (18–37.6) | 0.838 |
Visceral fat level | 6 (4–9) | 7 (4–9) | 7 (5–10) | 0.468 |
Total fat fold | 65 (48–92) | 72.5 (49–101) | 67 (47.5–90) | 0.662 |
Abdominal fat fold | 27 (19.5–37.5) | 26 (19–36.5) | 26 (19–31.5) | 0.755 |
rs4925 GSTO1 | ||||
Parameter | A/A | A/C | C/C | p-value |
Waist circumference, cm | 84 (78.5–92.5) | 84 (79–95) | 85 (78–97) | 0.962 |
The body fat percentage result | 25.9 (20.7–37.8) | 26.3 (19.1–37.6) | 27.3 (17.6–36) | 0.956 |
Visceral fat level | 6 (4–7) | 6 (5–8) | 7 (4–9) | 0.682 |
Total fat fold | 60 (47–88) | 67 (48–99) | 73 (47.5–97) | 0.735 |
Abdominal fat fold | 27 (22–34) | 26 (19–37) | 26.5 (18–35) | 0.846 |
rs1695 GSTP1 | ||||
Parameter | A/A | A/G | G/G | p-value |
Waist circumference, cm | 83 (78–95) | 85 (78–98) | 89 (82–95) | 0.328 |
The body fat percentage result | 26.2 (18.65–35.8) | 25.8 (18.2–37.5) | 30.55 (25.45–38.4) | 0.200 |
Visceral fat level | 6 (4–8) | 6 (4–8) | 8 (6–10) | 0.047 (A/A vs. G/G 0.017; A/G vs. G/G 0.016) |
Total fat fold | 67 (46–91.5) | 68 (50–100) | 85 (53–102) | 0.350 |
Abdominal fat fold | 26.5 (20–35.5) | 25 (16–34) | 33 (27–41) | 0.037 (A/A vs. G/G 0.031; (A/G vs. G/G 0.038) |
Gene, Polymorphism | Genotype, Allele | Patients with Normal Weight | Patients with Overweight | Patients with Obesity | OR1 (95% CI) | χ 21, p-Value1 | OR2 (95% CI) | χ22, p-Value2 |
---|---|---|---|---|---|---|---|---|
GSTP1 rs614080 | A/A | 23 (27.7%) | 21 (36.8%) | 17 (42.5%) | 1.52 (0.74–3.13) | 2.091; 0.351 | 1.93 (0.88–4.25) | 2.812; 0.245 |
G/A | 42 (50.6%) | 22 (38.6%) | 15 (37.5%) | 0.61 (0.31–1.22) | 0.59 (0.27–1.27) | |||
G/G | 18 (21.7%) | 14 (24.6%) | 8 (20%) | 1.18 (0.53–2.61) | 0.9 (0.35–2.3) | |||
A | 0.530 | 0.561 | 0.613 | 1.13 (0.7–1.83) | 0.267; 0.606 | 1.4 (0.81–2.41) | 1.485; 0.223 | |
G | 0.470 | 0.439 | 0.388 | 0.88 (0.55–1.42) | 0.71 (0.41–1.23) | |||
GSTP1 rs1695 | A/A | 42 (40.8%) | 29 (43.9%) | 29 (61.7%) | 1.14 (0.61–2.13) | 0.189; 0.91 | 2.34 (1.15–4.75) | 6.026; 0.054 |
A/G | 47 (45.6%) | 28 (42.4%) | 15 (31.9%) | 0.88 (0.47–1.64) | 0.56 (0.27–1.15) | |||
G/G | 14 (13.6%) | 9 (13.6%) | 3 (6.4%) | 1 (0.41–2.47) | 0.43 (0.12–1.59) | |||
A | 0.636 | 0.652 | 0.777 | 1.07 (0.68–1.69) | 0.085; 0.77 | 1.99 (1.13–3.49) | 5.87; 0.015 | |
G | 0.364 | 0.348 | 0.223 | 0.93 (0.59–1.48) | 0.5 (0.29–0.88) | |||
GSTO1 rs4925 | C/C | 56 (54.4%) | 28 (42.4%) | 22 (45.8%) | 0.62 (0.33–1.15) | 2.355; 0.308 | 0.71 (0.36–1.41) | 3.452; 0.178 |
A/C | 40 (38.8%) | 33 (50%) | 18 (37.5%) | 1.58 (0.84–2.94) | 0.95 (0.47–1.91) | |||
A/A | 7 (6.8%) | 5 (7.6%) | 8 (16.7%) | 1.12 (0.34–3.7) | 2.74 (0.93–8.07) | |||
C | 0.738 | 0.674 | 0.646 | 0.74 (0.46–1.19) | 1.591; 0.207 | 0.65 (0.38–1.09) | 2.686; 0.101 | |
A | 0.262 | 0.326 | 0.354 | 1.36 (0.84–2.19) | 1.54 (0.92–2.6) |
Model | Genotype | Patients with Normal Weight | Patients with Obesity | OR (95% CI) | p-Value | AIC | BIC |
---|---|---|---|---|---|---|---|
Codominant | A/A | 42 (40.8%) | 29 (61.7%) | 1.00 | 0.048 | 181.9 | 200 |
A/G | 47 (45.6%) | 15 (31.9%) | 0.46 (0.21–1.01) | ||||
G/G | 14 (13.6%) | 3 (6.4%) | 0.28 (0.07–1.10) | ||||
Dominant | A/A | 42 (40.8%) | 29 (61.7%) | 1.00 | 0.018 | 180.4 | 195.5 |
A/G-G/G | 61 (59.2%) | 18 (38.3%) | 0.42 (0.20–0.87) | ||||
Recessive | A/A-A/G | 89 (86.4%) | 44 (93.6%) | 1.00 | 0.14 | 183.8 | 198.8 |
G/G | 14 (13.6%) | 3 (6.4%) | 0.39 (0.10–1.48) | ||||
Overdominant | A/A-G/G | 56 (54.4%) | 32 (68.1%) | 1.00 | 0.14 | 183.8 | 198.8 |
A/G | 47 (45.6%) | 15 (31.9%) | 0.57 (0.27–1.22) |
rs614080 GSTP1 | ||||
Parameter | A/A | G/A | G/G | p-Value |
Fasting glucose (mg/dL) | 5 (4.49–5.4) | 4.9 (4.3–5.4) | 5.19 (4.7–5.6) | 0.208 |
Total cholesterol (mg/dL) | 4.45 (3.83–5.09) | 4.31 (3.78–4.86) | 5.05 (4.14–5.72) | 0.015 (A/A vs. G/G 0.021; A/G vs. G/G 0.004) |
Triglyceride (mg/dL) | 1.4 (1.1–1.9) | 1.27 (0.86–2.01) | 1.37 (1.2–1.8) | 0.620 |
High-density lipoprotein (mg/dL) | 1 (0.8–1.29) | 0.98 (0.8–1.2) | 1.09 (0.9–1.45) | 0.100 |
Low-density lipoprotein (mg/dL) | 2.67 (1.99–3.31) | 2.52 (2.17–2.99) | 3.01 (2.31–3.99) | 0.036 (A/A vs. G/G 0.030; A/G vs. G/G 0.015) |
rs4925 GSTO1 | ||||
Parameter | A/A | A/C | C/C | p-value |
Fasting glucose (mg/dL) | 4.86 (4.5–5.25) | 5 (4.51–5.44) | 4.98 (4.5–5.5) | 0.722 |
Total cholesterol (mg/dL) | 4.63 (4.1–5.08) | 4.43 (3.77–5.32) | 4.6 (4–5.33) | 0.471 |
Triglyceride (mg/dL) | 1.63 (1.02–2.07) | 1.4 (1.03–1.9) | 1.3 (0.9–1.94) | 0.466 |
High-density lipoprotein (mg/dl) | 0.9 (0.68–1.1) | 1.01 (0.84–1.2) | 1.1 (0.87–1.36) | 0.119 |
Low-density lipoprotein (mg/dL) | 2.84 (2.38–3.28) | 2.6 (2.12–3.16) | 2.74 (2.29–3.36) | 0.571 |
rs1695 GSTP1 | ||||
Parameter | A/A | A/G | G/G | p-value |
Fasting glucose (mg/dL) | 5.1 (4.6–5.5) | 4.9 (4.5–5.4) | 4.93 (4.12–5.27) | 0.212 |
Total cholesterol (mg/dL) | 4.58 (4.02–5.42) | 4.49 (3.8–5.11) | 4.5 (3.72–5.28) | 0.482 |
Triglyceride (mg/dL) | 1.5 (0.9–1.91) | 1.3 (1.01–2) | 1.4 (0.86–1.95) | 0.891 |
High-density lipoprotein (mg/dL) | 1.1 (0.82–1.32) | 1.07 (0.86–1.3) | 0.9 (0.8–1.2) | 0.270 |
Low-density lipoprotein (mg/dL) | 2.7 (2.2–3.4) | 2.67 (2.1–3.11) | 2.77 (2.3–3.3) | 0.573 |
Sample size, n | 639 |
Sex, n (%) | Male: 321 (50.2%) |
Female: 318 (49.8%) | |
Age, years, Me (Q1; Q3) | 39 (32; 50) |
Age of manifestation, years, Me (Q1; Q3) | 24 (20; 30) |
Duration of disease, years, Me (Q1; Q3) | 13 (7; 21) |
PANSS, total score, Me (Q1; Q3) | 101 (91; 110) |
Chlorpromazine equivalent doses, Me (Q1; Q3) | 429 (225; 750) |
Antipsychotic generation for basic therapy, n (%) | First generation: 392 (61.4) |
Second generation: 247 (38.6) | |
Chlorpromazine | 33 (5.5%) |
Haloperidol | 216 (35.8%) |
Trifluoperazine | 32 (5.3%) |
Zuclopenthixol | 20 (3.3%) |
Risperidone | 95 (15.7%) |
Clozapine | 34 (5.6%) |
Olanzapine | 32 (5.3%) |
Quetiapine | 42 (7.0%) |
Smoking, n (%) | Yes: 371 (58.1%) |
No: 268 (41.9%) | |
Metabolic syndrome, n (%) | Yes: 164 (25.7%) |
No: 475 (74.3%) | |
Body mass index, kg/cm2 | Normal (≤24.9): 312 (52.8%) |
Overweight (25–29.9): 153 (25.9%) | |
Obesity (≥30): 126 (21.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mednova, I.A.; Mikhalitskaya, E.V.; Vyalova, N.M.; Paderina, D.Z.; Petkun, D.A.; Tiguntsev, V.V.; Kornetova, E.G.; Bokhan, N.A.; Ivanova, S.A. The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study. Pharmaceuticals 2025, 18, 941. https://doi.org/10.3390/ph18070941
Mednova IA, Mikhalitskaya EV, Vyalova NM, Paderina DZ, Petkun DA, Tiguntsev VV, Kornetova EG, Bokhan NA, Ivanova SA. The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study. Pharmaceuticals. 2025; 18(7):941. https://doi.org/10.3390/ph18070941
Chicago/Turabian StyleMednova, Irina A., Ekaterina V. Mikhalitskaya, Natalia M. Vyalova, Diana Z. Paderina, Dmitry A. Petkun, Vladimir V. Tiguntsev, Elena G. Kornetova, Nikolay A. Bokhan, and Svetlana A. Ivanova. 2025. "The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study" Pharmaceuticals 18, no. 7: 941. https://doi.org/10.3390/ph18070941
APA StyleMednova, I. A., Mikhalitskaya, E. V., Vyalova, N. M., Paderina, D. Z., Petkun, D. A., Tiguntsev, V. V., Kornetova, E. G., Bokhan, N. A., & Ivanova, S. A. (2025). The Role of GST Gene Polymorphic Variants in Antipsychotic-Induced Metabolic Disorders in Schizophrenia: A Pilot Study. Pharmaceuticals, 18(7), 941. https://doi.org/10.3390/ph18070941