Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, K.W.; Terry, M.B.; Braveman, P.; Reis, P.J.; Timmermans, S.; Epling, J.W., Jr. Maternal Mortality: A National Institutes of Health Pathways to Prevention Panel Report. Obstet. Gynecol. 2024, 143, e78–e85. [Google Scholar] [CrossRef] [PubMed]
- Dinas Kesehatan Provinsi Jawa Timur. Profil Kesehatan Provinsi Jawa Timur 2020; Dinas Kesehatan Provinsi Jawa Timur: Surabaya, Indonesia, 2021. [Google Scholar]
- Kumar, M.; Saadaoui, M.; Al Khodor, S. Infections and Pregnancy: Effects on Maternal and Child Health. Front. Cell Infect. Microbiol. 2022, 12, 873253. [Google Scholar] [CrossRef] [PubMed]
- Committee on Obstetric Practice; The American College of Obstetricians and Gynecologists. Committee Opinion No. 712: Intrapartum Management of Intraamniotic Infection. Obstet. Gynecol. 2017, 130, e95–e101. [Google Scholar] [CrossRef]
- Fitzsimmons, E.D.; Bajaj, T. Embryology, Amniotic Fluid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Fan, S.R.; Liu, P.; Yan, S.M.; Peng, J.Y.; Liu, X.P. Diagnosis and Management of Intraamniotic Infection. Matern.-Fetal Med. 2020, 2, 223–230. [Google Scholar] [CrossRef]
- Gallo, D.M.; Romero, R.; Bosco, M.; Gotsch, F.; Jaiman, S.; Jung, E.; Suksai, M.; y Cajal, C.L.; Yoon, B.H.; Chaiworapongsa, T. Meconium-stained amniotic fluid. Am. J. Obstet. Gynecol. 2023, 228 (Suppl. S5), S1158–S1178. [Google Scholar] [CrossRef]
- Saint-Fleur, A.L.; Alcalá, H.E.; Sridhar, S. Outcomes of neonates born through meconium-stained amniotic fluid pre and post 2015 NRP guideline implementation. PLoS ONE 2023, 18, e0289945. [Google Scholar] [CrossRef] [PubMed]
- Mundhra, R.; Agarwal, M. Fetal outcome in meconium stained deliveries. J. Clin. Diagn. Res. 2013, 7, 2874–2876. [Google Scholar] [CrossRef]
- Rawat, M.; Nangia, S.; Chandrasekharan, P.; Lakshminrusimha, S. Approach to Infants Born Through Meconium Stained Amniotic Fluid: Evolution Based on Evidence? Am. J. Perinatol. 2018, 35, 815–822. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice; The American College of Obstetricians and Gynecologists. Committee Opinion No 689: Delivery of a Newborn with Meconium-Stained Amniotic Fluid. Obstet. Gynecol. 2017, 129, e33–e34. [Google Scholar] [CrossRef] [PubMed]
- Parween, S.; Prasad, D.; Poonam, P.; Ahmar, R.; Sinha, A.; Ranjana, R. Impact of Meconium-Stained Amniotic Fluid on Neonatal Outcome in a Tertiary Hospital. Cureus 2022, 14, e24464. [Google Scholar] [CrossRef]
- Romero, R.; Gomez-Lopez, N.; Winters, A.D.; Jung, E.; Shaman, M.; Bieda, J.; Panaitescu, B.; Pacora, P.; Erez, O.; Greenberg, J.M.; et al. Evidence that intra-amniotic infections are often the result of an ascending invasion—A molecular microbiological study. J. Perinat. Med. 2019, 47, 915–931. [Google Scholar] [CrossRef]
- Abate, E.; Alamirew, K.; Admassu, E.; Derbie, A. Prevalence and factors associated with meconium stained amniotic fluid in a tertiary hospital, Northwest Ethiopia: A cross sectional study. Obstet.Gynecol Int. 2021, 2021, 5520117. [Google Scholar] [CrossRef]
- Garg, A.; Jaiswal, A. Evaluation and Management of Premature Rupture of Membranes: A Review Article. Cureus 2023, 15, e36615. [Google Scholar] [CrossRef]
- Dimijian, G.G. Darwinian natural selection: Its enduring explanatory power. Bayl. Univ. Med. Cent. Proc. 2012, 25, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.E.; Shivananda, S.; Murthy, P.; Srinivasjois, R.; Shah, P.S. Antibiotics for neonates born through meconium-stained amniotic fluid. Cochrane Database Syst. Rev. 2017, 6, CD006183. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations for Prevention and Treatment of Maternal Peripartum Infections; World Health Organization: Geneva, Switzerland, 2015; Available online: https://iris.who.int/bitstream/handle/10665/186684/WHO_RHR_15.19_eng.pdf?sequence=1 (accessed on 7 November 2024).
- Tolu, L.B.; Birara, M.; Teshome, T.; Feyissa, G.T. Perinatal outcome of meconium stained amniotic fluid among labouring mothers at teaching referral hospital in urban Ethiopia. PLoS ONE 2020, 15, e0242025. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Yan, J.; Bu, N.; Qian, Y. Efficacy and safety of broad spectrum penicillin with or without beta-lactamase inhibitors vs first and second generation cephalosporins as prophylactic antibiotics during cesarean section: A systematic review and meta-analysis. J. Obstet. Gynaecol. 2023, 43, 2195946. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, L.; Li, S.; Yan, W.; Bai, R.; Yang, Z.; Shi, J.; Yuan, J.; Yang, C.; Cai, W.; et al. Early Antibiotic Use and Neonatal Outcomes Among Preterm Infants Without Infections. Pediatrics 2023, 151, e2022059427. [Google Scholar] [CrossRef] [PubMed]
- Lamont, R.F.; Møller Luef, B.; Stener Jørgensen, J. Childhood inflammatory and metabolic disease following exposure to antibiotics in pregnancy, antenatally, intrapartum and neonatally. F1000Research 2020, 9, 144. [Google Scholar] [CrossRef]
- Shekhar, S.; Petersen, F.C. The dark side of antibiotics: Adverse effects on the infant immune defense against infection. Front. Pediatr. 2020, 8, 544460. [Google Scholar] [CrossRef]
- Zeng, L.N.; Zhang, L.L.; Shi, J.; Gu, L.L.; Grogan, W.; Gargano, M.M.; Chen, C. The primary microbial pathogens associated with premature rupture of the membranes in China: A systematic review. Taiwan. J. Obstet. Gynecol. 2014, 53, 443–451. [Google Scholar] [CrossRef]
- Romero, R.; Miranda, J.; Chaemsaithong, P.; Chaiworapongsa, T.; Kusanovic, J.P.; Dong, Z.; Ahmed, A.I.; Shaman, M.; Lannaman, K.; Yoon, B.H.; et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2015, 28, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Rini, A.E. Faktor Risiko Air Ketuban Keruh Terhadap Kejadian Sepsis Awitan Dini Pada Bayi Baru Lahir [Skripsi]. Ph.D. Thesis, Universitas Diponegoro, Semarang, Indonesia, 2010. [Google Scholar]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Gupta, V.K.; Paul, S.; Dutta, C. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Front. Microbiol. 2017, 8, 1162. [Google Scholar] [CrossRef]
- Yin, H.; Yu, J.; Wu, W.; Li, X.; Hu, R. Analysis of the microbiome in maternal, intrauterine and fetal environments based on 16S rRNA genes following different durations of membrane rupture. Sci. Rep. 2023, 13, 15010. [Google Scholar] [CrossRef]
- Ocviyanti, D.; Wahono, W.T. Risk factors for neonatal sepsis in pregnant women with premature rupture of the membrane. J. Pregnancy 2018, 2018, 4823404. [Google Scholar] [CrossRef]
- Gupta, S.; Malik, S.; Gupta, S. Neonatal complications in women with premature rupture of membranes (PROM) at term and near term and its correlation with time lapsed since PROM to delivery. Trop. Dr. 2020, 50, 8–11. [Google Scholar] [CrossRef]
- Rohmawati, N.; Wijayanti, Y. Ketuban pecah dini di Rumah Sakit Umum Daerah Ungaran. HIGEIA (J. Public Health Res. Dev.) 2018, 2, 23–32. [Google Scholar]
- Putri, S.D. Hubungan Durasi Ketuban Pecah Dini Terhadap Nilai APGAR Neonatus Pada Persalinan Aterm di RSU Karsa Husada Tahun 2018–2020 [Skripsi]. Ph.D. Thesis, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia, 2022. [Google Scholar]
- Masood, M.; Shahid, N.; Bano, Z.; Khan, F.A.; Hussain, S.F.; Uroosa, H.; Khan, M.; Anwar, A.; Hashmi, A.A. Association of Apgar Score with Meconium Staining of Amniotic Fluid in Labor. Cureus 2021, 13, e12744. [Google Scholar] [CrossRef]
- Gurubacharya, S.; Rajbhandari, S.; Gurung, R.; Rai, A.; Mishra, M.; Sharma, K.; Aryal, D. Risk Factors and Outcome of Neonates Born through Meconium Stained Amniotic Fluid in a Tertiary Hospital of Nepal. J. Nepal Paediatr. Soc. 2015, 35, 44–48. [Google Scholar] [CrossRef]
- Herzlich, J.; Mangel, L.; Halperin, A.; Lubin, D.; Marom, R. Neonatal outcomes in women with preterm premature rupture of membranes at periviable gestational age. Sci. Rep. 2022, 12, 11999. [Google Scholar] [CrossRef]
- Tavares, V.B.; e Souza, J.D.; Affonso, M.V.; Da Rocha, E.S.; Rodrigues, L.F.; da Costa Moraes, L.D.; dos Santos Coelho, G.C.; Araújo, S.S.; das Neves, P.F.; Gomes, F.D.; et al. Factors associated with 5-min APGAR score, death and survival in neonatal intensive care: A case-control study. BMC Pediatr. 2022, 22, 560. [Google Scholar] [CrossRef]
- Hapsari, R.K.A.; Winarsih, S.; Nooryanto, M. Pola bakteri dan uji kepekaan antibiotik pada preterm premature rupture of membranes di RSUD Dr. Saiful Anwar Malang periode 2011–2013. Maj. Kesehat. FKUB 2015, 2, 51–61. [Google Scholar]
Characteristics (N = 90) | N (%) | |
---|---|---|
Maternal Characteristics (N = 30) | ||
Age (Years) | 17–25 | 3 (10) |
26–35 | 21 (70) | |
>35 | 6 (20) | |
Gestational Age | Preterm | 3 (10) |
Early term | 9 (30) | |
Full term | 13 (43) | |
Late term | 5 (17) | |
Parity | Nulliparous | 14 (47) |
Multipara | 16 (53) | |
Fetal Malpresentation | Yes | 3 (10) |
No | 27 (90) | |
Amniotic Condition | PROMs 1 > 12 h | 17 (57) |
MSAF 2 | 11 (37) | |
PROMs with MSAF | 2 (6) | |
Neonates Characteristics (N = 60) | ||
Gender | Male | 37 (62) |
Weight | Low | 5 (8) |
Normal | 55 (92) | |
Amniotic Condition | MSAF 2 | 41 (68) |
CRP 3 (mg/L) | >5 | 7 (12) |
Leukocyte (103/μL) | 9.00–34.00 | 60 (100) |
Microorganism | Leukocytes (103/μL) | Neutrophils (%) | ||||
---|---|---|---|---|---|---|
PROMs 1 | MSAF 2 | PROMs 1–MSAF 2 | PROMs 1 | MSAF 2 | PROMs 1–MSAF 2 | |
Gram-positive | ||||||
Staphylococcus haemolyticus | 14.76 | - | - | 83.40 | - | - |
Streptococcus beta haemolyticus | 17.88 | - | - | 91.40 | - | - |
fStaphylococcus epidermis | - | 20.57 | - | - | 90.70 | - |
Gram-negative | ||||||
Enterococcus spp. | 15.60 | - | - | 90.50 | - | - |
Enterobacter spp. | - | 15.60 | - | - | 90.50 | - |
Escherichia coli | 15.19 | 12.24 | - | 93.80 | 89.60 | - |
- | 17.58 | - | - | 92.02 | - | |
- | 17.90 | - | - | 91.20 | - | |
Escherichia coli and Klebsiella pneumoniae | - | 10.67 | - | - | 80.50 | - |
- | 14.02 | - | - | 88.60 | - | |
Escherichia coli ESBL | - | - | 15.52 | - | - | 85.50 |
Escherichia coli ESBL | - | - | 11.11 | - | - | 72.90 |
Microorganism | CRP 1 (mg/L) | Leukocytes (103/μL) | Neutrophils (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
PROMs 2 | MSAF 3 | PROMs 2–MSAF 3 | PROMs 2 | MSAF 3 | PROMs 2–MSAF 3 | PROMs 2 | MSAF 3 | PROMs 2–MSAF 3 | |
Gram-positive | |||||||||
Staphylococcus haemolyticus | - | - | - | - | - | - | - | - | - |
Streptococcus beta haemolyticus | <5 | - | - | 22.06 | - | - | 73.10 | - | - |
Staphylococcus epidermis | - | <5 | - | - | 33.23 | - | - | 75.40 | - |
Gram-negative | |||||||||
Enterococcus spp. | <5 | - | - | 18.31 | - | - | 75.20 | - | - |
Enterobacter spp. | - | 16.00 | - | - | 8.52 | - | - | 76.90 | - |
Escherichia coli | <5 | - | - | 18.93 | 14.58 | - | 79.60 | 67.20 | - |
- | 15.00 | - | - | 24.22 | - | - | 76.90 | - | |
- | - | - | - | 22.49 | - | - | 79.70 | - | |
Escherichia coli and Klebsiella pneumoniae | - | 13.00 | - | - | 19.85 | - | - | 85.10 | - |
- | 12.50 | - | - | 20.58 | - | - | 70.30 | - | |
Escherichia coli ESBL | - | - | 25.00 | - | - | 14.87 | - | - | 85.60 |
Escherichia coli ESBL | - | - | 7.50 | - | - | - | - | - | - |
Clinical Outcomes | PROMs 2 (N = 17) | MSAF 3 (N = 11) | PROMs 2–MSAF 3 (N = 2) |
---|---|---|---|
Length of Stay (days) p = 0.03 | |||
1–3 | 10 | 3 | 0 |
>3 | 6 | 8 | 2 |
APGAR 1 Score p = 0.687 | |||
First minute | 5.4 ± 2.32 | 5.6 ± 2.33 | 4 ± 4.24 |
Fifth minute | 6.4 ± 2.32 | 6.6 ± 2.33 | 5 ± 4.24 |
Asphyxia | 6 | 4 | 0 |
Meconium Aspiration Syndrome | 0 | 0 | 1 |
Weight (kg) | 3.1 ± 0.40 | 3.2 ± 0.39 | 3.4 ± 0.14 |
NICU admission | 0 | 0 | 0 |
AWaRe 1 | Name | ATC 2 | Year 2022 | Year 2024 |
---|---|---|---|---|
Access | Ampicillin | J01CA01 | 4.19 (95.5) | |
Access | Ampicillin/sulbactam | J01CR01 | 0.05 (1.2) | 3.14 (85.5) |
Access | Gentamicin | J01GB03 | 0.05 (1.2) | 0.34 (9.3) |
Watch | Meropenem | J01DH02 | 0.14 (3.3) | 0.19 (5.2) |
Total | 4.38 (100) | 3.67 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herawati, F.; Rahaded, P.V.; Hartono, R.; Yulia, R. Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid. Pharmaceuticals 2025, 18, 37. https://doi.org/10.3390/ph18010037
Herawati F, Rahaded PV, Hartono R, Yulia R. Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid. Pharmaceuticals. 2025; 18(1):37. https://doi.org/10.3390/ph18010037
Chicago/Turabian StyleHerawati, Fauna, Patricia Valery Rahaded, Ruddy Hartono, and Rika Yulia. 2025. "Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid" Pharmaceuticals 18, no. 1: 37. https://doi.org/10.3390/ph18010037
APA StyleHerawati, F., Rahaded, P. V., Hartono, R., & Yulia, R. (2025). Microbial Pattern in Amniotic Fluid from Women with Premature Rupture of Membranes and Meconium-Stained Fluid. Pharmaceuticals, 18(1), 37. https://doi.org/10.3390/ph18010037