Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Results
2.1. Data Retrieval
2.2. Conservation Analysis
2.3. Mutation Assessor
2.4. Pathogenicity
2.5. Biophysical Properties Analysis
2.6. Stability
2.7. SNP Effect
2.8. Protein Preparation
2.9. Docking
2.10. Dynamics
3. Discussion
4. Methods
4.1. Protein Retrieval
4.2. Variants Data Acquisition
4.3. Conservational Analysis
4.4. Mutation Assessor
4.5. Analysing the Variant Function
- SNAP: The reliability index (RI), which runs from 0 to 9, the binary prediction (neutral or non-neutral), and the estimated accuracy are all predicted by SNAP for each amino acid mutation [33]. If the predicted values are greater than 0.5, the mutations are classified as disease-causing variants; otherwise, they are classified as neutral mutations [30].
- PhD-SNP (Predictor of Human Deleterious Single-Nucleotide Polymorphisms): A user-friendly platform for interpreting the effect of SNVs (single-nucleotide variations) in coding and non-coding sites is the PhD-SNP online server [34,35]. The PhD-SNP is based on a decision tree, and it is connected with an SVM profile that has been developed using data from the sequence profile. If the estimated values are greater than or equal to 0.5, the mutations are categorised as deleterious variants; otherwise, they are classified as neutral mutations [36].
- MAPP: An effective bioinformatic tool that outperformed other missense variant classification algorithms by a wide margin, interpreting missense variants in a way that precisely distinguishes harmful from neutral variants [37].
- PolyPhen-1 (Polymorphism Phenotyping): Evaluates how an amino acid change affects a human protein’s structure and functionality. A Naive Bayes classifier is used to predict the detrimental effects of an amino acid alteration and the way it would affect the stability and function of the protein. PolyPhen2 (Polymorphism Phenotyping v2) uses both sequence homology and structural data.
- Sorting Intolerant from Tolerant (SIFT): https://sift.bii.a-star.edu.sg/ (accessed on 26 December 2024) is accessible. Given the homology of the sequence and the physical closeness of the alternative amino acids, an algorithm examines possible modifications in protein function. This yields both a qualitative prediction and a score. The SIFT method considers greater values as neutral changes and less than 0.05 as a variation that causes illness.
- PANTHER is well-balanced in representing the human pathogenic variants and works using a metric based on evolutionary preservation [38]. It is critical to monitor mutations that affect the protein’s stability and structure.
- Meta-SNP predictions based on mutation position achieve 79% overall accuracy, which improves disease detection [39].
4.6. Variant Analysis
4.7. Biophysical Analysis
4.8. Stability Prediction
- I-Mutant 2.0 [43] Available: https://folding.biofold.org/i-mutant/i-mutant2.0.html (accessed on 26 December 2024) is a web server that can predict how much a mutation will alter the stability of the free energy state by pasting the sequence, position, and new residue of the variant along with the temperature and pH to predict the “sign of DDG” [44].
- MUpro investigates the effect of single amino acid changes on its stability [45]. The value indicates whether the mutation is expected to increase or decrease protein stability, with a score close to 1 indicating significant confidence in decreased stability [45,46]. Mupro was used with the help of the sequence as a query, mutation position, and original and substitute amino acids to predict the delta G value. With the PDB ID 4MJ2, we can predict mutant stability from existing PDB structures.
- CUPSAT is a program that predicts variations in protein stability caused by point mutations by employing amino acid-atom prospects and torsion angle distribution. Thermal was selected as the experimental method, and stability prediction was done with one amino acid, a residue number, and a chain ID selected.
- The INPS 3D (Impact of Non-synonymous Mutations on Protein Stability) technique is a sequence-based method for predicting the effects of nsSNPs, requiring a PDB file and the mutation file containing all the variants, along with the chain for the stability change (DDG) value in kcal/mol.
4.9. SNP Effect Analysis
4.10. Structural Analysis
4.11. Energy Minimisation
4.12. Protein and Ligand Preparation
4.13. Docking
4.14. Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AlignGVGD | Align Grantham Variation Grantham Deviation |
CUPSAT | Cologne University Protein Stability Analysis Tool |
DDG | Change in the change in Gibbs free energy (Double changes intended) |
GAG | Glycosaminoglycans |
GROMACS | Groningen Machine for Chemical Simulations |
MD | Molecular Dynamics |
MMPBSA | Molecular mechanics Poisson–Boltzmann surface area |
Rg | Radius of Gyration |
RI | Reliable Index |
RMSD | Root Mean Square Deviation |
RMSF | Root Mean Square Fluctuation |
SASA | Solvent Accessible Surface Area |
SNAP | Screening for Non-Acceptable Polymorphisms |
SPDBV | Swiss PDB Viewer |
References
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 2018, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Sun, A. Lysosomal storage disease overview. Ann. Transl. Med. 2018, 6, 476. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, V.; Dumpa, V. Lysosomal Storage Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mucopolysaccharidoses Types I–VII. Available online: https://emedicine.medscape.com/article/1115193-overview (accessed on 26 December 2024).
- IDUA Gene [Internet]. Available online: https://medlineplus.gov/genetics/gene/idua/ (accessed on 26 December 2024).
- Thirumal Kumar, D.; Iyer, S.; Christy, J.P.; Siva, R.; Tayubi, I.A.; George Priya Doss, C.; Zayed, H. A comparative computational approach toward pharmacological chaperones (NN-DNJ and ambroxol) on N370S and L444P mutations causing Gaucher’s disease. Adv. Protein Chem. Struct. Biol. 2019, 114, 315–339. [Google Scholar] [CrossRef] [PubMed]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Sakuru, R.; Bollu, P.C. Hurler Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Mount Sinai Health System. Hurler Syndrome. Available online: https://www.mountsinai.org/health-library/diseases-conditions/hurler-syndrome (accessed on 26 December 2024).
- Mucopolysaccharidosis Type I. Available online: https://medlineplus.gov/genetics/condition/mucopolysaccharidosis-type-i/ (accessed on 26 December 2024).
- Cleveland Clinic. Hurler Syndrome. Available online: https://my.clevelandclinic.org/health/diseases/24000-hurler-syndrome (accessed on 26 December 2024).
- MPS Society. National MPS Society. 2017. MPS I. Available online: https://mpssociety.org/ (accessed on 26 December 2024).
- Hampe, C.S.; Wesley, J.; Lund, T.C.; Orchard, P.J.; Polgreen, L.E.; Eisengart, J.B.; McLoon, L.K.; Cureoglu, S.; Schachern, P.; McIvor, R.S. Mucopolysaccharidosis Type I: Current Treatments, Limitations, and Prospects for Improvement. Biomolecules 2021, 11, 189. [Google Scholar] [CrossRef]
- Nan, H.; Park, C.; Maeng, S. Mucopolysaccharidoses I and II: Brief Review of Therapeutic Options and Supportive/Palliative Therapies. Biomed Res. Int. 2020, 2020, 2408402. [Google Scholar] [CrossRef]
- Jameson, E.; Jones, S.; Remmington, T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I. Cochrane Database Syst. Rev. 2019, 2019, 6. [Google Scholar] [CrossRef]
- Kubaski, F.; de Oliveira Poswar, F.; Michelin-Tirelli, K.; Matte, U.d.S.; Horovitz, D.D.; Barth, A.L.; Baldo, G.; Vairo, F.; Giugliani, R. Mucopolysaccharidosis Type I. Diagnostics 2020, 10, 161. [Google Scholar] [CrossRef]
- Bio-Rad Laboratories. Mutational Analysis. Available online: https://www.bio-rad.com/en-in/applications-technologies/mutational-analysis?ID=LUSNLMLPT (accessed on 26 December 2024).
- Thirumal Kumar, D.; Niazullah, M.U.; Tasneem, S.; Judith, E.; Susmita, B.; George Priya Doss, C.; Selvarajan, E.; Zayed, H. A computational method to characterize the missense mutations in the catalytic domain of GAA protein causing Pompe disease. J. Cell. Biochem. 2019, 120, 3491–3505. [Google Scholar] [CrossRef]
- George Priya Doss, C.; Sudandiradoss, C.; Rajasekaran, R.; Choudhury, P.; Sinha, P.; Hota, P.; Batra, U.P.; Rao, S. Applications of computational algorithm tools to identify functional SNPs. Funct. Integr. Genom. 2008, 8, 309–316. [Google Scholar] [CrossRef]
- Coudert, E.; Gehant, S.; De Castro, E.; Pozzato, M.; Baratin, D.; Neto, T.; Sigrist, C.J.; Redaschi, N.; Bridge, A. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023, 39, 1. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980. [Google Scholar] [CrossRef] [PubMed]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Chapman, M.; Evans, K.; Azevedo, L.; Hayden, M.; Heywood, S.; Millar, D.S.; Phillips, A.D.; et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 2020, 139, 1197. [Google Scholar] [CrossRef]
- Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, 2015, bav028. [Google Scholar] [CrossRef]
- Ben Chorin, A.; Masrati, G.; Kessel, A.; Narunsky, A.; Sprinzak, J.; Lahav, S.; Ashkenazy, H.; Ben-Tal, N. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci. 2020, 29, 258–267. [Google Scholar] [CrossRef]
- Glaser, F.; Pupko, T.; Paz, I.; Bell, R.E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N. ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 2003, 19, 163–164. [Google Scholar] [CrossRef]
- Reva, B.; Antipin, Y.; Sander, C. Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Res. 2011, 39, e118. [Google Scholar] [CrossRef]
- Shahid, M.; Azfaralariff, A.; Tufail, M.; Hussain Khan, N.; Abdulkareem Najm, A.; Firasat, S.; Law, D. Screening of high-risk deleterious missense variations in the gene implicated in the pathogenesis of primary congenital glaucoma: A comprehensive approach. PeerJ 2022, 10, e14132. [Google Scholar] [CrossRef]
- Johnson, A.D.; Handsaker, R.E.; Pulit, S.L.; Nizzari, M.M.; O’Donnell, C.J.; de Bakker, P.I.W. SNAP: A web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008, 24, 2938–2939. [Google Scholar] [CrossRef]
- Capriotti, E.; Calabrese, R.; Casadio, R. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 2006, 22, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, Y.; Rost, B. SNAP: Predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res. 2007, 35, 3823–3835. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Sun, D.; Xu, B.; Pan, J.; Wei, Y.; Mao, X.; Yu, D.; Liu, H.; Gao, B. In Silico Screening and Molecular Dynamic Study of Nonsynonymous Single Nucleotide Polymorphisms Associated with Kidney Stones in the SLC26A6 Gene. J. Urol. 2016, 196, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P. PhD-SNPg: A webserver and lightweight tool for scoring single nucleotide variants. Nucleic Acids Res. 2017, 45, W247–W252. [Google Scholar] [CrossRef]
- Thirumal Kumar, D.; Jerushah Emerald, L.; George Priya Doss, C.; Sneha, P.; Siva, R.; Charles Emmanuel Jebaraj, W.; Zayed, H. Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metab. Brain Dis. 2018, 33, 1699–1710. [Google Scholar] [CrossRef]
- Chao, E.C.; Velasquez, J.L.; Witherspoon, M.S.; Rozek, L.S.; Peel, D.; Ng, P.; Gruber, S.B.; Watson, P.; Rennert, G.; Anton-Culver, H.; et al. Accurate classification of MLH1/MSH2 missense variants with multivariate analysis of protein polymorphisms-mismatch repair (MAPP-MMR). Hum. Mutat. 2008, 29, 852–860. [Google Scholar] [CrossRef]
- Marini, N.J.; Thomas, P.D.; Rine, J. The use of orthologous sequences to predict the impact of amino acid substitutions on protein function. PLoS Genet. 2010, 6, e1000968. [Google Scholar] [CrossRef]
- Capriotti, E.; Altman, R.B.; Bromberg, Y. Collective judgment predicts disease-associated single nucleotide variants. BMC Genom. 2013, 14, S2. [Google Scholar] [CrossRef]
- Khanna, T.; Hanna, G.; Sternberg, M.J.E.; David, A. Missense3D-DB web catalogue: An atom-based analysis and repository of 4M human protein-coding genetic variants. Hum. Genet. 2021, 140, 805–812. [Google Scholar] [CrossRef]
- Erkal, B.; Akçeşme, B.; Çoban, A.; Korkut, Ş.V. A comprehensive in silico analysis of multiple sclerosis related non-synonymous SNPs and their potential effects on protein structure and function. Mult. Scler. Relat. Disord. 2022, 68, 104253. [Google Scholar] [CrossRef]
- Kaur, G.; Bhadada, S.K.; Santra, M.; Pal, R.; Sarma, P.; Sachdeva, N.; Dhiman, V.; Dahiya, D.; Saikia, U.N.; Chakraborty, A.; et al. Multilevel Annotation of Germline MEN1 Variants of Synonymous, Nonsynonymous, and Uncertain Significance in Indian Patients with Sporadic Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 1860–1875. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed]
- Prediction of Protein Stability Changes upon Mutations. Available online: https://mupro.proteomics.ics.uci.edu/ (accessed on 26 December 2024).
- Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Res. 2005, 33, W72–W76. [Google Scholar] [CrossRef]
- De Baets, G.; Van Durme, J.; Reumers, J.; Maurer-Stroh, S.; Vanhee, P.; Dopazo, J.; Schymkowitz, J.; Rousseau, F. SNPeffect 4.0: Online prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res. 2012, 40, D935–D939. [Google Scholar] [CrossRef]
- SNPeffect Database. Available online: https://snpeffect.switchlab.org/ (accessed on 26 December 2024).
- SNPeffect Sequences Page. Available online: https://snpeffect.switchlab.org/sequences (accessed on 26 December 2024).
- Taqi, M.M.; Waseem, D.; Ismatullah, H.; Haider, S.A.; Faisal, M. In silico transcriptional regulation and functional analysis of dengue shock syndrome-associated SNPs in PLCE1 and MICB genes. Funct. Integr. Genom. 2016, 16, 335–345. [Google Scholar] [CrossRef]
- RCSB Protein Data Bank (PDB). Available online: https://www.rcsb.org/ (accessed on 26 December 2024).
- SWISS-MODEL. Available online: https://swissmodel.expasy.org/ (accessed on 26 December 2024).
- Li, M.; Petukh, M.; Alexov, E.; Panchenko, A.R. Predicting the impact of missense mutations on protein-protein binding affinity. J. Chem. Theory Comput. 2014, 10, 1770–1780. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef]
- Ragno, R. Chapter 6—Structure-Based Modeling of Histone Deacetylases Inhibitors. In Epi-Informatics; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Controlling Cell Proliferation by Targeting Cyclin-Dependent Kinase 6 Using Drug Repurposing Approach. In Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, MA, USA, 2023; pp. 97–124. [CrossRef]
- Wei, G.; Zink, M. Chapter Two—A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. In Methods in Enzymology; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Force Fields in GROMACS—GROMACS 2022 Documentation. Available online: https://manual.gromacs.org/2022/user-guide/force-fields.html (accessed on 26 December 2024).
- Molecular Dynamics (MD) Simulation Using GROMACS. Available online: https://bioinformaticsreview.com/20191210/tutorial-molecular-dynamics-md-simulation-using-gromacs/ (accessed on 26 December 2024).
- Rajasekaran, R.; George, P.D.C.; Sudandiradoss, C.; Ramanathan, K.; Purohit, R.; Sethumadhavan, R. Effect of deleterious nsSNP on the HER2 receptor based on stability and binding affinity with herceptin: A computational approach. Comptes Rendus Biol. 2008, 331, 409–417. [Google Scholar] [CrossRef]
- Ebrahimi, E.A.; Ghazala, S.A.; Thirumal Kumar, D.; Ramamoorthy, S.; George Priya Doss, C.; Zayed, H. Structural analysis of missense mutations in galactokinase 1 (GALK1) leading to galactosemia type-2. J. Cell Biochem. 2018, 119, 7585–7598. [Google Scholar] [CrossRef]
- Exploring the Effect of Disease-Causing Mutations in Metal Binding Sites of Human ARSA in Metachromatic Leukodystrophy. In Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, MA, USA, 2024; pp. 203–221. [CrossRef]
- Venkata Subbiah, H.; Ramesh Babu, P.; Subbiah, U. Determination of deleterious single-nucleotide polymorphisms of human LYZ C gene: An in silico study. J. Genet. Eng. Biotechnol. 2022, 20, 1–11. [Google Scholar] [CrossRef]
PredictSNP Sub Tools | Count Percentage | Variants Count |
---|---|---|
PolyPhen-1 | 88% | 58 |
PolyPhen-2 | 100% | 66 |
MAPP | 100% | 58 |
PhD-SNP | 73% | 48 |
SIFT | 92% | 61 |
SNAP | 86% | 57 |
PANTHER | 65% | 43 |
MetaSNP | 79% | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priya Nanda Kumar, M.; Dharsini Selvamani, E.; Pai Panemangalore, A.; Kumar Nanda Kumar, S.; Vasudevan, V.; Ramasamy, M. Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations. Pharmaceuticals 2025, 18, 922. https://doi.org/10.3390/ph18060922
Priya Nanda Kumar M, Dharsini Selvamani E, Pai Panemangalore A, Kumar Nanda Kumar S, Vasudevan V, Ramasamy M. Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations. Pharmaceuticals. 2025; 18(6):922. https://doi.org/10.3390/ph18060922
Chicago/Turabian StylePriya Nanda Kumar, Madhana, Esakki Dharsini Selvamani, Archana Pai Panemangalore, Sidharth Kumar Nanda Kumar, Vasundra Vasudevan, and Magesh Ramasamy. 2025. "Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations" Pharmaceuticals 18, no. 6: 922. https://doi.org/10.3390/ph18060922
APA StylePriya Nanda Kumar, M., Dharsini Selvamani, E., Pai Panemangalore, A., Kumar Nanda Kumar, S., Vasudevan, V., & Ramasamy, M. (2025). Prognostic Modeling of Deleterious IDUA Mutations L238Q and P385R in Hurler Syndrome Through Molecular Dynamics Simulations. Pharmaceuticals, 18(6), 922. https://doi.org/10.3390/ph18060922