Bevacizumab—Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment
Abstract
1. Introduction
2. Results
2.1. Descriptive Analysis
2.2. Disproportionality Analysis
2.2.1. Systemic Therapy
2.2.2. Targeted Therapy
2.2.3. Immunotherapy (PEM, NIV, DOS)
3. Discussion
- (i)
- Patients with a history of inflammatory bowel disease or recent abdominal surgery require careful surveillance for intestinal perforation. The use of inflammatory biomarkers, such as CRP (C-reactive protein) and fecal calprotectin, can detect gastrointestinal complications [64]. Prophylactic administration of proton pump inhibitors (PPIs) is also recommended to protect the gastrointestinal mucosa. In case of a confirmed perforation, BEV treatment should be discontinued immediately, and the patient should receive intensive support and undergo emergency surgery [73];
- (ii)
- It is important to regularly monitor hematological and coagulation parameters (INR, PT, aPTT) in order to prevent and manage severe bleeding [39]. It is recommended to avoid concomitant oral anticoagulants except in strictly indicated cases and under close monitoring. In the event of a severe bleeding episode, treatment should be stopped immediately, and the patient should be stabilized with hemostatic, blood transfusion and, if necessary, surgery [37];
- (iii)
- Regarding BEV-induced hypertension, patients should be assessed before beginning the treatment, and those with pre-existing hypertension should receive an adjusted antihypertensive treatment regimen [38]. Blood pressure monitoring should be performed weekly during the first two months of treatment and monthly thereafter. First-line treatment includes angiotensin-converting enzyme (ACE) inhibitors and calcium channel blockers [74]. In severe cases of hypertension (>180/110 mmHg), BEV treatment should be temporarily suspended until blood pressure is stabilized [75];
- (iv)
- In the management of thromboembolic events, pre-treatment screening for thrombotic risk factors, such as a history of deep vein thrombosis or antiphospholipid syndrome, is recommended. For patients with high-risk, prophylactic anticoagulant administration should be performed according to international guidelines [75]. In the event of a major arterial thromboembolic event, such as stroke or myocardial infarction, BEV should be permanently discontinued, and the patient should receive long-term anticoagulant therapy [68].
Limitations of the Study
4. Material and Methods
4.1. Study Design
4.2. Material
4.3. Descriptive and Disproportionality Analysis
- (i)
- therapy: capecitabine (CAP); 5-fluorouracil (5-FU); oxaliplatin (OXA); irinotecan (IRI); trifluridine-tipiracil (TFT);
- (ii)
- targeted therapy: adagrasib (ADA); aflibercept (AFL); panitumumab (PAN); regorafenib (REG); sotorasib (SOT);
- (iii)
- immunotherapy: dostarlimab (DOS); nivolumab (NIV); pembrolizumab (PEM).
4.4. Ethics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roshandel, G.; Ghasemi-Kebria, F.; Malekzadeh, R. Colorectal Cancer: Epidemiology, Risk Factors, and Prevention. Cancers 2024, 16, 1530. [Google Scholar] [CrossRef] [PubMed]
- Popovici, D.; Stanisav, C.; Sima, L.V.; Negru, A.; Murg, S.I.; Carabineanu, A. Influence of Biomarkers on Mortality among Patients with Hepatic Metastasis of Colorectal Cancer Treated with FOLFOX/CAPOX and FOLFIRI/CAPIRI, Including Anti-EGFR and Anti-VEGF Therapies. Medicina 2024, 60, 1003. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Qaseem, A.; Crandall, C.J.; Mustafa, R.A.; Hicks, L.A.; Wilt, T.J. Screening for Colorectal Cancer in Asymptomatic Average-Risk Adults: A Guidance Statement From the American College of Physicians. Ann. Intern. Med. 2019, 171, 643–654. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef]
- Popovici, D.; Stanisav, C.; Saftescu, S.; Negru, S.; Dragomir, R.; Ciurescu, D.; Diaconescu, R. Exploring the Influence of Age, Gender and Body Mass Index on Colorectal Cancer Location. Medicina 2023, 5, 1399. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Mao, Q.; Zhou, M.; Liu, C.-J.; Kong, L.; Hu, T. Effectiveness of Bevacizumab in the Treatment of Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis. BMC Gastroenterol. 2024, 24, 58. [Google Scholar] [CrossRef]
- Venook, A.P.; Niedzwiecki, D.; Lenz, H.-J.; Innocenti, F.; Mahoney, M.R.; O’Neil, B.H.; Shaw, J.E.; Polite, B.N.; Hochster, H.S.; Atkins, J.N.; et al. CALGB/SWOG 80405: Phase III Trial of Irinotecan/5-FU/Leucovorin (FOLFIRI) or Oxaliplatin/5-FU/Leucovorin (MFOLFOX6) with Bevacizumab (BV) or Cetuximab (CET) for Patients (Pts) with KRAS Wild-Type (Wt) Untreated Metastatic Adenocarcinoma of the Colon or Re. J. Clin. Oncol. 2014, 32, LBA3. [Google Scholar] [CrossRef]
- Heinemann, V.; Fischer von Weikersthal, L.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.-E.; Heintges, T.; Lerchenmueller, J.; Kahl, C.; Seipelt, G.; et al. Randomized Comparison of FOLFIRI plus Cetuximab versus FOLFIRI plus Bevacizumab as First-Line Treatment of KRAS Wild-Type Metastatic Colorectal Cancer: German AIO Study KRK-0306 (FIRE-3). J. Clin. Oncol. 2024, 31, LBA3506. [Google Scholar] [CrossRef]
- Tâlvan, C.-D.; Budișan, L.; Tâlvan, E.-T.; Grecu, V.; Zănoagă, O.; Mihalache, C.; Cristea, V.; Berindan-Neagoe, I.; Mohor, C.I. Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer. Cancers 2024, 16, 745. [Google Scholar] [CrossRef]
- Antoniotti, C.; Borelli, B.; Rossini, D.; Pietrantonio, F.; Morano, F.; Salvatore, L.; Lonardi, S.; Marmorino, F.; Tamberi, S.; Corallo, S.; et al. AtezoTRIBE: A Randomised Phase II Study of FOLFOXIRI plus Bevacizumab Alone or in Combination with Atezolizumab as Initial Therapy for Patients with Unresectable Metastatic Colorectal Cancer. BMC Cancer 2020, 20, 683. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The Biology of VEGF and Its Receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Ranpura, V.; Hapani, S.; Wu, S. Treatment-Related Mortality With Bevacizumab in Cancer Patients: A Meta-Analysis. JAMA 2011, 305, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Feier, C.V.I.; Muntean, C.; Bolboacă, S.D.; Olariu, S. Exploratory Evaluation of Pre-Treatment Inflammation Profiles in Patients with Colorectal Cancer. Diseases 2024, 12, 61. [Google Scholar] [CrossRef]
- Feier, C.V.I.; Santoro, R.R.; Faur, A.M.; Muntean, C.; Olariu, S. Assessing Changes in Colon Cancer Care during the COVID-19 Pandemic: A Four-Year Analysis at a Romanian University Hospital. J. Clin. Med. 2023, 12, 6558. [Google Scholar] [CrossRef]
- Vonica, R.C.; Butuca, A.; Vonica-Tincu, A.L.; Morgovan, C.; Pumnea, M.; Cipaian, R.C.; Curca, R.O.; Batar, F.; Vornicu, V.; Solomon, A.; et al. The Descriptive and Disproportionality Assessment of EudraVigilance Database Reports on Capecitabine Induced Cardiotoxicity. Cancers 2024, 16, 3847. [Google Scholar] [CrossRef]
- Formica, V.; Roselli, M. Targeted Therapy in First Line Treatment of RAS Wild Type Colorectal Cancer. World J. Gastroenterol. 2015, 21, 2871–2874. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wang, B.; Wu, Y.; Chen, Z.; Lv, M.; Lin, Y.; Yang, J. Potential Biomarkers for Anti-EGFR Therapy in Metastatic Colorectal Cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016, 37, 11645–11655. [Google Scholar] [CrossRef]
- Hicklin, D.J.; Ellis, L.M. Role of the Vascular Endothelial Growth Factor Pathway in Tumor Growth and Angiogenesis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef]
- Kast, J.; Dutta, S.; Upreti, V.V. Panitumumab: A Review of Clinical Pharmacokinetic and Pharmacology Properties After Over a Decade of Experience in Patients with Solid Tumors. Adv. Ther. 2021, 38, 3712–3723. [Google Scholar] [CrossRef]
- Pervaiz, S.; Homsy, S.; Narula, N.; Ngu, S.; Elsayegh, D. Bevacizumab-Induced Pneumonitis in a Patient With Metastatic Colon Cancer: A Case Report. Clin. Med. Insights Circ. Respir. Pulm. Med. 2020, 14, 1179548420929285. [Google Scholar] [CrossRef] [PubMed]
- Shord, S.S.; Bressler, L.R.; Tierney, L.A.; Cuellar, S.; George, A. Understanding and Managing the Possible Adverse Effects Associated with Bevacizumab. Am. J. Health Pharm. AJHP Off. J. Am. Soc. Health Pharm. 2009, 66, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Pieramici, D.J.; Rabena, M.D.; Castellarin, A.A.; Nasir, M.A.; Giust, M.J. Intravitreal Bevacizumab (Avastin) for Neovascular Age-Related Macular Degeneration. Ophthalmology 2006, 113, 363–372.e5. [Google Scholar] [CrossRef]
- Pérez-Heras, Í.; Raynero-Mellado, R.C.; Díaz-Merchán, R.; Domínguez-Pinilla, N. Post chemoterapy febrile neutropenia. Length of stay and experience in our population. An. Pediatr. 2020, 92, 141–146. [Google Scholar] [CrossRef]
- Hou, W.; Yi, C.; Zhu, H. Predictive Biomarkers of Colon Cancer Immunotherapy: Present and Future. Front. Immunol. 2022, 13, 1032314. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.-J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef]
- Thibodeau, S.N.; Bren, G.; Schaid, D. Microsatellite Instability in Cancer of the Proximal Colon. Science 1993, 260, 816–819. [Google Scholar] [CrossRef]
- Marginean, E.C.; Melosky, B. Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer With Microsatellite Instability? Part II-The Challenge of Programmed Death Ligand-1 Testing and Its Role in Microsatellite Instability-High Colorectal Cancer. Arch. Pathol. Lab. Med. 2018, 142, 26–34. [Google Scholar] [CrossRef]
- Beddowes, E.; Spicer, J.; Chan, P.Y.; Khadeir, R.; Corbacho, J.G.; Repana, D.; Steele, J.P.; Schmid, P.; Szyszko, T.; Cook, G.; et al. Phase 1 Dose-Escalation Study of Pegylated Arginine Deiminase, Cisplatin, and Pemetrexed in Patients With Argininosuccinate Synthetase 1-Deficient Thoracic Cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 1778–1785. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.; Van Cutsem, E.; McDermott, R.S.; Hill, A.G.; et al. Nivolumab (NIVO) + Low-Dose Ipilimumab (IPI) in Previously Treated Patients (Pts) with Microsatellite Instability-High/Mismatch Repair-Deficient (MSI-H/DMMR) Metastatic Colorectal Cancer (MCRC): Long-Term Follow-Up. J. Clin. Oncol. 2019, 37, 635. [Google Scholar] [CrossRef]
- Ibis, B.; Aliazis, K.; Cao, C.; Yenyuwadee, S.; Boussiotis, V.A. Immune-Related Adverse Effects of Checkpoint Immunotherapy and Implications for the Treatment of Patients with Cancer and Autoimmune Diseases. Front. Immunol. 2023, 14, 1197364. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Verma, R.; Sznol, M.; Boddupalli, C.S.; Gettinger, S.N.; Kluger, H.; Callahan, M.; Wolchok, J.D.; Halaban, R.; Dhodapkar, M.V.; et al. Combination Therapy with Anti-CTLA-4 and Anti-PD-1 Leads to Distinct Immunologic Changes in Vivo. J. Immunol. 2015, 194, 950–959. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.J.M.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. JNCI J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Cremolini, C.; Antoniotti, C.; Rossini, D.; Lonardi, S.; Loupakis, F.; Pietrantonio, F.; Bordonaro, R.; Latiano, T.P.; Tamburini, E.; Santini, D.; et al. Upfront FOLFOXIRI plus Bevacizumab and Reintroduction after Progression versus MFOLFOX6 plus Bevacizumab Followed by FOLFIRI plus Bevacizumab in the Treatment of Patients with Metastatic Colorectal Cancer (TRIBE2): A Multicentre, Open-Label, Phase 3, Ran. Lancet Oncol. 2020, 21, 497–507. [Google Scholar] [CrossRef]
- Xu, Y.; Carrier, M.; Kimpton, M. Arterial Thrombosis in Patients with Cancer. Cancers 2024, 16, 2238. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, V.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.-E.; Heintges, T.; Lerchenmüller, C.; Kahl, C.; Seipelt, G.; et al. FOLFIRI plus Cetuximab or Bevacizumab for Advanced Colorectal Cancer: Final Survival and per-Protocol Analysis of FIRE-3, a Randomised Clinical Trial. Br. J. Cancer 2021, 124, 587–594. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.-J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Nivolumab plus Low-Dose Ipilimumab in Previously Treated Patients with Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: 4-Year Follow-up from CheckMate 142. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2022, 33, 1052–1060. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.R.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Ferrara, N.; Adamis, A.P. Ten Years of Anti-Vascular Endothelial Growth Factor Therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef]
- Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-Angiogenic Agents for the Treatment of Solid Tumors: Potential Pathways, Therapy and Current Strategies—A Review. J. Adv. Res. 2017, 8, 591–605. [Google Scholar] [CrossRef]
- Gao, X.; McDermott, D.F. Combinations of Bevacizumab With Immune Checkpoint Inhibitors in Renal Cell Carcinoma. Cancer J. 2018, 24, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.R.; Wang, L.; Gillespie, D.L.; Stoddard, G.J.; Reid, J.K.; Owens, J.; Ellsworth, G.B.; Salzman, K.L.; Kinney, A.Y.; Jensen, R.L. Hypoxia-Regulated Protein Expression, Patient Characteristics, and Preoperative Imaging as Predictors of Survival in Adults with Glioblastoma Multiforme. Cancer 2008, 113, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Manders, P.; Beex, L.V.A.M.; Tjan-Heijnen, V.C.G.; Span, P.N.; Sweep, C.G.J. Vascular Endothelial Growth Factor Is Associated with the Efficacy of Endocrine Therapy in Patients with Advanced Breast Carcinoma. Cancer 2003, 98, 2125–2132. [Google Scholar] [CrossRef]
- Rajabi, M.; Mousa, S.A. The Role of Angiogenesis in Cancer Treatment. Biomedicines 2017, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhang, Y.; Li, J.; Zhou, Y.; Butensky, S.D.; Zhang, Y.; Cai, Z.; DeWan, A.T.; Khan, S.A.; Yan, H.; et al. OncoSexome: The Landscape of Sex-Based Differences in Oncologic Diseases. Nucleic Acids Res. 2025, 53, D1443–D1459. [Google Scholar] [CrossRef]
- Robert, N.J.; Diéras, V.; Glaspy, J.; Brufsky, A.M.; Bondarenko, I.; Lipatov, O.N.; Perez, E.A.; Yardley, D.A.; Chan, S.Y.T.; Zhou, X.; et al. RIBBON-1: Randomized, Double-Blind, Placebo-Controlled, Phase III Trial of Chemotherapy with or without Bevacizumab for First-Line Treatment of Human Epidermal Growth Factor Receptor 2-Negative, Locally Recurrent or Metastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1252–1260. [Google Scholar] [CrossRef]
- Escudier, B.; Pluzanska, A.; Koralewski, P.; Ravaud, A.; Bracarda, S.; Szczylik, C.; Chevreau, C.; Filipek, M.; Melichar, B.; Bajetta, E.; et al. Bevacizumab plus Interferon Alfa-2a for Treatment of Metastatic Renal Cell Carcinoma: A Randomised, Double-Blind Phase III Trial. Lancet 2007, 370, 2103–2111. [Google Scholar] [CrossRef]
- Dai, J.; Peng, L.; Fan, K.; Wang, H.; Wei, R.; Ji, G.; Cai, J.; Lu, B.; Li, B.; Zhang, D.; et al. Osteopontin Induces Angiogenesis through Activation of PI3K/AKT and ERK1/2 in Endothelial Cells. Oncogene 2009, 28, 3412–3422. [Google Scholar] [CrossRef]
- Saltz, L.B.; Clarke, S.; Díaz-Rubio, E.; Scheithauer, W.; Figer, A.; Wong, R.; Koski, S.; Lichinitser, M.; Yang, T.-S.; Rivera, F.; et al. Bevacizumab in Combination with Oxaliplatin-Based Chemotherapy as First-Line Therapy in Metastatic Colorectal Cancer: A Randomized Phase III Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2013–2019. [Google Scholar] [CrossRef]
- Li, P.; Wong, Y.-N.; Armstrong, K.; Haas, N.; Subedi, P.; Davis-Cerone, M.; Doshi, J.A. Survival among Patients with Advanced Renal Cell Carcinoma in the Pretargeted versus Targeted Therapy Eras. Cancer Med. 2016, 5, 169–181. [Google Scholar] [CrossRef]
- Garcia, J.; Hurwitz, H.I.; Sandler, A.B.; Miles, D.; Coleman, R.L.; Deurloo, R.; Chinot, O.L. Bevacizumab (Avastin®) in Cancer Treatment: A Review of 15 Years of Clinical Experience and Future Outlook. Cancer Treat. Rev. 2020, 86, 102017. [Google Scholar] [CrossRef]
- Lange-Asschenfeldt, B.; Velasco, P.; Streit, M.; Hawighorst, T.; Pike, S.E.; Tosato, G.; Detmar, M. The Angiogenesis Inhibitor Vasostatin Does Not Impair Wound Healing at Tumor-Inhibiting Doses. J. Investig. Dermatol. 2001, 117, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Jiang, A.; Zhou, C.; Lin, A.; Cheng, Q.; Liu, Z.; Zhang, J.; Luo, P. Adverse Reactions Associated with Immune Checkpoint Inhibitors and Bevacizumab: A Pharmacovigilance Analysis. Int. J. Cancer 2023, 152, 480–495. [Google Scholar] [CrossRef]
- Benjamin, L.E.; Golijanin, D.; Itin, A.; Pode, D.; Keshet, E. Selective Ablation of Immature Blood Vessels in Established Human Tumors Follows Vascular Endothelial Growth Factor Withdrawal. J. Clin. Investig. 1999, 103, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Asano, M.; Yukita, A.; Matsumoto, T.; Kondo, S.; Suzuki, H. Inhibition of Tumor Growth and Metastasis by an Immunoneutralizing Monoclonal Antibody to Human Vascular Endothelial Growth Factor/Vascular Permeability Factor121. Cancer Res. 1995, 55, 5296–5301. [Google Scholar]
- Andreuzzi, E.; Colladel, R.; Pellicani, R.; Tarticchio, G.; Cannizzaro, R.; Spessotto, P.; Bussolati, B.; Brossa, A.; De Paoli, P.; Canzonieri, V.; et al. The Angiostatic Molecule Multimerin 2 Is Processed by MMP-9 to Allow Sprouting Angiogenesis. Matrix Biol. 2017, 64, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Lye, L.-F.; Chou, R.-H.; Wu, T.-K.; Chuang, W.-L.; Tsai, S.C.-S.; Lin, H.-J.; Tsai, F.-J.; Chang, K.-H. Administration of Bevacizumab and the Risk of Chronic Kidney Disease Development in Taiwan Residents: A Population-Based Retrospective Cohort Study. Int. J. Mol. Sci. 2024, 25, 340. [Google Scholar] [CrossRef]
- Colombo, N.; Sessa, C.; du Bois, A.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; et al. ESMO-ESGO Consensus Conference Recommendations on Ovarian Cancer: Pathology and Molecular Biology, Early and Advanced Stages, Borderline Tumours and Recurrent Disease. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 672–705. [Google Scholar] [CrossRef]
- Sparks, J.; Wu, X.; Knable, M.K.; Rai, S.N.; Sharma, V. Predictors of Thrombosis in Patients Treated with Bevacizumab. Thromb. Updat. 2022, 6, 100095. [Google Scholar] [CrossRef]
- Sutherland, A.; Naessens, K.; Plugge, E.; Ware, L.; Head, K.; Burton, M.J.; Wee, B. Olanzapine for the Prevention and Treatment of Cancer-Related Nausea and Vomiting in Adults. Cochrane Database Syst. Rev. 2018, 9, CD012555. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; Gerber, D.E.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for Immunotherapy of Cancer (SITC) Clinical Practice Guideline on Immune Checkpoint Inhibitor-Related Adverse Events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Carbonnel, F.; Robert, C.; Kerr, K.M.; Peters, S.; Larkin, J.; Jordan, K. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, iv119–iv142. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.E.; Stintzing, S.; von Weikersthal, L.F.; Modest, D.P.; Decker, T.; Kiani, A.; Kaiser, F.; Al-Batran, S.-E.; Heintges, T.; Lerchenmüller, C.; et al. Efficacy of FOLFIRI plus Cetuximab vs FOLFIRI plus Bevacizumab in 1st-Line Treatment of Older Patients with RAS Wild-Type Metastatic Colorectal Cancer: An Analysis of the Randomised Trial FIRE-3. Br. J. Cancer 2022, 127, 836–843. [Google Scholar] [CrossRef]
- Bennouna, J.; Sastre, J.; Arnold, D.; Österlund, P.; Greil, R.; Van Cutsem, E.; von Moos, R.; Viéitez, J.M.; Bouché, O.; Borg, C.; et al. Continuation of Bevacizumab after First Progression in Metastatic Colorectal Cancer (ML18147): A Randomised Phase 3 Trial. Lancet Oncol. 2013, 14, 29–37. [Google Scholar] [CrossRef]
- Antoniotti, C.; Boccaccino, A.; Seitz, R.; Giordano, M.; Catteau, A.; Rossini, D.; Pietrantonio, F.; Salvatore, L.; McGregor, K.; Bergamo, F.; et al. An Immune-Related Gene Expression Signature Predicts Benefit from Adding Atezolizumab to FOLFOXIRI plus Bevacizumab in Metastatic Colorectal Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 2291–2298. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.; Bresalier, R.S. Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors. Curr. Gastroenterol. Rep. 2017, 19, 3. [Google Scholar] [CrossRef]
- Dong, J.; Meng, X.; Li, S.; Chen, Q.; Shi, L.; Jiang, C.; Cai, J. Risk of Adverse Vascular Events in Patients with Malignant Glioma Treated with Bevacizumab Plus Irinotecan: A Systematic Review and Meta-Analysis. World Neurosurg. 2019, 130, e236–e243. [Google Scholar] [CrossRef]
- Plyukhova, A.A.; Budzinskaya, M.V.; Starostin, K.M.; Rejdak, R.; Bucolo, C.; Reibaldi, M.; Toro, M.D. Comparative Safety of Bevacizumab, Ranibizumab, and Aflibercept for Treatment of Neovascular Age-Related Macular Degeneration (AMD): A Systematic Review and Network Meta-Analysis of Direct Comparative Studies. J. Clin. Med. 2020, 9, 1522. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, Y.; Xie, J.; Gao, M.; Wang, Y.; Li, X. Clinical Risk Factors of Bevacizumab-Related Hypertension in Patients with Metastatic Colorectal Cancer: A Retrospective Study. Front. Pharmacol. 2024, 15, 1463026. [Google Scholar] [CrossRef]
- Price, T.J.; Zannino, D.; Wilson, K.; Simes, R.J.; Cassidy, J.; Van Hazel, G.A.; Robinson, B.A.; Broad, A.; Ganju, V.; Ackland, S.P.; et al. Bevacizumab Is Equally Effective and No More Toxic in Elderly Patients with Advanced Colorectal Cancer: A Subgroup Analysis from the AGITG MAX Trial: An International Randomised Controlled Trial of Capecitabine, Bevacizumab and Mitomycin C. Ann. Oncol. 2012, 23, 1531–1536. [Google Scholar] [CrossRef]
- Tewari, K.S.; Sill, M.W.; Long, H.J., 3rd; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef]
- Monk, B.J.; Tewari, K.S.; Dubot, C.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; Hurtado de Mendoza, M.O.; et al. Health-Related Quality of Life with Pembrolizumab or Placebo plus Chemotherapy with or without Bevacizumab for Persistent, Recurrent, or Metastatic Cervical Cancer (KEYNOTE-826): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2023, 24, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef] [PubMed]
- Tournigand, C.; André, T.; Achille, E.; Lledo, G.; Flesh, M.; Mery-Mignard, D.; Quinaux, E.; Couteau, C.; Buyse, M.; Ganem, G.; et al. FOLFIRI Followed by FOLFOX6 or the Reverse Sequence in Advanced Colorectal Cancer: A Randomized GERCOR Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 229–237. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed]
- Calapai, F.; Ammendolia, I.; Cardia, L.; Currò, M.; Calapai, G.; Esposito, E.; Mannucci, C. Pharmacovigilance of Risankizumab in the Treatment of Psoria3sis and Arthritic Psoriasis: Real-World Data from EudraVigilance Database. Pharmaceutics 2023, 15, 1933. [Google Scholar] [CrossRef]
- César Hernandez García, E.; Luis Pinheiro, E.; Miguel Ángel Maciá, E.; Roxana Stroe, R.; Ada Georgescu, R.; Roxana Dondera, R.; Zsuzsanna Szabóné Cserjés, H. Spontaneous Adverse Drug Reactions Subgroup Report. 2018. Available online: https://www.ema.europa.eu/en/documents/report/spontaneous-adverse-drug-reactions-subgroup-report_en.pdf (accessed on 25 February 2025).
- Data Source. EudraVigilance—European Database of Suspected Adverse Drug Reaction Reports. Available online: https://www.adrreports.eu/en/index.html (accessed on 25 August 2024).
- Pop, G.; Farcaș, A.; Butucă, A.; Morgovan, C.; Arseniu, A.M.; Pumnea, M.; Teodoru, M.; Gligor, F.G. Post-Marketing Surveillance of Statins—A Descriptive Analysis of Psychiatric Adverse Reactions in EudraVigilance. Pharmaceuticals 2022, 15, 1536. [Google Scholar] [CrossRef]
- MedCalc Software Ltd. Odds Ratio Calculator. Version 23.0.6. Available online: https://www.medcalc.org/calc/odds_ratio.php (accessed on 3 November 2024).
- Postigo, R.; Brosch, S.; Slattery, J.; van Haren, A.; Dogné, J.-M.; Kurz, X.; Candore, G.; Domergue, F.; Arlett, P. EudraVigilance Medicines Safety Database: Publicly Accessible Data for Research and Public Health Protection. Drug Saf. 2018, 41, 665–675. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Total ICSRs | 59,693 | 100.00% |
Age category | ||
NS | 14,165 | 23.73% |
0–1 Month | 13 | 0.02% |
2 Months–2 Years | 72 | 0.12% |
3–11 Years | 285 | 0.48% |
12–17 Years | 193 | 0.32% |
18–64 Years | 23,529 | 39.42% |
65–85 Years | 20,345 | 34.08% |
More than 85 Years | 1091 | 1.83% |
Sex | ||
Female | 29,729 | 49.80% |
Male | 24,921 | 41.75% |
NS | 5043 | 8.45% |
Origin | ||
EEA | 18,592 | 31.15% |
Non-EEA | 41,101 | 68.85% |
NS | 0 | 0.00% |
Reporter category | ||
HP | 56,072 | 93.93% |
Non-HP | 3600 | 6.03% |
NS | 21 | 0.04% |
SOC | Number of Reports |
---|---|
Blood and lymphatic system disorders | 8184 |
Cardiac disorders | 2901 |
Congenital, familial and genetic disorders | 155 |
Ear and labyrinth disorders | 212 |
Endocrine disorders | 609 |
Eye disorders | 3386 |
Gastrointestinal disorders | 13,456 |
General disorders and administration site conditions | 13,360 |
Hepatobiliary disorders | 2407 |
Immune system disorders | 965 |
Infections and infestations | 5915 |
Injury, poisoning and procedural complications | 6376 |
Investigations | 6554 |
Metabolism and nutrition disorders | 2323 |
Musculoskeletal and connective tissue disorders | 2669 |
Neoplasms benign, malignant and unspecified (incl cysts and polyps) | 5336 |
Nervous system disorders | 7851 |
Pregnancy, puerperium and perinatal conditions | 21 |
Product issues | 294 |
Psychiatric disorders | 887 |
Renal and urinary disorders | 4217 |
Reproductive system and breast disorders | 584 |
Respiratory, thoracic and mediastinal disorders | 7026 |
Skin and subcutaneous tissue disorders | 3680 |
Social circumstances | 66 |
Surgical and medical procedures | 366 |
Vascular disorders | 7285 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonica, R.C.; Butuca, A.; Morgovan, C.; Pumnea, M.; Cipaian, R.C.; Frum, A.; Dobrea, C.M.; Vonica-Tincu, A.L.; Pacnejer, A.-M.; Ghibu, S.; et al. Bevacizumab—Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals 2025, 18, 501. https://doi.org/10.3390/ph18040501
Vonica RC, Butuca A, Morgovan C, Pumnea M, Cipaian RC, Frum A, Dobrea CM, Vonica-Tincu AL, Pacnejer A-M, Ghibu S, et al. Bevacizumab—Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals. 2025; 18(4):501. https://doi.org/10.3390/ph18040501
Chicago/Turabian StyleVonica, Razvan Constantin, Anca Butuca, Claudiu Morgovan, Manuela Pumnea, Remus Calin Cipaian, Adina Frum, Carmen Maximiliana Dobrea, Andreea Loredana Vonica-Tincu, Aliteia-Maria Pacnejer, Steliana Ghibu, and et al. 2025. "Bevacizumab—Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment" Pharmaceuticals 18, no. 4: 501. https://doi.org/10.3390/ph18040501
APA StyleVonica, R. C., Butuca, A., Morgovan, C., Pumnea, M., Cipaian, R. C., Frum, A., Dobrea, C. M., Vonica-Tincu, A. L., Pacnejer, A.-M., Ghibu, S., Batar, F., & Gligor, F. G. (2025). Bevacizumab—Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals, 18(4), 501. https://doi.org/10.3390/ph18040501