Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung–Gut Axis and Lipid Droplet Modulation
Abstract
:1. Introduction
2. Results
2.1. The Safety and Antiviral Activity of AC In Vitro
2.2. AC Protects Against Mice Infected with the Influenza Virus
2.3. AC Inhibits IAV-Induced Lung Inflammation in Mice with ALIs
2.4. AC Inhibits IAV-Induced Colonic Lesions in Mice with ALI
2.5. AC Inhibits ROS and the NLRP3 Inflammasome in Mice with IAV-Induced ALIs
2.6. AC Suppresses Immune Cell Infiltration in Mice with IAV-Induced ALIs
2.7. AC’s Modulation of the Intestinal Flora in Mice with IAV-Induced ALIs
2.8. AC’s Regulation of the Lipid Metabolism in the Mice with IAV-Induced ALIs
2.9. AC Inhibits IAV-Induced LD Accumulation
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cells, Viruses, and Culture Conditions
4.3. Determination of the 50% Cytotoxicity Concentration (CC50)
4.4. Anti-Influenza Virus Activity In Vitro
4.5. Animal Modeling and Treatment
4.6. The Survival Study
4.7. Histopathological Analysis
4.8. The Enzyme-Linked Immunosorbent Assay (ELISA)
4.9. Quantitative Real-Time PCR (RT-qPCR)
4.10. Cholesterol and Triglyceride Enzymatic Assays
4.11. Flow Cytometry
4.12. The Immunofluorescence Assay
4.13. Western Blotting
4.14. Gut Microbiota Analysis
4.15. Lipid Metabolomics Analysis
4.16. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Aromatic molecular compatibility |
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
ASC | Apoptosis-associated speck-like protein containing a CARD |
Caspase1 | Cysteinyl aspartate-specific proteinase 1 |
CC50 | Half-maximal cytotoxic concentration |
CCK8 | Cell Counting Kit-8 |
COVID-19 | Coronavirus disease 2019 |
CCL3 | Chemokine (C-C motif) ligand 3 |
ES | Enrichment score |
IC50 | Half-maximal inhibitory concentration |
IL-6 | Interleukin-6 |
IL-1β | Interleukin-1β |
IFN-γ | Interferon-gamma |
iNOS | Inducible Nitric Oxide Synthase |
IP-10 | Chemokine (C-X-C motif) ligand 10 |
IAV | Influenza A virus |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LDs | Lipid droplets |
MCP-1 | Monocyte chemoattractant protein-1 |
MDCK | Madin–Darby Canine Kidney |
NLRP3 | Nucleotide-binding oligomerization domain-like receptor protein 3 |
NMDS | Non-Metric Multidimensional Scaling |
PCA | Principal Component Analysis |
PCoA | Principal Coordinate Analysis |
PLS-DA | Partial Least Squares Discriminant Analysis |
TNF-α | Tumor necrosis factor-alpha |
TCM | Traditional Chinese medicine |
TCID50 | Tissue culture infectious dose |
TG | Triglyceride |
References
- Graham, B.S.; Sullivan, N.J. Emerging viral diseases from a vaccinology perspective: Preparing for the next pandemic. Nat. Immunol. 2018, 19, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.D.; Sordillo, E.M.; Gitman, M.R.; Paniz Mondolfi, A.E. Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol. 2020, 92, 1699–1700. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Deng, W.; Qi, F.; Lv, Q.; Song, Z.; Liu, J.; Gao, H.; Wei, Q.; Yu, P.; Xu, Y.; et al. Sequential infection with H1N1 and SARS-CoV-2 aggravated COVID-19 pathogenesis in a mammalian model, and co-vaccination as an effective method of prevention of COVID-19 and influenza. Signal Transduct. Target. Ther. 2021, 6, 200. [Google Scholar] [CrossRef]
- Yue, H.; Zhang, M.; Xing, L.; Wang, K.; Rao, X.; Liu, H.; Tian, J.; Zhou, P.; Deng, Y.; Shang, J. The epidemiology and clinical characteristics of co-infection of SARS-CoV-2 and influenza viruses in patients during COVID-19 outbreak. J. Med. Virol. 2020, 92, 2870–2873. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, X.; Zheng, X.; Luo, S.; Xu, S.; Weng, J. Targeting inflammation and cytokine storm in COVID-19. Pharmacol. Res. 2020, 159, 105051. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.L.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res. 2021, 163, 105224. [Google Scholar] [CrossRef]
- Root-Bernstein, R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int. J. Mol. Sci. 2021, 22, 2108. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-Hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E. Neutrophil Extracellular Traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int. Immunopharmacol. 2022, 104, 108516. [Google Scholar] [CrossRef]
- Wang, L.; Cai, Y.; Garssen, J.; Henricks, P.A.J.; Folkerts, G.; Braber, S. The Bidirectional Gut-Lung Axis in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 207, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Z.; Mao, B.; Zheng, X.; Shan, J.; Jin, C.; Liu, S.; Kolliputi, N.; Chen, Y.; Xu, F.; et al. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J. Adv. Res. 2023, 60, 41–56. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.L.V.; Oliveira, C.N.S.; Pinzan, C.F.; de Salis, L.V.V.; Cardoso, C.R.B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front. Immunol. 2021, 12, 635471. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. The Role of the Gut-Lung Axis in COVID-19 Infections and Its Modulation to Improve Clinical Outcomes. Front. Biosci. (Sch. Ed.) 2022, 14, 23. [Google Scholar] [CrossRef]
- Wei, X.; Wang, F.; Tan, P.; Huang, H.; Wang, Z.; Xie, J.; Wang, L.; Liu, D.; Hu, Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol. Res. 2024, 203, 107148. [Google Scholar] [CrossRef]
- Bi, C.; Guo, S.; Hu, S.; Chen, J.; Ye, M.; Liu, Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: Comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol. Res. 2022, 183, 106372. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tian, J.X.; Lian, F.M.; Li, M.; Liu, W.K.; Zhen, Z.; Liao, J.Q.; Tong, X.L. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota. Biomed. Pharmacother. 2021, 133, 110857. [Google Scholar] [CrossRef]
- Xuan, X.; Zhang, J.; Fan, J.; Zhang, S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine 2023, 102, e33748. [Google Scholar] [CrossRef]
- Yue, M.; Hu, B.; Li, J.; Chen, R.; Yuan, Z.; Xiao, H.; Chang, H.; Jiu, Y.; Cai, K.; Ding, B. Coronaviral ORF6 protein mediates inter-organelle contacts and modulates host cell lipid flux for virus production. EMBO J. 2023, 42, e112542. [Google Scholar] [CrossRef]
- Yuan, S.; Chu, H.; Chan, J.F.; Ye, Z.W.; Wen, L.; Yan, B.; Lai, P.M.; Tee, K.M.; Huang, J.; Chen, D.; et al. SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat. Commun. 2019, 10, 120. [Google Scholar] [CrossRef] [PubMed]
- Laufman, O.; Perrino, J.; Andino, R. Viral Generated Inter-Organelle Contacts Redirect Lipid Flux for Genome Replication. Cell 2019, 178, 275–289.e216. [Google Scholar] [CrossRef] [PubMed]
- Stoyanova, G.; Jabeen, S.; Landazuri Vinueza, J.; Ghosh Roy, S.; Lockshin, R.A.; Zakeri, Z. Zika virus triggers autophagy to exploit host lipid metabolism and drive viral replication. Cell Commun. Signal. CCS 2023, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gouilly, J.; Ferrat, Y.J.; Espino, A.; Glaziou, Q.; Cartron, G.; El Costa, H.; Al-Daccak, R.; Jabrane-Ferrat, N. Metabolic reprogramming by Zika virus provokes inflammation in human placenta. Nat. Commun. 2020, 11, 2967. [Google Scholar] [CrossRef]
- Gao, P.; Ji, M.; Liu, X.; Chen, X.; Liu, H.; Li, S.; Jia, B.; Li, C.; Ren, L.; Zhao, X.; et al. Apolipoprotein E mediates cell resistance to influenza virus infection. Sci. Adv. 2022, 8, eabm6668. [Google Scholar] [CrossRef]
- Zhang, J.L.; Li, W.X.; Li, Y.; Wong, M.S.; Wang, Y.J.; Zhang, Y. Therapeutic options of TCM for organ injuries associated with COVID-19 and the underlying mechanism. Phytomed. Int. J. Phytother. Phytopharm. 2021, 85, 153297. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yuan, T.; Wang, H.; Zeng, Z.; Tian, L.; Cui, L.; Guo, J.; Chen, Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. Phytomed. Int. J. Phytother. Phytopharm. 2024, 135, 156062. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Yan, J.Y.; Qu, J.M. Interpretations of “Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)”. Chin. Med. J. 2020, 133, 1347–1349. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Y.; Dong, H.; Zhu, Y.; Feng, W.; Wu, H. Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway. Phytomed. Int. J. Phytother. Phytopharm. 2024, 129, 155651. [Google Scholar] [CrossRef]
- Zhang, X.R.; Li, T.N.; Ren, Y.Y.; Zeng, Y.J.; Lv, H.Y.; Wang, J.; Huang, Q.W. The Important Role of Volatile Components From a Traditional Chinese Medicine Dayuan-Yin Against the COVID-19 Pandemic. Front. Pharmacol. 2020, 11, 583651. [Google Scholar] [CrossRef]
- Zhao, K.; Li, X.; Yang, J.; Huang, Z.; Li, C.; Huang, H.; Zhang, K.; Li, D.; Zhang, L.; Zheng, X. Protective effect of Amomum Roxb. essential oils in lipopolysaccharide-induced acute lung injury mice and its metabolomics. J. Ethnopharmacol. 2022, 290, 115119. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Li, Y.; Yin, R.; Guo, P.; Lei, N.; Li, G.; Xiong, L.; Xie, Y. Therapeutic potential of aromatic plant extracts in Alzheimer’s disease: Comprehensive review of their underlying mechanisms. CNS Neurosci. Ther. 2023, 29, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Xu, J.; Zhang, J.; Xu, S.; Zhang, Q.; Huang, J.; Peng, J.; Xu, H.; Du, Q.; et al. Fabrication of a Polysaccharide-Protein/Protein Complex Stabilized Oral Nanoemulsion to Facilitate the Therapeutic Effects of 1,8-Cineole on Atherosclerosis. ACS Nano 2023, 17, 9090–9109. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, B.; Wang, X.; Jin, M.; Wang, G. Inhibitory effect and possible mechanism of action of patchouli alcohol against influenza A (H2N2) virus. Molecules 2011, 16, 6489–6501. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, J.; Smolensky, D.; Lee, S.H. Potential benefits of patchouli alcohol in prevention of human diseases: A mechanistic review. Int. Immunopharmacol. 2020, 89, 107056. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, H.S.; Seol, G.H. Eucalyptol suppresses matrix metalloproteinase-9 expression through an extracellular signal-regulated kinase-dependent nuclear factor-kappa B pathway to exert anti-inflammatory effects in an acute lung inflammation model. J. Pharm. Pharmacol. 2015, 67, 1066–1074. [Google Scholar] [CrossRef]
- Xu, G.; Guo, J.; Sun, C. Eucalyptol ameliorates early brain injury after subarachnoid haemorrhage via antioxidant and anti-inflammatory effects in a rat model. Pharm. Biol. 2021, 59, 114–120. [Google Scholar] [CrossRef]
- Arooj, B.; Asghar, S.; Saleem, M.; Khalid, S.H.; Asif, M.; Chohan, T.; Khan, I.U.; Zubair, H.M.; Yaseen, H.S. Anti-inflammatory mechanisms of eucalyptol rich Eucalyptus globulus essential oil alone and in combination with flurbiprofen. Inflammopharmacology 2023, 31, 1849–1862. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Y.; Tan, W.; Wu, X.; Chen, R.; Cao, J.; Chen, M.; Wang, Y. Compatibility art of traditional Chinese medicine: From the perspective of herb pairs. J. Ethnopharmacol. 2012, 143, 412–423. [Google Scholar] [CrossRef]
- Luo, L.; Zhou, J.; Liu, X.; Chen, Y.; Du, X.; Gao, L.; Sun, Y.; Wang, S. Development of modern Chinese medicine guided by molecular compatibility theory. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Wang, L.Y.; Zhang, J.J.; Wang, C.; Li, Y.; Wu, X.F.; Zhang, Q.; Zhao, X.Y.; Li, L.Z.; Lv, R.L. Research on theory and compatibility application of aromatic Chinese herbalmonomer components in traditional Chinese medicine based on action of yolatilecomponents in resistance to toxic pneumonia. China J. Chin. Mater. Medica 2025, 1–12. [Google Scholar] [CrossRef]
- Ziehr, B.K.; MacDonald, J.A. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. Biochim. Biophys. Acta. Mol. Cell Res. 2024, 1871, 119823. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Yang, L.; Zhou, F.; Li, H.; Cao, B. Influenza Virus in Community-Acquired Pneumonia: Current Understanding and Knowledge Gaps. Semin. Respir. Crit. Care Med. 2020, 41, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.O.; Rowntree, L.C.; Chua, B.Y.; Thwaites, R.S.; Kedzierska, K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat. Rev. Immunol. 2024, 24, 720–735. [Google Scholar] [CrossRef]
- Santiago-Carvalho, I.; Almeida-Santos, G.; Macedo, B.G.; Barbosa-Bomfim, C.C.; Almeida, F.M.; Pinheiro Cione, M.V.; Vardam-Kaur, T.; Masuda, M.; Van Dijk, S.; Melo, B.M.; et al. T cell-specific P2RX7 favors lung parenchymal CD4(+) T cell accumulation in response to severe lung infections. Cell Rep. 2023, 42, 113448. [Google Scholar] [CrossRef]
- Fan, W.; Mar, K.B.; Sari, L.; Gaszek, I.K.; Cheng, Q.; Evers, B.M.; Shelton, J.M.; Wight-Carter, M.; Siegwart, D.J.; Lin, M.M.; et al. TRIM7 inhibits enterovirus replication and promotes emergence of a viral variant with increased pathogenicity. Cell 2021, 184, 3410–3425.e3417. [Google Scholar] [CrossRef]
- Rösch, K.; Kwiatkowski, M.; Hofmann, S.; Schöbel, A.; Grüttner, C.; Wurlitzer, M.; Schlüter, H.; Herker, E. Quantitative Lipid Droplet Proteome Analysis Identifies Annexin A3 as a Cofactor for HCV Particle Production. Cell Rep. 2016, 16, 3219–3231. [Google Scholar] [CrossRef]
- Baek, Y.B.; Kwon, H.J.; Sharif, M.; Lim, J.; Lee, I.C.; Ryu, Y.B.; Lee, J.I.; Kim, J.S.; Lee, Y.S.; Kim, D.H.; et al. Therapeutic strategy targeting host lipolysis limits infection by SARS-CoV-2 and influenza A virus. Signal Transduct. Target. Ther. 2022, 7, 367. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Jiao, J.; Qiao, H.; Wang, C.; Li, L.; Jin, F.; Ye, D.; Chen, Y.; Zhang, Q.; Li, M.; et al. Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung–Gut Axis and Lipid Droplet Modulation. Pharmaceuticals 2025, 18, 468. https://doi.org/10.3390/ph18040468
Li Y, Jiao J, Qiao H, Wang C, Li L, Jin F, Ye D, Chen Y, Zhang Q, Li M, et al. Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung–Gut Axis and Lipid Droplet Modulation. Pharmaceuticals. 2025; 18(4):468. https://doi.org/10.3390/ph18040468
Chicago/Turabian StyleLi, Yi, Jiakang Jiao, Haoyi Qiao, Conghui Wang, Linze Li, Fengyu Jin, Danni Ye, Yawen Chen, Qi Zhang, Min Li, and et al. 2025. "Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung–Gut Axis and Lipid Droplet Modulation" Pharmaceuticals 18, no. 4: 468. https://doi.org/10.3390/ph18040468
APA StyleLi, Y., Jiao, J., Qiao, H., Wang, C., Li, L., Jin, F., Ye, D., Chen, Y., Zhang, Q., Li, M., Zhao, Z., Zhang, J., & Wang, L. (2025). Aromatic Molecular Compatibility Attenuates Influenza Virus-Induced Acute Lung Injury via the Lung–Gut Axis and Lipid Droplet Modulation. Pharmaceuticals, 18(4), 468. https://doi.org/10.3390/ph18040468