Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition Study
2.2. Molecular Docking
2.3. Physicochemical and Pharmacological Profiling
2.4. Inhibition of Selected Kerra™ Phytochemicals against HIV-1 RT
2.5. Inhibition of Pseudo-HIV Viral Infection
3. Materials and Methods
3.1. Preparation of Kerra™ Extract
3.2. Protein Expression and Purification
3.3. Relative Inhibition Study and Determination of IC50
3.4. Inhibition of Pseudo-HIV Viral Infection
3.5. In Silico Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. HIV and AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 30 December 2023).
- Onafuwa-Nuga, A.; Telesnitsky, A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol. Mol. Biol. Rev. 2009, 73, 451–480. [Google Scholar] [CrossRef]
- Robinson, H.L. HIV/AIDS vaccines: 2018. Clin. Pharmacol. Ther. 2018, 104, 1062–1073. [Google Scholar] [CrossRef]
- van Heuvel, Y.; Schatz, S.; Rosengarten, J.F.; Stitz, J. Infectious RNA: Human immunodeficiency virus (HIV) biology, therapeutic intervention, and the quest for a vaccine. Toxins 2022, 14, 138. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases. Experimental HIV Vaccine Regimen Ineffective in Preventing HIV. Available online: https://www.niaid.nih.gov/news-events/experimental-hiv-vaccine-regimen-ineffective-preventing-hiv (accessed on 30 December 2023).
- Kemnic, T.R.; Gulick, P.G. HIV antiretroviral therapy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513308 (accessed on 30 December 2023).
- Moore, R.D.; Chaisson, R.E. Natural history of HIV infection in the era of combination antiretroviral therapy. AIDS 1999, 13, 1933–1942. [Google Scholar] [CrossRef]
- Sarafianos, S.G.; Marchand, B.; Das, K.; Himmel, D.M.; Parniak, M.A.; Hughes, S.H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: Molecular mechanisms of polymerization and inhibition. J. Mol. Biol. 2009, 385, 693–713. [Google Scholar] [CrossRef]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide reverse transcriptase inhibitors: A thorough review, present status and future perspective as HIV therapeutics. Curr. HIV Res. 2017, 15, 411–421. [Google Scholar] [CrossRef]
- Patel, P.H.; Zulfiqar, H. Reverse transcriptase inhibitors. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551504 (accessed on 30 December 2023).
- SeyedAlinaghi, S.; Afsahi, A.M.; Moradi, A.; Parmoon, Z.; Habibi, P.; Mirzapour, P.; Dashti, M.; Ghasemzadeh, A.; Karimi, E.; Sanaati, F.; et al. Current ART, determinants for virologic failure and implications for HIV drug resistance: An umbrella review. AIDS Res. Ther. 2023, 20, 74. [Google Scholar] [CrossRef]
- Seetaha, S.; Khamplong, P.; Wanaragthai, P.; Aiebchun, T.; Ratanabunyong, S.; Krobthong, S.; Yingchutrakul, Y.; Rattanasrisomporn, J.; Choowongkomon, K. Kerra™, mixed medicinal plant extracts, inhibits SARS-CoV-2 targets enzymes and feline coronavirus. COVID 2022, 2, 621–632. [Google Scholar] [CrossRef]
- Choowongkomon, K.; Choengpanya, K.; Pientong, C.; Ekalaksananan, T.; Talawat, S.; Srathong, P.; Chuerduangphui, J. The inhibitory effect of Kerra™, KS™, and Minoza™ on human papillomavirus infection and cervical cancer. Medicina 2023, 59, 2169. [Google Scholar] [CrossRef]
- Denaro, M.; Smeriglio, A.; Barreca, D.; De Francesco, C.; Occhiuto, C.; Milano, G.; Trombetta, D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother. Res. 2020, 34, 742–768. [Google Scholar] [CrossRef]
- Laila, U.; Akram, M.; Shariati, M.A.; Hashmi, A.M.; Akhtar, N.; Tahir, I.M.; Ghauri, A.O.; Munir, N.; Riaz, M.; Akhter, N.; et al. Role of medicinal plants in HIV/AIDS therapy. Clin. Exp. Pharmacol. Physiol. 2019, 46, 1063–1073. [Google Scholar] [CrossRef]
- Paul, A.; Chakraborty, N.; Sarkar, A.; Acharya, K.; Ranjan, A.; Chauhan, A.; Srivastava, S.; Singh, A.K.; Rai, A.K.; Mubeen, I.; et al. Ethnopharmacological potential of phytochemicals and phytogenic products against human RNA viral diseases as Preventive Therapeutics. BioMed Res. Int. 2023, 2023, 1977602. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Malek, S.; Bastien, J.W.; Mahler, W.F.; Jia, Q.; Reinecke, M.G.; Robinson, W.E., Jr.; Shu, Y.; Zalles-Asin, J. Drug leads from the Kallawaya herbalists of Bolivia. 1. Background, rationale, protocol and anti-HIV activity. J. Ethnopharmacol. 1996, 50, 157–166. [Google Scholar] [CrossRef]
- Bessong, P.O.; Obi, C.L.; Andréola, M.L.; Rojas, L.B.; Pouységu, L.; Igumbor, E.; Meyer, J.J.; Quideau, S.; Litvak, S. Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. J. Ethnopharmacol. 2005, 99, 83–91. [Google Scholar] [CrossRef]
- Soleimani Farsani, M.; Behbahani, M.; Isfahani, H.Z. The effect of root, shoot and seed extracts of the Iranian Thymus L. (family: Lamiaceae) species on HIV-1 replication and CD4 Expression. Cell J. 2016, 18, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, V.; Anantachoke, N.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Tuchinda, P. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Med. 2007, 73, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Oh, W.K.; Ahn, J.S.; Kim, Y.H.; Mbafor, J.T.; Wandji, J.; Fomum, Z.T. Prenylisoflavonoids from Erythrina senegalensis as novel HIV-1 protease inhibitors. Planta Med. 2009, 75, 268–270. [Google Scholar] [CrossRef]
- Momoh, M.A.; Muhamed, U.; Agboke, A.A.; Akpabio, E.I.; Osonwa, U.E. Immunological effect of aqueous extract of Vernonia amygdalina and a known immune booster called immunace® and their admixtures on HIV/AIDS clients: A comparative study. Asian Pac. J. Trop. Biomed. 2012, 2, 181–184. [Google Scholar] [CrossRef]
- Grienke, U.; Mair, C.E.; Kirchmair, J.; Schmidtke, M.; Rollinger, J.M. Discovery of bioactive natural products for the treatment of acute respiratory infections—An integrated approach. Planta Med. 2018, 84, 684–695. [Google Scholar] [CrossRef]
- Mejri, H.; Wannes, W.A.; Mahjoub, F.H.; Hammami, M.; Dussault, C.; Legault, J.; Saidani-Tounsi, M. Potential bio-functional properties of Citrus aurantium L. leaf: Chemical composition, antiviral activity on herpes simplex virus type-1, antiproliferative effects on human lung and colon cancer cells and oxidative protection. Int. J. Environ. Health Res. 2024, 34, 1113–1123. [Google Scholar] [CrossRef]
- Chan, C.N.; Trinité, B.; Levy, D.N. Potent inhibition of HIV-1 replication in resting CD4 T cells by resveratrol and pterostilbene. Antimicrob. Agents Chemother. 2017, 61, e00408-17. [Google Scholar] [CrossRef]
- Min, B.S.; Bar, K.H.; Kim, Y.H.; Miyashiro, H.; Hattori, M.; Shimotohno, K. Screening of Korean plants against human immunodeficiency virus type-1 protease. Phytother. Res. 1999, 13, 680–682. [Google Scholar] [CrossRef]
- Masalu, R.J.; Ngassa, S.; Kinunda, G.A.; Mpinda, C.B. Antibacterial and anti-HIV-1 reverse transcriptase activities of selected medicinal plants and their synthesized zinc oxide nanoparticles. Tanz. J. Sci. 2020, 46, 597–612. [Google Scholar] [CrossRef]
- Ratanabunyong, S.; Seetaha, S.; Hannongbua, S.; Yanaka, S.; Yagi-Utsumi, M.; Kato, K.; Paemanee, A.; Choowongkomon, K. Biophysical characterization of novel DNA aptamers against K103N/Y181C double mutant HIV-1 reverse transcriptase. Molecules 2022, 27, 285. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Arnold, E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr. Opin. Virol. 2013, 3, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Arnott, J.A.; Kumar, R.; Planey, S.L. Lipophilicity indices for drug development. J. Appl. Biopharm. Pharmacokinet. 2013, 1, 31–36. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Alegiry, M.H.; El Omri, A.; Bayoumi, A.A.; Alomar, M.Y.; Rather, I.A.; Sabir, J.S.M. Antidepressant-like effect of traditional medicinal plant Carthamus tinctorius in mice model through neuro-behavioral tests and transcriptomic approach. Appl. Sci. 2022, 12, 5594. [Google Scholar] [CrossRef]
- Heo, H.J.; Park, Y.J.; Suh, Y.M.; Choi, S.J.; Kim, M.J.; Cho, H.Y.; Chang, Y.J.; Hong, B.; Kim, H.K.; Kim, E.; et al. Effects of oleamide on choline acetyltransferase and cognitive activities. Biosci. Biotechnol. Biochem. 2003, 67, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Bauman, J.D.; Clark, A.D., Jr.; Frenkel, Y.V.; Lewi, P.J.; Shatkin, A.J.; Hughes, S.H.; Arnold, E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations. Proc. Natl. Acad. Sci. USA 2008, 105, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kang, D.; Nguyen, L.A.; Smithline, Z.B.; Pannecouque, C.; Zhan, P.; Liu, X.; Steitz, T.A. Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. eLife 2018, 7, e36340. [Google Scholar] [CrossRef] [PubMed]
- Machado Dutra, J.; Espitia, P.J.P.; Andrade Batista, R. Formononetin: Biological effects and uses—A review. Food Chem. 2021, 359, 129975. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, D.; Ge, M.; Li, Z.; Jiang, J.; Li, Y. Formononetin inhibits enterovirus 71 replication by regulating COX-2/PGE2 expression. Virol. J. 2015, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, A.; Javeed, M.; Shah, M.A.; Hussain, G.; Shafiq, N.; Sarfraz, I.; Riaz, A.; Sadiqa, A.; Zara, R.; Zafar, S.; et al. Biochanin A: A novel bioactive multifunctional compound from nature. Sci. Total Environ. 2020, 722, 137907. [Google Scholar] [CrossRef] [PubMed]
- Sithisarn, P.; Michaelis, M.; Schubert-Zsilavecz, M.; Cinatl, J., Jr. Differential antiviral and anti-inflammatory mechanisms of the flavonoids biochanin A and baicalein in H5N1 influenza A virus-infected cells. Antivir. Res. 2013, 97, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.M.; Catinella, G.; Pinto, A.; Dallavalle, S. Natural and nature-inspired stilbenoids as antiviral agents. Eur. J. Med. Chem. 2020, 202, 112541. [Google Scholar] [CrossRef] [PubMed]
- Alauddin; Chaturvedi, S.; Malik, M.Y.; Azmi, L.; Shukla, I.; Naseem, Z.; Rao, C.; Agarwal, N.K. Formononetin and biochanin A protects against ritonavir induced hepatotoxicity via modulation of NfκB/pAkt signaling molecules. Life Sci. 2018, 213, 174–182. [Google Scholar] [CrossRef]
- Zicari, S.; Sessa, L.; Cotugno, N.; Ruggiero, A.; Morrocchi, E.; Concato, C.; Rocca, S.; Zangari, P.; Manno, E.C.; Palma, P. Immune activation, inflammation, and non-AIDS co-morbidities in HIV-infected patients under long-term ART. Viruses 2019, 11, 200. [Google Scholar] [CrossRef]
- Yao, P.; Zhang, Z.; Cao, J. Isorhapontigenin alleviates lipopolysaccharide-induced acute lung injury via modulating Nrf2 signaling. Respir. Physiol. Neurobiol. 2021, 289, 103667. [Google Scholar] [CrossRef] [PubMed]
- Aeksiri, N.; Warakulwit, C.; Hannongbua, S.; Unajak, S.; Choowongkomon, K. Use of capillary electrophoresis to study the binding interaction of aptamers with wild-Type, K103N, and double mutant (K103N/Y181C) HIV-1 RT: Studying the binding interaction of wild-type, K103N, and double mutant (K103N/Y181C) HIV-1 RT with aptamers by performing the capillary electrophoresis. Appl. Biochem. Biotechnol. 2017, 182, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Silprasit, K.; Seetaha, S.; Pongsanarakul, P.; Hannongbua, S.; Choowongkomon, K. Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J. Med. Plant Res. 2011, 5, 4899–4906. [Google Scholar] [CrossRef]
- Mbisa, J.L.; Delviks-Frankenberry, K.A.; Thomas, J.A.; Gorelick, R.J.; Pathak, V.K. Real-time PCR analysis of HIV-1 replication post-entry events. In HIV Protocols. Methods in Molecular Biology™, 2nd ed.; Prasad, V.R., Kalpana, G.V., Eds.; Humana Press: Totowa, NJ, USA, 2009; Volume 485, pp. 55–72. ISBN 978-1-59745-170-3. [Google Scholar]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible cocking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed]
Chemical | IC50 (µg/mL) |
---|---|
EFV § | 0.005 ± 0.001 |
Kerra™ ¥ | 38.00 ± 4.62 |
Chemical | GOLD Docking Score |
---|---|
NVP | 51.5294 |
EFV | 57.9499 |
RPV | 70.7706 |
2-Methoxy-9H-xanthen-9-one | 52.5800 |
Isorhapontigenin | 59.8827 |
Betaine | 43.3009 |
14-Deoxy-11,12-didehydroandrographolide | 34.6598 |
Anethole | 43.1458 |
5,8,11,14-Eicosatetraynoic acid | 74.9822 |
NP-003294 | 65.9677 |
N1-(3-Chlorophenyl)-2-[2-(trifluoromethyl)-4-quinolyl]hydrazine-1-carboxamide | 59.5124 |
Choline | 42.6724 |
(1S,4S,5R,10S,13S,17S,19S,20R)-10-hydroxy-4,5,9,9,13,19,20-heptamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-23-one | 24.9749 |
NP-006862 | 63.9812 |
DL-Stachydrine | 44.4101 |
Apigenin 7-O-glucuronide | 64.6422 |
Palmitoleic acid | 61.7137 |
11-(4-Chloroanilino)-2,3-dihydro-1H-cyclopenta[4,5]pyrido[1,2-a] benzimidazole-4-carbonitrile | 58.4916 |
NP-009051 | 55.1730 |
Oleamide | 60.0396 |
Formononetin | 59.1999 |
(1S,4aS,7aS)-7-[[(E)-3-Phenylprop-2-enoyl]oxymethyl]-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid | 60.7748 |
3′,4′-Dimethoxyacetophenone | 43.5958 |
Biochanin A | 56.4515 |
Chemical | Molecular Weight (Dalton) | Number of Rotatable Bonds | Number of H-Bond Acceptors | Number of H-Bond Donors |
---|---|---|---|---|
Isorhapontigenin | 258.27 | 3 | 4 | 3 |
5,8,11,14-Eicosatetraynoic acid | 296.40 | 6 | 2 | 1 |
N1-(3-Chlorophenyl)-2-[2-(trifluoromethyl)-4-quinolyl]hydrazine-1-carboxamide | 380.75 | 6 | 5 | 3 |
Apigenin 7-O-glucuronide | 446.36 | 4 | 11 | 6 |
Palmitoleic acid | 254.41 | 13 | 2 | 1 |
11-(4-Chloroanilino)-2,3-dihydro-1H-cyclopenta[4,5]pyrido[1,2-a] benzimidazole-4-carbonitrile | 358.82 | 2 | 2 | 1 |
Oleamide | 281.48 | 15 | 1 | 1 |
Formononetin | 268.26 | 2 | 4 | 1 |
(1S,4aS,7aS)-7-[[(E)-3-Phenylprop-2-enoyl]oxymethyl]-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid | 504.48 | 9 | 11 | 5 |
Biochanin A | 284.26 | 2 | 5 | 2 |
NP-003294 | 344.32 | 4 | 7 | 2 |
NP-006862 | 336.47 | 6 | 4 | 3 |
Chemical | TPSA * | Lipophilicity (LogPO/W) | Water Solubility | GI Absorption ¥ | BBB Permeant § | Pgp Substrate ¶ | CYP Inhibitor £ |
---|---|---|---|---|---|---|---|
Isorhapontigenin | 69.92 | 2.63 | Soluble | High | Yes | No | CYP1A2, CYP2C9, CYP3A4 |
5,8,11,14-Eicosatetraynoic acid | 37.30 | 4.78 | Moderately soluble | High | Yes | No | CYP1A2, CYP2C19, CYP2C9 |
N1-(3-Chlorophenyl)-2-[2-(trifluoromethyl)-4-quinolyl]hydrazine-1-carboxamide | 66.05 | 3.94 | Moderately soluble | High | No | No | CYP1A2, CYP2C19, CYP3A4 |
Apigenin 7-O-glucuronide | 187.12 | 0.28 | Soluble | Low | No | Yes | No |
Palmitoleic acid | 37.30 | 4.92 | Moderately soluble | High | Yes | No | CYP1A2, CYP2C9 |
11-(4-Chloroanilino)-2,3-dihydro-1H-cyclopenta[4,5]pyrido[1,2-a] benzimidazole-4-carbonitrile | 53.12 | 4.49 | Moderately soluble | High | Yes | Yes | CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4 |
Oleamide | 43.09 | 5.32 | Moderately soluble | High | Yes | No | CYP1A2, CYP2C9 |
Formononetin | 59.67 | 2.66 | Soluble | High | Yes | No | CYP1A2, CYP2D6, CYP3A4 |
(1S,4aS,7aS)-7-[[(E)-3-Phenylprop-2-enoyl]oxymethyl]-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid | 172.21 | 0.33 | Soluble | Low | No | Yes | No |
Biochanin A | 79.90 | 1.50 | Soluble | High | No | Yes | CYP2D6, CYP3A4 |
NP-003294 | 98.36 | 2.54 | Moderately soluble | High | No | No | CYP1A2, CYP2C9, CYP2D6, CYP3A4 |
NP-006862 | 77.76 | 3.26 | Soluble | High | Yes | Yes | No |
Chemical | Drug-likeness |
---|---|
Isorhapontigenin | Yes |
5,8,11,14-Eicosatetraynoic acid | Yes |
N1-(3-Chlorophenyl)-2-[2-(trifluoromethyl)-4-quinolyl]hydrazine-1-carboxamide | Yes |
Apigenin 7-O-glucuronide | No |
Palmitoleic acid | Yes |
11-(4-Chloroanilino)-2,3-dihydro-1H-cyclopenta[4,5]pyrido[1,2-a] benzimidazole-4-carbonitrile | Yes |
Oleamide | Yes |
Formononetin | Yes |
(1S,4aS,7aS)-7-[[(E)-3-Phenylprop-2-enoyl]oxymethyl]-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid | No |
Biochanin A | Yes |
NP-003294 | Yes |
NP-006862 | Yes |
Chemical | IC50 (µM) |
---|---|
EFV § | 0.016 ± 0.004 |
Oleamide | 1.37 ± 0.30 |
Formononetin | 2.65 ± 0.80 |
Biochanin A | 4.73 ± 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saehlee, S.; Seetaha, S.; Klankaew, W.; Srathong, P.; Choowongkomon, K.; Choengpanya, K. Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™. Pharmaceuticals 2024, 17, 917. https://doi.org/10.3390/ph17070917
Saehlee S, Seetaha S, Klankaew W, Srathong P, Choowongkomon K, Choengpanya K. Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™. Pharmaceuticals. 2024; 17(7):917. https://doi.org/10.3390/ph17070917
Chicago/Turabian StyleSaehlee, Siriwan, Supaphorn Seetaha, Wiwat Klankaew, Pussadee Srathong, Kiattawee Choowongkomon, and Khuanjarat Choengpanya. 2024. "Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™" Pharmaceuticals 17, no. 7: 917. https://doi.org/10.3390/ph17070917
APA StyleSaehlee, S., Seetaha, S., Klankaew, W., Srathong, P., Choowongkomon, K., & Choengpanya, K. (2024). Anti-Human Immunodeficiency Virus-1 Property of Thai Herbal Extract Kerra™. Pharmaceuticals, 17(7), 917. https://doi.org/10.3390/ph17070917