Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape
Abstract
:1. Introduction
2. Female-Specific Cancers
3. Cancer Vaccines
4. Peptide Vaccines
5. Peptide Vaccines Developed for Female-Specific Cancers
5.1. Based on Genes Involved in Pathogenesis of Cancer
5.1.1. HER2 Based Peptide Vaccines for Female-Specific Cancers
5.1.2. Non-HER2 Based Peptide Vaccines for Female-Specific Cancers
5.2. Based on Viruses Involved in Pathogenesis of Female-Specific Cancers
5.2.1. Human Papilloma Virus (HPV)
5.2.2. Mouse Mammary Tumor Virus (MMTV)
5.2.3. Epstein-Barr Virus (EBV)
5.2.4. Bovine Leukemia Virus (BLV)
6. A Pipeline for the Design and Evaluation of Peptide Vaccine in Female-Specific Cancers
7. Delivery Systems for Peptide Vaccines
8. Limitations and Adverse Effects of Peptide Vaccines
9. Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AAHS | Amorphous aluminum hydroxyphosphate sulfate |
AE37, AE36, E75 and GP2 | Immunogenic peptides from the HER2/neu |
APC | Antigen presenting cells |
B16-OVA | B16 Ovalbumin |
BLV | Bovine leukemia virus |
BORIS | Brother of Regulator of Imprinted Sites |
BRCA1/BRCA2 | Breast Cancer gene |
CA-125 | Cancer antigen 125 |
CAR T cell | Chimeric antigen receptor T cell |
CCL-Chemokine | (C-C motif) ligand |
CEA | Carcinoembryonic antigen |
CHEK2 | Checkpoint kinase 2 |
CIN | Cervical squamous intraepithelial neoplasia |
CpG-ODN | Oligodeoxynucleotides of cytosine and guanine |
CRP | C-reactive protein |
CTL | Cytotoxic T lymphocyte |
CTLA-4 | Cytotoxic T lymphocyte-associated antigen-4 |
cVLPs | Chimeric virus-like particles |
CXCL | Chemokine (C-X-C motif) ligand |
DCs | Dendritic cells |
dLOS (CIA06) | A novel proprietary immune adjuvant |
DTH | Delayed type hypersensitivity |
E1, E2, E3 | Epitope 1, 2, 3 |
EBNA-2 | Epstein-Barr nuclear antigen 2 |
EBV | Epstein-Barr virus. |
ECD | Extracellular domain |
EGFR | Epidermal growth factor receptor |
ER | Estrogen receptor; |
ErbB2 | Erythroblastic oncogene B |
FR | Folate receptor |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
HBc | Hepatitis B virus core antigen |
HER 2 | Human epidermal growth factor receptor 2 |
HIV | Human immunodeficiency virus |
HLA | Human leukocyte antigens |
HPV | Human Papillomavirus |
HSP | Heat shock protein; |
HTL | Helper T lymphocyte |
HTLV-1 | Human T cell lymphotropic virus 1 |
ICB | Immune checkpoint blockade |
ICD | Intracellular domain |
IFN | Interferon |
IgG | Immunoglobulin G |
IL | Interleukin |
KLH- | Keyhole limpet hemocyanin |
LMP2 | Latent membrane protein 2 |
MAGE | Melanoma Antigen Gene |
MAP | Multiple antigenic peptides |
MD | Molecular dynamics |
MDSCs | Myeloid-derived suppressor cells |
MHC | Major histocompatibility complex |
MIR | Major immune dominant region |
MMTV | Mouse Mammary Tumour Virus |
MUC1 | Mucin1 |
NK | Natural killer cell |
NP | Nanoparticle |
NPBC | Non-palpable breast cancer |
NPS | Nelipepimut-S |
OLP | Overlapping peptide |
PCR | Polymerase chain reaction |
PEG | Polyethylene Glycolylated |
PEP-DC | DCs pulsed with up to ten peptides |
Poly-ICLC | Polyinosinic-polycytidylic acid |
PLGA | Poly lactic-co-glycolic acid |
PTEN | Phosphatase and TENsin homolog |
RNF | Ring finger protein; ROC-recurrent ovarian cancer |
ROPs | Recombinant overlapping peptides |
SEREX | Serological analysis of cDNA expression libraries |
SLP | Synthetic long peptide |
SSA | Serum amyloid A |
STING | Stimulator of interferon genes |
TAAs | Tumor associated antigens |
TCR | T-cell receptor |
TGF | Tumor growth factor |
Th | helper T cells |
TLR | Toll-like receptor |
TNBC | Triple-negative breast cancer |
TNF | Tumor necrosis factor |
TME | Tumor microenvironment |
Tp53 | Tumor protein 53 |
TSAs | Tumor-specific antigens |
TUBO | Cell lines cloned from a BALB/c mouse mammary carcinoma |
VLP | Virus like particles. |
wt p53 | Wild type p53 |
WT1 | Wilms’ tumor 1 |
References
- Qiao, J.; Liu, Z.; Fu, Y.-X. Adapting conventional cancer treatment for immunotherapy. J. Mol. Med. 2016, 94, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Hoda, M. Potential Alternatives to Conventional Cancer Therapeutic Approaches: The Way Forward. Curr. Pharm. Biotechnol. 2021, 22, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, C.L.; Kapoor, E.; Sood, R.; Thielen, J.M.; Jatoi, A.; Faubion, S.S. Menopausal hormone therapy in cancer survivors: A narrative review of the literature. Maturitas 2016, 92, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.L.; Silva-de-Oliveira, A.F.S.; Andraus, R.A.C.; Maia, L.P. Effects of low level laser therapy in cancer cells—A systematic review of the literature. Lasers Med. Sci. 2020, 35, 523–529. [Google Scholar] [CrossRef]
- Ross, J.S.; Schenkein, D.P.; Pietrusko, R.; Rolfe, M.; Linette, G.P.; Stec, J.; Stagliano, N.E.; Ginsburg, G.S.; Symmans, W.F.; Pusztai, L.; et al. Targeted Therapies for Cancer 2004. Am. J. Clin. Pathol. 2004, 122, 598–609. [Google Scholar] [CrossRef]
- Stephens, A.J.; Burgess-Brown, N.A.; Jiang, S. Beyond Just Peptide Antigens: The Complex World of Peptide-Based Cancer Vaccines. Front. Immunol. 2021, 12, 2629. [Google Scholar] [CrossRef]
- Takei, J.; Suzuki, H.; Asano, T.; Tanaka, T.; Kaneko, M.K.; Kato, Y. Development of a Novel Anti-Mouse CCR4 Monoclonal Antibody (C4Mab-1) by N-Terminal Peptide Immunization. Monoclon. Antibodies Immunodiagn. Immunother. 2022, 41, 87–93. [Google Scholar] [CrossRef]
- Nezafat, N.; Ghasemi, Y.; Javadi, G.; Khoshnoud, M.J.; Omidinia, E. A novel multi-epitope peptide vaccine against cancer: An in silico approach. J. Theor. Biol. 2014, 349, 121–134. [Google Scholar] [CrossRef]
- De Campos, N.S.P.; Souza, B.S.; da Silva, G.C.P.; Porto, V.A.; Chalbatani, G.M.; Lagreca, G.; Janji, B.; Suarez, E.R. Carbonic Anhydrase IX: A Renewed Target for Cancer Immunotherapy. Cancers 2022, 14, 1392. [Google Scholar] [CrossRef]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Fry, T.J.; Mackall, C.L. T-cell adoptive immunotherapy for acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 2013, 2013, 348–353. [Google Scholar] [CrossRef] [Green Version]
- Schlom, J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. JNCI J. Natl. Cancer Inst. 2012, 104, 599–613. [Google Scholar] [CrossRef] [Green Version]
- Gatti-Mays, M.E.; Redman, J.M.; Collins, J.M.; Bilusic, M. Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Hum. Vaccines Immunother. 2017, 13, 2561–2574. [Google Scholar] [CrossRef] [Green Version]
- Michel, T.; Ollert, M.; Zimmer, J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int. J. Mol. Sci. 2022, 23, 797. [Google Scholar] [CrossRef]
- Cebon, J. Perspective: Cancer vaccines in the era of immune checkpoint blockade. Mamm. Genome 2018, 29, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.; Vandermeulen, G.; Préat, V. Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 1–24. [Google Scholar] [CrossRef]
- Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; et al. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017, 389, 847–860. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Diseases and Conditions-Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions?customer_id=856-310-7743&mc_id=google&campaign=19807197113&geo=1007828&kw=mayoclinic&ad=650933999493&network=g&sitetarget=&adgroup=147643045435&extension=&target=kwd-98051161&matchtype=e&device=c&account=8563107743&invsrc=india&placementsite=enterprise&gclid=Cj0KCQjw_r6hBhDdARIsAMIDhV80obPMuAybSmabKG5o7bfYGuiMqecyuCzOrgx4PUm32MPsx2TZtYMaAuPCEALw_wcB (accessed on 7 April 2023).
- Cancer Types|Cancer Resources|American Cancer Society. Available online: https://www.cancer.org/cancer.html (accessed on 7 April 2023).
- Alibek, K.; Kakpenova, A.; Mussabekova, A.; Sypabekova, M.; Karatayeva, N. Role of viruses in the development of breast cancer. Infect. Agents Cancer 2013, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Xu, T.; Long, T.; Zuo, H. Association Between BRCA Status and P53 Status in Breast Cancer: A Meta-Analysis. Med. Sci. Monit. 2016, 22, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- Walsh, T.; Casadei, S.; Coats, K.H.; Swisher, E.; Stray, S.M.; Higgins, J.; Roach, K.C.; Mandell, J.; Lee, M.K.; Ciernikova, S.; et al. Spectrum of Mutations in BRCA1, BRCA2, CHEK2, and TP53 in Families at High Risk of Breast Cancer. JAMA 2006, 295, 1379–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.W.; O’Hara, A.J. The genomics and genetics of endometrial cancer. Adv. Genom. Genet. 2012, 2012, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharmin, S.; Zohura, F.T.; Islam, S.; Shimonty, A.; Khan, A.-A.; Parveen, R.; Sharmin, F.; Ahsan, C.R.; Islam, A.B.M.M.K.; Yasmin, M. Mutational profiles of marker genes of cervical carcinoma in Bangladeshi patients. BMC Cancer 2021, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tamandani, D.M.K.; Sobti, R.C.; Shekari, M.; Huria, A. CPG Island methylation of TMS1/ASC and CASP8 genes in cervical cancer. Eur. J. Med. Res. 2009, 14, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Zhou, S.; Wang, L.; Yu, M.; Mei, L. Downregulation of ERBB3 decreases the proliferation, migration and invasion of cervical cancer cells though the interaction with MTK 1. Oncol Lett. 2018, 16, 3453–3458. [Google Scholar] [CrossRef]
- Toss, A.; Tomasello, C.; Razzaboni, E.; Contu, G.; Grandi, G.; Cagnacci, A.; Schilder, R.J.; Cortesi, L. Hereditary Ovarian Cancer: Not OnlyBRCA1 and 2 Genes. BioMed Res. Int. 2015, 2015, 341723. [Google Scholar] [CrossRef] [Green Version]
- The AACR Project GENIE Consortium; André, F.; Arnedos, M.; Baras, A.S.; Baselga, J.; Bedard, P.L.; Berger, M.F.; Bierkens, M.; Calvo, F.; Cerami, E.; et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Capria, A.; Tahir, N.; Fatehi, M. Vulva Cancer. In Decision Making in Radiation Oncology; Springer: Berlin/Heidelberg, Germany, 2023; pp. 703–724. [Google Scholar] [CrossRef]
- Zięba, S.; Kowalik, A.; Zalewski, K.; Rusetska, N.; Goryca, K.; Piaścik, A.; Misiek, M.; Bakuła-Zalewska, E.; Kopczyński, J.; Kowalski, K.; et al. Somatic mutation profiling of vulvar cancer: Exploring therapeutic targets. Gynecol. Oncol. 2018, 150, 552–561. [Google Scholar] [CrossRef]
- Viswanath, D.I.; Liu, H.-C.; Huston, D.P.; Chua, C.Y.X.; Grattoni, A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022, 280, 121297. [Google Scholar] [CrossRef]
- Martin-Liberal, J.; de Olza, M.O.; Hierro, C.; Gros, A.; Rodon, J.; Tabernero, J. The expanding role of immunotherapy. Cancer Treat. Rev. 2017, 54, 74–86. [Google Scholar] [CrossRef]
- Shibata, H.; Zhou, L.; Xu, N.; Egloff, A.M.; Uppaluri, R. Personalized cancer vaccination in head and neck cancer. Cancer Sci. 2021, 112, 978–988. [Google Scholar] [CrossRef]
- Toussaint, B.; Chauchet, X.; Wang, Y.; Polack, B.; Le Gouëllec, A. Live-attenuated bacteria as a cancer vaccine vector. Expert Rev. Vaccines 2014, 12, 1139–1154. [Google Scholar] [CrossRef]
- Russell, S.J.; Barber, G.N. Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell 2018, 33, 599–605. [Google Scholar] [CrossRef] [Green Version]
- McNamara, M.A.; Nair, S.K.; Holl, E.K. RNA-Based Vaccines in Cancer Immunotherapy. J. Immunol. Res. 2015, 2015, 794528. [Google Scholar] [CrossRef] [Green Version]
- Obara, W.; Kanehira, M.; Katagiri, T.; Kato, R.; Kato, Y.; Takata, R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci. 2018, 109, 550–559. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021, 20, 1–23. [Google Scholar] [CrossRef]
- Nwonu, E.J. Approaches to cancer vaccination. In Vaccinology and Methods in Vaccine Research; ACM: New York, NY, USA, 2022; pp. 177–199. [Google Scholar] [CrossRef]
- Lee, C.-H.; Yelensky, R.; Jooss, K.; Chan, T.A. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends Immunol. 2018, 39, 536–548. [Google Scholar] [CrossRef]
- Abd-Aziz, N.; Poh, C.L. Development of Peptide-Based Vaccines for Cancer. J. Oncol. 2022, 2022, 9749363. [Google Scholar] [CrossRef]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; LaNauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef] [Green Version]
- Quakkelaar, E.D.; Fransen, M.F.; van Maren, W.W.C.; Vaneman, J.; Loof, N.M.; van Heiningen, S.H.; Verbeek, J.S.; Ossendorp, F.; Melief, C.J.M. IgG-Mediated Anaphylaxis to a Synthetic Long Peptide Vaccine Containing a B Cell Epitope Can Be Avoided by Slow-Release Formulation. J. Immunol. 2014, 192, 5813–5820. [Google Scholar] [CrossRef] [Green Version]
- Nordin, M.L.; Norpi, A.S.M.; Ng, P.Y.; Yusoff, K.; Abu, N.; Lim, K.P.; Azmi, F. HER2/neu-Based Peptide Vaccination-Pulsed with B-Cell Epitope Induced Efficient Prophylactic and Therapeutic Antitumor Activities in TUBO Breast Cancer Mice Model. Cancers 2021, 13, 4958. [Google Scholar] [CrossRef] [PubMed]
- Marintcheva, B. Viruses as Tools for Vaccine Development. In Harnessing the Power of Viruses; ACM: New York, NY, USA, 2018; pp. 217–242. [Google Scholar] [CrossRef]
- Yamada, A.; Sasada, T.; Noguchi, M.; Itoh, K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013, 104, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Vassilakopoulou, V.; Karachaliou, C.-E.; Evangelou, A.; Zikos, C.; Livaniou, E. Peptide-Based Vaccines for Neurodegenerative Diseases: Recent Endeavors and Future Perspectives. Vaccines 2021, 9, 1278. [Google Scholar] [CrossRef] [PubMed]
- Vukicevic, M.; Fiorini, E.; Siegert, S.; Carpintero, R.; Rincon-Restrepo, M.; Lopez-Deber, P.; Piot, N.; Ayer, M.; Rentero, I.; Babolin, C.; et al. An amyloid beta vaccine that safely drives immunity to a key pathological species in Alzheimer’s disease: Pyroglutamate amyloid beta. Brain Commun. 2022, 4, fcac022. [Google Scholar] [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ji, X.; Liu, Y.; Li, D.; Cun, Y.; Zhang, Y.; Wang, R.; Hao, Y.; Wang, S.; Chen, C.; et al. A D-peptide-based HIV gelatinous combination vaccine improves therapy in ART-delayed macaques of chronic infection. Nano Today 2022, 42, 101353. [Google Scholar] [CrossRef]
- Combadière, B.; Beaujean, M.; Chaudesaigues, C.; Vieillard, V. Peptide-Based Vaccination for Antibody Responses Against HIV. Vaccines 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Sumadi, F.A.; Jamil, A.S.; Auliyana, N.; H, M.N.; K, R.N. Developing an Epitope-Based Peptide Vaccine for the Hepatitis C Virus Using an in Silico Approach. KnE Med. 2022, 212–222. [Google Scholar] [CrossRef]
- Gong, W.; Pan, C.; Cheng, P.; Wang, J.; Zhao, G.; Wu, X. Peptide-Based Vaccines for Tuberculosis. Front. Immunol. 2022, 13, 104. [Google Scholar] [CrossRef]
- Forner, M.; Cañas-Arranz, R.; Defaus, S.; de León, P.; Rodríguez-Pulido, M.; Ganges, L.; Blanco, E.; Sobrino, F.; Andreu, D. Peptide-Based Vaccines: Foot-and-Mouth Disease Virus, a Paradigm in Animal Health. Vaccines 2021, 9, 477. [Google Scholar] [CrossRef]
- Liu, W.; Tang, H.; Li, L.; Wang, X.; Yu, Z.; Li, J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 2021, 54, e13025. [Google Scholar] [CrossRef]
- Speetjens, F.M.; Kuppen, P.J.; Welters, M.J.; Essahsah, F.; Brink, A.M.E.V.v.D.; Lantrua, M.G.K.; Valentijn, A.R.P.; Oostendorp, J.; Fathers, L.M.; Nijman, H.W.; et al. Induction of p53-Specific Immunity by a p53 Synthetic Long Peptide Vaccine in Patients Treated for Metastatic Colorectal Cancer. Clin. Cancer Res. 2009, 15, 1086–1095. [Google Scholar] [CrossRef] [Green Version]
- Van Poelgeest, M.I.; Welters, M.J.; van Esch, E.M.; Stynenbosch, L.F.; Kerpershoek, G.; van Persijn van Meerten, E.L.; van den Hende, M.; Löwik, M.J.; Berends-van der Meer, D.M.; Fathers, L.M.; et al. HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J. Transl. Med. 2013, 11, 88. [Google Scholar] [CrossRef] [Green Version]
- Rabu, C.; Rangan, L.; Florenceau, L.; Fortun, A.; Charpentier, M.; Dupré, E.; Paolini, L.; Beauvillain, C.; Dupel, E.; Latouche, J.-B.; et al. Cancer vaccines: Designing artificial synthetic long peptides to improve presentation of class I and class II T cell epitopes by dendritic cells. Oncoimmunology 2019, 8, e1560919-10. [Google Scholar] [CrossRef]
- Botelho, N.K.; Tschumi, B.O.; Hubbell, J.A.; Swartz, M.A.; Donda, A.; Romero, P. Combination of Synthetic Long Peptides and XCL1 Fusion Proteins Results in Superior Tumor Control. Front. Immunol. 2019, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, S.; Dolan, M.; Shi, Y.; Wang, J.; Quinn, B.; Jahagirdar, D.; Huang, W.-C.; Tsuji, M.; Pili, R.; et al. Immunization with short peptide particles reveals a functional CD8+ T-cell neoepitope in a murine renal carcinoma model. J. Immunother. Cancer 2021, 9, e003101. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, J.; Zhu, R.; Shi, W.; Xia, X.; Edwards, M.; Finch, W.; Coombs, A.; Gao, J.; Chen, K.; et al. Protective cellular immunity generated by cross-presenting recombinant overlapping peptide proteins. Oncotarget 2017, 8, 76516–76524. [Google Scholar] [CrossRef] [Green Version]
- Mahdevar, E.; Safavi, A.; Abiri, A.; Kefayat, A.; Hejazi, S.H.; Miresmaeili, S.M.; Mobarakeh, V.I. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J. Biomol. Struct. Dyn. 2021, 40, 6363–6380. [Google Scholar] [CrossRef]
- Mahdevar, E.; Kefayat, A.; Safavi, A.; Behnia, A.; Hejazi, S.H.; Javid, A.; Ghahremani, F. Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987, 235, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Burstein, H.J. The Distinctive Nature of HER2-Positive Breast Cancers. N. Engl. J. Med. 2005, 353, 1652–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.G.; Modi, S. HER2 breast cancer therapies: A review. Biologics 2009, 3, 289. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Hausdorf, D.E.; Schalper, K.A.; Bai, Y.; Black, J.; Santin, A.D.; Rimm, D.L. Objective, domain-specific HER2 measurement in uterine and ovarian serous carcinomas and its clinical significance. Gynecol. Oncol. 2017, 145, 154–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Buza, N.; English, D.P.; Santin, A.D.; Hui, P. Toward standard HER2 testing of endometrial serous carcinoma: 4-year experience at a large academic center and recommendations for clinical practice. Mod. Pathol. 2013, 26, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Krishnamurti, U.; Silverman, J.F. HER2 in Breast Cancer: A review and update. Adv. Anat. Pathol. 2014, 21, 100–107. [Google Scholar] [CrossRef]
- Ben-Baruch, N.E.; Bose, R.; Kavuri, S.M.; Ma, C.X.; Ellis, M.J. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor. J. Natl. Compr. Cancer Netw. 2015, 13, 1061–1064. [Google Scholar] [CrossRef] [Green Version]
- King, M.-C.; Marks, J.H.; Mandell, J.B. Breast and Ovarian Cancer Risks Due to Inherited Mutations in BRCA1 and BRCA2. Science 2003, 302, 643–646. [Google Scholar] [CrossRef]
- Nielsen, F.C.; van Overeem Hansen, T.; Sørensen, C.S. Hereditary breast and ovarian cancer: New genes in confined pathways. Nat. Rev. Cancer 2016, 16, 599–612. [Google Scholar] [CrossRef]
- Kuusisto, K.M.; Bebel, A.; Vihinen, M.; Schleutker, J.; Sallinen, S.L. Screening for BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD50, and CDH1 mutations in high-risk Finnish BRCA1/2-founder mutation-negative breast and/or ovarian cancer individuals. Breast Cancer Res. 2011, 13, 1–13. [Google Scholar] [CrossRef]
- Mills, G. The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis, and therapy. Semin. Oncol. 2001, 28, 125–141. [Google Scholar] [CrossRef]
- Matsukita, S.; Nomoto, M.; Kitajima, S.; Tanaka, S.; Goto, M.; Irimura, T.; Kim, Y.S.; Sato, E.; Yonezawa, S. Expression of mucins (MUC1, MUC2, MUC5AC and MUC6) in mucinous carcinoma of the breast: Comparison with invasive ductal carcinoma. Histopathology 2003, 42, 26–36. [Google Scholar] [CrossRef]
- Kwon, S.; Kang, S.H.; Ro, J.; Jeon, C.-H.; Park, J.-W.; Lee, E.S. The melanoma antigen gene as a surveillance marker for the detection of circulating tumor cells in patients with breast carcinoma. Cancer 2005, 104, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Ayyoub, M.; Scarlata, C.-M.; Hamaï, A.; Pignon, P.; Valmori, D. Expression of MAGE-A3/6 in Primary Breast Cancer is Associated With Hormone Receptor Negative Status, High Histologic Grade, and Poor Survival. J. Immunother. 2014, 37, 73–76. [Google Scholar] [CrossRef]
- Tobias, J.; Garner-Spitzer, E.; Drinić, M.; Wiedermann, U. Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open 2022, 7, 100361. [Google Scholar] [CrossRef]
- Disis, M.L.; Goodell, V.; Schiffman, K.; Knutson, K.L. Humoral Epitope-Spreading Following Immunization with a HER-2/neu Peptide Based Vaccine in Cancer Patients. J Clin Immunol. 2004, 24, 571–578. [Google Scholar] [CrossRef] [Green Version]
- Peoples, G.E.; Gurney, J.M.; Hueman, M.T.; Woll, M.M.; Ryan, G.B.; Storrer, C.E.; Fisher, C.; Shriver, C.D.; Ioannides, C.G.; Ponniah, S. Clinical Trial Results of a HER2/neu (E75) Vaccine to Prevent Recurrence in High-Risk Breast Cancer Patients. J. Clin. Oncol. 2005, 23, 7536–7545. [Google Scholar] [CrossRef]
- Carmichael, M.G.; Benavides, L.C.; Holmes, J.P.; Gates, J.D.; Mittendorf, E.A.; Ponniah, S.; Peoples, G.E. Results of the first phase 1 clinical trial of the HER-2/neupeptide (GP2) vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04. Cancer 2010, 116, 292–301. [Google Scholar] [CrossRef]
- Takahashi, R.; Toh, U.; Iwakuma, N.; Takenaka, M.; Otsuka, H.; Furukawa, M.; Fujii, T.; Seki, N.; Kawahara, A.; Kage, M.; et al. Feasibility study of personalized peptide vaccination for metastatic recurrent triple-negative breast cancer patients. Breast Cancer Res. 2014, 16, R70. [Google Scholar] [CrossRef]
- Antonilli, M.; Rahimi, H.; Visconti, V.; Napoletano, C.; Ruscito, I.; Zizzari, I.G.; Caponnetto, S.; Barchiesi, G.; Iadarola, R.; Pierelli, L.; et al. Triple peptide vaccination as consolidation treatment in women affected by ovarian and breast cancer: Clinical and immunological data of a phase I/II clinical trial. Int. J. Oncol. 2016, 48, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, P.M.; Petroni, G.R.; Smolkin, M.E.; Brenin, D.R.; Chianese-Bullock, K.A.; Smith, K.T.; Olson, W.C.; Fanous, I.S.; Nail, C.J.; Brenin, C.M.; et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J. Immunother. Cancer 2017, 5, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.A.; Mittendorf, E.A.; Hale, D.F.; Myers, J.W.; Peace, K.M.; Jackson, D.O.; Greene, J.M.; Vreeland, T.J.; Clifton, G.T.; Ardavanis, A.; et al. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res. Treat. 2020, 181, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toh, U.; Sakurai, S.; Saku, S.; Takao, Y.; Okabe, M.; Iwakuma, N.; Shichijo, S.; Yamada, A.; Itoh, K.; Akagi, Y. Early phase II study of mixed 19-peptide vaccine monotherapy for refractory triple-negative breast cancer. Cancer Sci. 2020, 111, 2760–2769. [Google Scholar] [CrossRef] [PubMed]
- Barati, N.; Nikpoor, A.R.; Mosaffa, F.; Razazan, A.; Badiee, A.; Motavallihaghi, S.S.; Behravan, J.; Jaafari, M.R. AE36 HER2/neu-derived peptide linked to positively charged liposomes with CpG-ODN as an effective therapeutic and prophylactic vaccine for breast cancer. J. Drug Deliv. Sci. Technol. 2021, 67, 102904. [Google Scholar] [CrossRef]
- Chamani, R.; Ranji, P.; Hadji, M.; Nahvijou, A.; Esmati, E.; Alizadeh, A.M. Application of E75 peptide vaccine in breast cancer patients: A systematic review and meta-analysis. Eur. J. Pharmacol. 2018, 831, 87–93. [Google Scholar] [CrossRef]
- You, Z.; Zhou, W.; Weng, J.; Feng, H.; Liang, P.; Li, Y.; Shi, F. Application of HER2 peptide vaccines in patients with breast cancer: A systematic review and meta-analysis. Cancer Cell Int. 2021, 21, 1–12. [Google Scholar] [CrossRef]
- Erickson, B.K.; Zeybek, B.; Santin, A.D.; Fader, A.N. Targeting human epidermal growth factor receptor 2 (HER2) in gynecologic malignancies. Curr. Opin. Obstet. Gynecol. 2020, 32, 57–64. [Google Scholar] [CrossRef]
- Generation of Immunity to the HER-2/neu Oncogenic Protein in Patients with Breast and Ovarian Cancer Using a Peptide-Based Vaccine-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10389911/ (accessed on 7 April 2023).
- Brossart, P.; Wirths, S.; Stuhler, G.; Reichardt, V.L.; Kanz, L.; Brugger, W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000, 96, 3102–3108. [Google Scholar] [CrossRef]
- Albert, M.L.; Sauter, B.; Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998, 392, 86–89. [Google Scholar] [CrossRef]
- Immunization of Cancer Patients with a HER-2/neu, HLA-A2 Peptide, p369-377, Results in Short-Lived Peptide-Specific Immunity-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12006513/ (accessed on 7 April 2023).
- Chianese-Bullock, K.A.; Irvin, W.P.J.; Petroni, G.R.; Murphy, C.; Smolkin, M.; Olson, W.C.; Coleman, E.; Boerner, S.A.; Nail, C.J.; Neese, P.Y.; et al. A Multipeptide Vaccine is Safe and Elicits T-cell Responses in Participants With Advanced Stage Ovarian Cancer. J. Immunother. 2008, 31, 420–430. [Google Scholar] [CrossRef]
- Fulk, K.; Milam, M.R.; Li, S.; Yussuf, A.; Black, M.H.; Chao, E.C.; LaDuca, H.; Stany, M.P. Women with breast and uterine cancer are more likely to harbor germline mutations than women with breast or uterine cancer alone: A case for expanded gene testing. Gynecol. Oncol. 2019, 152, 612–617. [Google Scholar] [CrossRef]
- Mackenzie, R.; Kommoss, S.; Winterhoff, B.J.; Kipp, B.R.; Garcia, J.J.; Voss, J.; Halling, K.; Karnezis, A.; Senz, J.; Yang, W.; et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, P.; Madsen, C.S.; Ginardi, A.R.; Tinder, T.L.; Jacobs, F.; Parker, J.; Agrawal, B.; Longenecker, B.M.; Gendler, S.J. Mucin 1-Specific Immunotherapy in a Mouse Model of Spontaneous Breast Cancer. J. Immunother. 2003, 26, 47–62. Available online: https://journals.lww.com/immunotherapy-journal/fulltext/2003/01000/mucin_1_specific_immunotherapy_in_a_mouse_model_of.6.aspx (accessed on 7 April 2023). [CrossRef]
- Leffers, N.; Lambeck, A.J.; Gooden, M.J.; Hoogeboom, B.; Wolf, R.; Hamming, I.E.; Hepkema, B.G.; Willemse, P.H.; Molmans, B.H.; Hollema, H.; et al. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int. J. Cancer 2009, 125, 2104–2113. [Google Scholar] [CrossRef]
- Vermeij, R.; Leffers, N.; Hoogeboom, B.-N.; Hamming, I.L.; Wolf, R.; Reyners, A.K.; Molmans, B.H.; Hollema, H.; Bart, J.; Drijfhout, J.W.; et al. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer: A single-arm phase II study. Int. J. Cancer 2012, 131, E670–E680. [Google Scholar] [CrossRef]
- Sabbatini, P.; Tsuji, T.; Ferran, L.; Ritter, E.; Sedrak, C.; Tuballes, K.; Jungbluth, A.A.; Ritter, G.; Aghajanian, C.; Bell-McGuinn, K.; et al. Phase I Trial of Overlapping Long Peptides from a Tumor Self-Antigen and Poly-ICLC Shows Rapid Induction of Integrated Immune Response in Ovarian Cancer Patients. Clin. Cancer Res. 2012, 18, 6497–6508. [Google Scholar] [CrossRef] [Green Version]
- Leffers, N.; Vermeij, R.; Hoogeboom, B.-N.; Schulze, U.R.; Wolf, R.; Hamming, I.E.; van der Zee, A.G.; Melief, K.J.; van der Burg, S.H.; Daemen, T.; et al. Long-term clinical and immunological effects of p53-SLP® vaccine in patients with ovarian cancer. Int. J. Cancer 2012, 130, 105–112. [Google Scholar] [CrossRef]
- Rahma, O.E.; Ashtar, E.; Czystowska, M.; Szajnik, M.E.; Wieckowski, E.; Bernstein, S.; Herrin, V.E.; Shams, M.A.; Steinberg, S.M.; Merino, M.; et al. A gynecologic oncology group phase II trial of two p53 peptide vaccine approaches: Subcutaneous injection and intravenous pulsed dendritic cells in high recurrence risk ovarian cancer patients. Cancer Immunol. Immunother. 2012, 61, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, T.; Ueda, Y.; Morimoto, A.; Enomoto, T.; Nishida, S.; Shirakata, T.; Oka, Y.; Tsuboi, A.; Oji, Y.; Hosen, N.; et al. WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: A phase II trial. J. Cancer Res. Clin. Oncol. 2013, 139, 457–463. [Google Scholar] [CrossRef]
- Fujita, T.; Yoshida, A.; Nishimura, H.; Koshikawa, K.; Nagura, N.; Yoshida, K.; Miyoshi, Y.; Yamauchi, H.; Nakamura, S.; Nakamura, Y.; et al. Phase I clinical trial of multi-antigen peptide vaccines therapy using cancer-testis antigens for patients with advanced or recurrent breast cancer. J. Clin. Oncol. 2012, 30 (Suppl. 15), e13037. [Google Scholar] [CrossRef]
- Kawano, K.; Tsuda, N.; Matsueda, S.; Sasada, T.; Watanabe, N.; Ushijima, K.; Yamaguchi, T.; Yokomine, M.; Itoh, K.; Yamada, A.; et al. Feasibility study of personalized peptide vaccination for recurrent ovarian cancer patients. Immunopharmacol. Immunotoxicol. 2014, 36, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Chiba, A.; Izawa, H.; Yanagida, E.; Okamoto, M.; Shimodaira, S.; Yonemitsu, Y.; Shibamoto, Y.; Suzuki, N.; Nagaya, M.; et al. The feasibility and clinical effects of dendritic cell-based immunotherapy targeting synthesized peptides for recurrent ovarian cancer. J. Ovarian Res. 2014, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murahashi, M.; Hijikata, Y.; Yamada, K.; Tanaka, Y.; Kishimoto, J.; Inoue, H.; Marumoto, T.; Takahashi, A.; Okazaki, T.; Takeda, K.; et al. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin. Immunol. 2016, 166–167, 48–58. [Google Scholar] [CrossRef]
- Kalli, K.R.; Block, M.S.; Kasi, P.M.; Erskine, C.L.; Hobday, T.J.; Dietz, A.; Padley, D.; Gustafson, M.P.; Shreeder, B.; Puglisi-Knutson, D.; et al. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin. Cancer Res. 2018, 24, 3014–3025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Yin, Z.; McKay, C.; Pett, C.; Yu, J.; Schorlemer, M.; Gohl, T.; Sungsuwan, S.; Ramadan, S.; Baniel, C.; et al. Protective Epitope Discovery and Design of MUC1-based Vaccine for Effective Tumor Protections in Immunotolerant Mice. J. Am. Chem. Soc. 2018, 140, 16596–16609. [Google Scholar] [CrossRef]
- Hijikata, Y.; Okazaki, T.; Tanaka, Y.; Murahashi, M.; Yamada, Y.; Yamada, K.; Takahashi, A.; Inoue, H.; Kishimoto, J.; Nakanishi, Y.; et al. A phase I clinical trial of RNF43 peptide-related immune cell therapy combined with low-dose cyclophosphamide in patients with advanced solid tumors. PLoS ONE 2018, 13, e0187878. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Ikeda, Y.; Kunugi, Y.; Kurosaki, A.; Imai, Y.; Kohyama, S.; Nagao, S.; Kozawa, E.; Yoshida, K.; Tsunoda, T.; et al. Phase I Study of Multiple Epitope Peptide Vaccination in Patients With Recurrent or Persistent Cervical Cancer. J. Immunother. 2018, 41, 201–207. [Google Scholar] [CrossRef]
- Sarivalasis, A.; Boudousquié, C.; Balint, K.; Stevenson, B.J.; Gannon, P.O.; Iancu, E.M.; Rossier, L.; Lluesma, S.M.; Mathevet, P.; Sempoux, C.; et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J. Transl. Med. 2019, 17, 1–10. [Google Scholar] [CrossRef]
- Brown, T.A.; Byrd, K.; Vreeland, T.J.; Clifton, G.T.; Jackson, D.O.; Hale, D.F.; Herbert, G.S.; Myers, J.W.; Greene, J.M.; Berry, J.S.; et al. Final analysis of a phase I/IIa trial of the folate-binding protein-derived E39 peptide vaccine to prevent recurrence in ovarian and endometrial cancer patients. Cancer Med. 2019, 8, 4678–4687. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, L.; Gao, N.; Diao, Y.; Zhong, J.; Deng, Y.; Wang, Z.; Jin, G.; Wang, X. Synthetic MUC1 breast cancer vaccine containing a Toll-like receptor 7 agonist exerts antitumor effects. Oncol. Lett. 2020, 20, 2369–2377. [Google Scholar] [CrossRef]
- Morisaki, T.; Hikichi, T.; Onishi, H.; Morisaki, T.; Kubo, M.; Hirano, T.; Yoshimura, S.; Kiyotani, K.; Nakamura, Y. Intranodal Administration of Neoantigen Peptide-loaded Dendritic Cell Vaccine Elicits Epitope-specific T Cell Responses and Clinical Effects in a Patient with Chemorefractory Ovarian Cancer with Malignant Ascites. Immunol. Investig. 2020, 50, 562–579. [Google Scholar] [CrossRef]
- Kang, J.; Lee, H.-J.; Lee, J.; Hong, J.; Kim, Y.H.; Disis, M.L.; Gim, J.-A.; Park, K.H. Novel peptide-based vaccine targeting heat shock protein 90 induces effective antitumor immunity in a HER2+ breast cancer murine model. J. Immunother. Cancer 2022, 10, e004702. [Google Scholar] [CrossRef]
- Dzobo, K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS A J. Integr. Biol. 2021, 25, 358–371. [Google Scholar] [CrossRef]
- Hausen, H.Z. Viruses in Human Cancers. Science 1991, 254, 1167–1173. [Google Scholar] [CrossRef]
- Lawson, J.S.; Heng, B. Viruses and Breast Cancer. Cancers 2010, 2, 752–772. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.D.; Harari, A.; Chen, Z. Human papillomavirus genome variants. Virology 2013, 445, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Garbuglia, A.R.; Lapa, D.; Sias, C.; Capobianchi, M.R.; Del Porto, P. The Use of Both Therapeutic and Prophylactic Vaccines in the Therapy of Papillomavirus Disease. Front. Immunol. 2020, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Lazzeroni, M.; Serrano, D. Potential Use of Vaccines in the Primary Prevention of Breast Cancer in High-Risk Patients. Breast Care 2012, 7, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Kundu, R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front. Microbiol. 2020, 10, 3116. [Google Scholar] [CrossRef] [Green Version]
- Enokida, T.; Moreira, A.; Bhardwaj, N. Vaccines for immunoprevention of cancer. J. Clin. Investig. 2021, 131, 6956. [Google Scholar] [CrossRef] [PubMed]
- Kirnbauer, R.; Booy, F.; Cheng, N.; Lowy, D.R.; Schiller, J.T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 1992, 89, 12180–12184. [Google Scholar] [CrossRef] [PubMed]
- Chabeda, A.; Yanez, R.J.R.; Lamprecht, R.; Meyers, A.E.; Rybicki, E.P.; Hitzeroth, I.I. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 2018, 5, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, Y.; Du, J. Human Papillomavirus Vaccines: An Updated Review. Vaccines 2020, 8, 391. [Google Scholar] [CrossRef]
- Hanna, E.; Bachmann, G. HPV vaccination with Gardasil®: A breakthrough in women’s health. Expert Opin. Biol. Ther. 2006, 6, 1223–1227. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Kitchener, H.C. Cervarix™—A bivalent L1 virus-like particle vaccine for prevention of human papillomavirus type 16- and 18-associated cervical cancer. Expert Opin. Biol. Ther. 2007, 7, 391–396. [Google Scholar] [CrossRef]
- Stanley, M.; Joura, E.; Yen, G.P.; Kothari, S.; Luxembourg, A.; Saah, A.; Walia, A.; Perez, G.; Khoury, H.; Badgley, D.; et al. Systematic literature review of neutralizing antibody immune responses to non-vaccine targeted high-risk HPV types induced by the bivalent and the quadrivalent vaccines. Vaccine 2021, 39, 2214–2223. [Google Scholar] [CrossRef]
- Zur Hausen, H. Papillomaviruses and cancer: From basic studies to clinical application. Nat. Rev. Cancer 2002, 2, 342–350. [Google Scholar] [CrossRef]
- Luckett, R.; Feldman, S. Impact of 2-, 4- and 9-valent HPV vaccines on morbidity and mortality from cervical cancer. Hum. Vaccines Immunother. 2015, 12, 1332–1342. [Google Scholar] [CrossRef] [Green Version]
- Highlights of Prescribing Information. Available online: www.vaers.hhs.gov (accessed on 7 April 2023).
- Monie, A.; Hung, C.F.; Roden, R.; Wu, T.-C. Cervarix™: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2008, 2, 107. [Google Scholar] [CrossRef]
- Asif, M.; Siddiqui, A.; Perry, C.M. ADIS DRUG PROFILE Human Papillomavirus Quadrivalent (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil ®). Drugs 2006, 66, 1263–1271; discussion 1272–1273. [Google Scholar]
- Roden, R.B.S.; Stern, P.L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer 2018, 18, 240–254. [Google Scholar] [CrossRef]
- Illah, O.; Olaitan, A. Updates on HPV Vaccination. Diagnostics 2023, 13, 243. [Google Scholar] [CrossRef]
- Glaxosmithkline. Cervarix, Suspension for Intramuscular Injection. Available online: www.vaers.hhs.gov (accessed on 7 April 2023).
- Fda, C. Package Insert-Gardasil 9. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil-9 (accessed on 7 April 2023).
- Markowitz, L.E.; Schiller, J.T. Human Papillomavirus Vaccines. J. Infect. Dis. 2021, 224 (Suppl. 5), S367–S378. [Google Scholar] [CrossRef]
- Akhatova, A.; Azizan, A.; Atageldiyeva, K.; Ashimkhanova, A.; Marat, A.; Iztleuov, Y.; Suleimenova, A.; Shamkeeva, S.; Aimagambetova, G. Prophylactic Human Papillomavirus Vaccination: From the Origin to the Current State. Vaccines 2022, 10, 1912. [Google Scholar] [CrossRef]
- Zou, Z.; Fairley, C.K.; Ong, J.J.; Hocking, J.; Canfell, K.; Ma, X.; Chow, E.P.F.; Xu, X.; Zhang, L.; Zhuang, G. Domestic HPV vaccine price and economic returns for cervical cancer prevention in China: A cost-effectiveness analysis. Lancet Glob. Health 2020, 8, e1335–e1344. [Google Scholar] [CrossRef]
- Cecolin®|WHO-Prequalification of Medical Products (IVDs, Medicines, Vaccines and Immunization Devices, Vector Control). Available online: https://extranet.who.int/pqweb/content/cecolin%C2%AE (accessed on 26 March 2023).
- Inc, E. EG-HPV: Human Papillomavirus Vaccine Based on Virus-Like Particle (VLP) Technology (HPV 16 & 18 L1 VLP) and a Novel Proprietary Immune Adjuvant EGvac (Adjuvant System CIA05+Alum) that Enhances the Immune Response against HPV through Both B Cell (Humoral) and T Cell (Cellular) Immune Stimulation. Available online: http://www.vaers.hhs.gov/ (accessed on 7 April 2023).
- Kim, K.S.; Park, S.A.; Ko, K.-N.; Yi, S.; Cho, Y.J. Current status of human papillomavirus vaccines. Clin. Exp. Vaccine Res. 2014, 13, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Negahdaripour, M.; Eslami, M.; Nezafat, N.; Hajighahramani, N.; Ghoshoon, M.B.; Shoolian, E.; Dehshahri, A.; Erfani, N.; Morowvat, M.H.; Ghasemi, Y. A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infect. Genet. Evol. 2017, 54, 402–416. [Google Scholar] [CrossRef]
- Negahdaripour, M.; Nezafat, N.; Heidari, R.; Erfani, N.; Hajighahramani, N.; Ghoshoon, M.B.; Shoolian, E.; Rahbar, M.R.; Najafipour, S.; Dehshahri, A.; et al. Production and Preliminary In Vivo Evaluations of a Novel in silico-designed L2-based Potential HPV Vaccine. Curr. Pharm. Biotechnol. 2020, 21, 316–324. [Google Scholar] [CrossRef]
- Hollingsworth, R.E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Ma, J.; Zhang, H.; Shen, J.; Chen, J.; Hong, J.; Xu, Y.; Qian, C. Prophylactic and Therapeutic HPV Vaccines: Current Scenario and Perspectives. Front. Cell. Infect. Microbiol. 2022, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Welters, M.J.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.; Lowik, M.J.; der Meer, D.M.B.-V.; Drijfhout, J.W.; Valentijn, A.R.P.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine. Clin. Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenter, G.G.; Welters, M.J.P.; Valentijn, A.R.P.M.; Lowik, M.J.G.; Berends-van der Meer, D.M.A.; Vloon, A.P.G.; Essahsah, F.; Fathers, L.M.; Offringa, R.; Drijfhout, J.W.; et al. Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia. N. Engl. J. Med. 2009, 361, 1838–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, F.; Xu, Y.; Mao, L.; Ou, R.; Ding, Z.; Zhang, X.; Tang, J.; Li, B.; Jia, Z.; Tian, Z.; et al. Heat shock protein 110 improves the anti-tumor effects of the cytotoxic T lymphocyte epitope E7 in mice. Cancer Biol. Ther. 2010, 9, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melief, C.J. Synthetic Vaccine for the Treatment of Lesions Caused by High Risk Human Papilloma Virus. Cancer J. 2011, 17, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Melief, C.J.M. Treatment of Established Lesions Caused by High-risk Human Papilloma Virus Using a Synthetic Vaccine. J. Immunother. 2012, 35, 215–216. [Google Scholar] [CrossRef]
- Yang, Y.; Che, Y.; Zhao, Y.; Wang, X. Prevention and treatment of cervical cancer by a single administration of human papillomavirus peptide vaccine with CpG oligodeoxynucleotides as an adjuvant in vivo. Int. Immunopharmacol. 2019, 69, 279–288. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Yang, Y.; Jia, W.; Su, T.; Che, Y.; Feng, Y.; Yuan, X.; Wang, X. Mannose-Modified Liposome Co-Delivery of Human Papillomavirus Type 16 E7 Peptide and CpG Oligodeoxynucleotide Adjuvant Enhances Antitumor Activity Against Established Large TC-1 Grafted Tumors in Mice. Int. J. Nanomed. 2020, 15, 9571–9586. [Google Scholar] [CrossRef]
- Berzofsky, J.; de Vos van Steenwijk, P.J.; Ramwadhdoebe, T.H.; Löwik, M.J.G.; van der Minne, C.E.; Berends-van der Meer, D.M.A.; Fathers, L.M.; Valentijn, R.P.M.; Oostendorp, J.; Fleuren, G.J.; et al. Faculty Opinions recommendation of A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol. Immunother. 2012, 61, 1485–1492. [Google Scholar] [CrossRef] [Green Version]
- Welters, M.J.; van der Sluis, T.C.; van Meir, H.; Loof, N.M.; van Ham, V.J.; van Duikeren, S.; Santegoets, S.J.; Arens, R.; de Kam, M.L.; Cohen, A.F.; et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci. Transl. Med. 2016, 8, 334ra52. [Google Scholar] [CrossRef]
- Domingos-Pereira, S.; Galliverti, G.; Hanahan, D.; Nardelli-Haefliger, D. Carboplatin/paclitaxel, E7-vaccination and intravaginal CpG as tri-therapy towards efficient regression of genital HPV16 tumors. J. Immunother. Cancer 2019, 7, 122. [Google Scholar] [CrossRef] [Green Version]
- Melief, C.J.M.; Welters, M.J.P.; Vergote, I.; Kroep, J.R.; Kenter, G.G.; Ottevanger, P.B.; Tjalma, W.A.A.; Denys, H.; van Poelgeest, M.I.E.; Nijman, H.W.; et al. Strong vaccine responses during chemotherapy are associated with prolonged cancer survival. Sci. Transl. Med. 2020, 12, aaz8235. [Google Scholar] [CrossRef]
- Study of the Therapeutic Vaccine (ISA101/ISA101b) to Treat Advanced or Recurrent Cervical Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02128126 (accessed on 7 April 2023).
- Coleman, H.N.; Greenfield, W.W.; Stratton, S.L.; Vaughn, R.; Kieber, A.; Moerman-Herzog, A.M.; Spencer, H.J.; Hitt, W.C.; Quick, C.M.; Hutchins, L.F.; et al. Human papillomavirus type 16 viral load is decreased following a therapeutic vaccination. Cancer Immunol. Immunother. 2016, 65, 563–573. [Google Scholar] [CrossRef] [Green Version]
- A Clinical Trial of PepCan to Two Therapy Arms for Treating Cervical High-Grade Squamous Intraepithelial Lesions-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT02481414 (accessed on 7 April 2023).
- Arribillaga, L.; Echeverria, I.; Belsue, V.; Gomez, T.; Lozano, T.; Casares, N.; Villanueva, L.; Domingos-Pereira, S.; Romero, P.J.; Nardelli-Haefliger, D.; et al. Bivalent therapeutic vaccine against HPV16/18 genotypes consisting of a fusion protein between the extra domain A from human fibronectin and HPV16/18 E7 viral antigens. J. Immunother. Cancer 2020, 8, e000704. [Google Scholar] [CrossRef]
- Speetjens, F.M.; Welters, M.J.P.; Slingerland, M.; van Poelgeest, M.I.; van Steenwijk, P.J.d.V.; Roozen, I.; Boekestijn, S.; Loof, N.M.; Zom, G.G.; Valentijn, A.R.P.M.; et al. Intradermal vaccination of HPV-16 E6 synthetic peptides conjugated to an optimized Toll-like receptor 2 ligand shows safety and potent T cell immunogenicity in patients with HPV-16 positive (pre-)malignant lesions. J. Immunother. Cancer 2022, 10, e005016. [Google Scholar] [CrossRef]
- Liao, S.-J.; Deng, D.-R.; Zeng, D.; Zhang, L.; Hu, X.-J.; Zhang, W.-N.; Li, L.; Jiang, X.-F.; Wang, C.-Y.; Zhou, J.-F.; et al. HPV16 E5 peptide vaccine in treatment of cervical cancer in vitro and in vivo. J. Huazhong Univ. Sci. Technol. 2013, 33, 735–742. [Google Scholar] [CrossRef]
- Namvar, A.; Panahi, H.A.; Agi, E.; Bolhassani, A. Development of HPV16,18,31,45 E5 and E7 peptides-based vaccines predicted by immunoinformatics tools. Biotechnol. Lett. 2020, 42, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Qingfeng, L.; Jing, Z.; Maolin, Z.; Zhihui, Z.; Shanli, Z.; Jun, C.; Pengfei, J.; Lifang, Z. A novel multi-epitope vaccine of HPV16 E5E6E7 oncoprotein delivered by HBc VLPs induced efficient prophylactic and therapeutic antitumor immunity in tumor mice model. Vaccine 2022, 40, 7693–7702. [Google Scholar] [CrossRef]
- Maynard, S.K.; Marshall, J.D.; MacGill, R.S.; Yu, L.; Cann, J.A.; Cheng, L.I.; McCarthy, M.P.; Cayatte, C.; Robbins, S.H. Vaccination with synthetic long peptide formulated with CpG in an oil-in-water emulsion induces robust E7-specific CD8 T cell responses and TC-1 tumor eradication. BMC Cancer 2019, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Yin, R.; Tian, Y.; Huang, Z.; Shi, J.; Fu, X.; Wang, L.; Wu, Y.; Hao, F.; Ni, B. A novel self-assembled nanoparticle vaccine with HIV-1 Tat49-57/HPV16 E749-57 fusion peptide and GM-CSF DNA elicits potent and prolonged CD8+ T cell-dependent anti-tumor immunity in mice. Vaccine 2012, 30, 1071–1082. [Google Scholar] [CrossRef]
- Rahimian, S.; Fransen, M.F.; Kleinovink, J.W.; Christensen, J.R.; Amidi, M.; Hennink, W.E.; Ossendorp, F. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J. Control. Release 2015, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, W.; Yuan, M.; Li, W.; Hua, L.; Yang, Z.; Gao, F.; Li, S.; Ye, C.; Chen, Y.; et al. Employing ATP as a New Adjuvant Promotes the Induction of Robust Antitumor Cellular Immunity by a PLGA Nanoparticle Vaccine. ACS Appl. Mater. Interfaces 2020, 12, 54399–54414. [Google Scholar] [CrossRef] [PubMed]
- A Vaccine (PDS0101) and Chemoradiation for the Treatment of Stage IB3-IVA Cervical Cancer, the IMMUNOCERV Trial-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04580771 (accessed on 10 June 2023).
- Dudley, J.P.; Golovkina, T.V.; Ross, S.R. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J. 2016, 57, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, J.S.; Glenn, W.K. Mouse Mammary Tumour Virus (MMTV) in Human Breast Cancer—The Value of Bradford Hill Criteria. Viruses 2022, 14, 721. [Google Scholar] [CrossRef]
- Stewart, T.H.M.; Sage, R.D.; Stewart, A.F.R.; Cameron, D.W. Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus. Br. J. Cancer 2000, 82, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.F.R.; Chen, H.-H. Revisiting the MMTV Zoonotic Hypothesis to Account for Geographic Variation in Breast Cancer Incidence. Viruses 2022, 14, 559. [Google Scholar] [CrossRef]
- Stanton, S.E.; Gad, E.; Corulli, L.R.; Lu, H.; Disis, M.L. Tumor-associated antigens identified early in mouse mammary tumor development can be effective vaccine targets. Vaccine 2019, 37, 3552–3561. [Google Scholar] [CrossRef]
- Braitbard, O.; Roniger, M.; Bar-Sinai, A.; Rajchman, D.; Gross, T.; Abramovitch, H.; La Ferla, M.; Franceschi, S.; Lessi, F.; Naccarato, A.G.; et al. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers. Oncotarget 2016, 7, 21168–21180. [Google Scholar] [CrossRef] [Green Version]
- Abstract #367: Use of MMTV-p14 as a vaccine against MMTV-Bearing Tumors|Cancer Research|American Association for Cancer Research. Available online: https://aacrjournals.org/cancerres/article/69/9_Supplement/367/556331/Abstract-367-Use-of-MMTV-p14-as-a-vaccine-against (accessed on 7 April 2023).
- Melana, S.M.; Nepomnaschy, I.; Hasa, J.; Djougarian, A.; Djougarian, A.; Holland, J.F.; Pogo, B.G. Detection of human mammary tumor virus proteins in human breast cancer cells. J. Virol. Methods 2010, 163, 157–161. [Google Scholar] [CrossRef]
- Dion, A.S.; Knittel, J.J.; Morneweck, S.T. Virus envelope-based peptide vaccines against virus-induced mammary tumors. Virology 1990, 179, 474–477. [Google Scholar] [CrossRef]
- Arias-Calvachi, C.; Blanco, R.; Calaf, G.M.; Aguayo, F. Epstein–Barr Virus Association with Breast Cancer: Evidence and Perspectives. Biology 2022, 11, 799. [Google Scholar] [CrossRef]
- Bonnet, M.; Guinebretiere, J.-M.; Kremmer, E.; Grunewald, V.; Benhamou, E.; Contesso, G.; Joab, I. Detection of Epstein-Barr Virus in Invasive Breast Cancers. Gynecol. Oncol. 1999, 91, 1376–1381. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-H.; Tsai, C.-H.; Chu, J.-S.; Chen, J.-Y.; Takada, K.; Shew, J.-Y. Dysregulation of HER2/HER3 Signaling Axis in Epstein-Barr Virus-Infected Breast Carcinoma Cells. J. Virol. 2007, 81, 5705–5713. [Google Scholar] [CrossRef] [Green Version]
- Huo, Q.; Zhang, N.; Yang, Q. Epstein-Barr Virus Infection and Sporadic Breast Cancer Risk: A Meta-Analysis. PLoS ONE 2012, 7, e31656. [Google Scholar] [CrossRef] [Green Version]
- He, J.-R.; Tang, L.-Y.; Yu, D.-D.; Su, F.-X.; Song, E.-W.; Lin, Y.; Wang, S.-M.; Lai, G.-C.; Chen, W.-Q.; Ren, Z.-F. Epstein-Barr virus and breast cancer: Serological study in a high-incidence area of nasopharyngeal carcinoma. Cancer Lett. 2011, 309, 128–136. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Chen, H.; Rao, P.; Xue, X.; Chen, S.; Zhu, S.; Zhang, L. Immune response of mice to a latency membrane protein 2 multiepitope antigen of Epstein-Barr virus applied as DNA vaccine and/or peptide vaccine. Acta Virol. 2013, 57, 51–58. [Google Scholar] [CrossRef]
- Lin, M.-C.; Lin, Y.-C.; Chen, S.-T.; Young, T.-H.; Lou, P.-J. Therapeutic vaccine targeting Epstein-Barr virus latent protein, LMP1, suppresses LMP1-expressing tumor growth and metastasis in vivo. BMC Cancer 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salih, M.M.; Higgo, A.A.; Khalifa, A.S.; Eed, E.M. Incidence of Epstein-Barr Virus Among Women With Breast Cancer Using Monoclonal Antibodies for Latent Membrane Protein 1 (LMP1). Vivo 2022, 36, 1513–1518. [Google Scholar] [CrossRef]
- Olotu, F.A.; Soliman, M.E. Immunoinformatics prediction of potential B-cell and T-cell epitopes as effective vaccine candidates for eliciting immunogenic responses against Epstein–Barr virus. Biomed. J. 2021, 44, 317–337. [Google Scholar] [CrossRef]
- Ali, A.; Khan, A.; Kaushik, A.C.; Wang, Y.; Ali, S.S.; Junaid, M.; Saleem, S.; Cho, W.C.S.; Mao, X.; Wei, D.-Q. Immunoinformatic and systems biology approaches to predict and validate peptide vaccines against Epstein–Barr virus (EBV). Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Omoboyede, V.; Ibrahim, O.; Umar, H.I.; Bello, T.; Adedeji, A.A.; Khalid, A.; Fayojegbe, E.S.; Ayomide, A.B.; Chukwuemeka, P.O. Designing a vaccine-based therapy against Epstein-Barr virus-associated tumors using immunoinformatics approach. Comput. Biol. Med. 2022, 150, 106128. [Google Scholar] [CrossRef] [PubMed]
- Aida, Y.; Murakami, H.; Takahashi, M.; Takeshima, S.-N. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front. Microbiol. 2013, 4, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehring, G.C.; Shen, H.M.; Jensen, H.M.; Jin, D.L.; Hudes, M.; Block, G. Exposure to Bovine Leukemia Virus Is Associated with Breast Cancer: A Case-Control Study. PLoS ONE 2015, 10, e0134304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabeya, H.; Ohashi, K.; Ohishi, K.; Sugimoto, C.; Amanuma, H.; Onuma, M. An effective peptide vaccine to eliminate bovine leukaemia virus (BLV) infected cells in carrier sheep. Vaccine 1996, 14, 1118–1122. [Google Scholar] [CrossRef] [PubMed]
- Peptide-Based Bovine Leukemia Virus (BLV) Vaccine that Induces BLV-Env Specific Th-1 Type Immunity-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/9209348/ (accessed on 7 April 2023).
- Chugh, S.; Swenson, C.; Yuzbasiyan-Gurkan, V.; Huang, X. Design and Synthesis of Bovine Leukemia Virus-Associated Peptide-Based Qβ Conjugate Eliciting Long-Lasting Neutralizing Antibodies in Mice. ACS Infect. Dis. 2022, 8, 1031–1040. [Google Scholar] [CrossRef]
- Samad, A.; Meghla, N.S.; Nain, Z.; Karpiński, T.M.; Rahman, S. Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: A molecular dynamics and immune simulation approaches. Cancer Immunol. Immunother. 2022, 71, 2535–2548. [Google Scholar] [CrossRef]
- Hooshmand, N.; Fayazi, J.; Tabatabaei, S.; Behbahan, N.G.G. Prediction of B cell and T-helper cell epitopes candidates of bovine leukaemia virus (BLV) by in silico approach. Veter.- Med. Sci. 2020, 6, 730–739. [Google Scholar] [CrossRef]
- Fadilah, F.; Linda, E.; Indah, P.R.; Anbar, I.K. Immunoinformatics studies and design of breast cancer multiepitope peptide vaccines: Diversity analysis approach. J. Appl. Pharm. Sci. 2021, 11, 35–45. [Google Scholar] [CrossRef]
- Prawiningrum, A.F.; Paramita, R.I.; Panigoro, S.S. Immunoinformatics Approach for Epitope-Based Vaccine Design: Key Steps for Breast Cancer Vaccine. Diagnostics 2022, 12, 2981. [Google Scholar] [CrossRef]
- Curigliano, G.; Bagnardi, V.; Ghioni, M.; Louahed, J.; Brichard, V.; Lehmann, F.F.; Marra, A.; Trapani, D.; Criscitiello, C.; Viale, G. Expression of tumor-associated antigens in breast cancer subtypes. Breast 2020, 49, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Sanami, S.; Rafieian-Kopaei, M.; Dehkordi, K.A.; Pazoki-Toroudi, H.; Azadegan-Dehkordi, F.; Mobini, G.R.; Alizadeh, M.; Nezhad, M. In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinform. 2022, 23, 1–24. [Google Scholar] [CrossRef]
- Jabbar, B.; Rafique, S.; Salo-Ahen, O.M.H.; Ali, A.; Munir, M.; Idrees, M.; Mirza, M.U.; Vanmeert, M.; Shah, S.Z.; Jabbar, I.; et al. Antigenic Peptide Prediction From E6 and E7 Oncoproteins of HPV Types 16 and 18 for Therapeutic Vaccine Design Using Immunoinformatics and MD Simulation Analysis. Front. Immunol. 2018, 9, 3000. [Google Scholar] [CrossRef] [Green Version]
- Robles-Oteiza, C.; Wu, C.J. Reinvigorating therapeutic cancer vaccines. Curr. Opin. Immunol. 2022, 76, 102176. [Google Scholar] [CrossRef]
- Sanami, S.; Azadegan-Dehkordi, F.; Rafieian-Kopaei, M.; Salehi, M.; Ghasemi-Dehnoo, M.; Mahooti, M.; Alizadeh, M.; Bagheri, N. Design of a multi-epitope vaccine against cervical cancer using immunoinformatics approaches. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Hussein, W.M.; Toth, I.; Skwarczynski, M. Advances in Peptide-based Human Papillomavirus Therapeutic Vaccines. Curr. Top. Med. Chem. 2012, 12, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Dölen, Y.; Gileadi, U.; Chen, J.-L.; Valente, M.; Creemers, J.H.A.; Van Dinther, E.A.W.; van Riessen, N.K.; Jäger, E.; Hruby, M.; Cerundolo, V.; et al. PLGA Nanoparticles Co-encapsulating NY-ESO-1 Peptides and IMM60 Induce Robust CD8 and CD4 T Cell and B Cell Responses. Front. Immunol. 2021, 12, 641703. [Google Scholar] [CrossRef]
- Wallis, J.; Katti, P.; Martin, A.M.; Hills, T.; Seymour, L.W.; Shenton, D.P.; Carlisle, R.C. A liposome-based cancer vaccine for a rapid and high-titre anti-ErbB-2 antibody response. Eur. J. Pharm. Sci. 2020, 152, 105456. [Google Scholar] [CrossRef]
- Tornesello, A.L.; Tagliamonte, M.; Tornesello, M.L.; Buonaguro, F.M.; Buonaguro, L. Nanoparticles to Improve the Efficacy of Peptide-Based Cancer Vaccines. Cancers 2020, 12, 1049. [Google Scholar] [CrossRef] [Green Version]
- Duinkerken, S.; Horrevorts, S.K.; Kalay, H.; Ambrosini, M.; Rutte, L.; De Gruijl, T.D.; Garcia-Vallejo, J.J.; Van Kooyk, Y. Glyco-Dendrimers as Intradermal Anti-Tumor Vaccine Targeting Multiple Skin DC Subsets. Theranostics 2019, 9, 5797–5809. [Google Scholar] [CrossRef]
- Petrizzo, A.; Conte, C.; Tagliamonte, M.; Napolitano, M.; Bifulco, K.; Carriero, V.; De Stradis, A.; Tornesello, M.L.; Buonaguro, F.M.; Quaglia, F.; et al. Functional characterization of biodegradable nanoparticles as antigen delivery system. J. Exp. Clin. Cancer Res. 2015, 34, 114. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Ahn, S.; Lee, J.; Kim, J.Y.; Choi, M.; Gujrati, V.; Kim, H.; Kim, J.; Shin, E.-C.; Jon, S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Release 2017, 256, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Taguchi, H. Nanoparticle-Based Peptide Vaccines. Micro Nanotechnol. Vaccine Dev. 2017, 149–170. [Google Scholar] [CrossRef]
- Firdaus, F.Z.; Bartlett, S.; Hussein, W.M.; Lu, L.; Wright, Q.; Huang, W.; Nahar, U.J.; Yang, J.; Khongkow, M.; Veitch, M.; et al. Liposomal Formulations of a Polyleucine–Antigen Conjugate as Therapeutic Vaccines against Cervical Cancer. Pharmaceutics 2023, 15, 602. [Google Scholar] [CrossRef] [PubMed]
- Buonaguro, L.; Tagliamonte, M.; Tornesello, M.L.; Buonaguro, F.M. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev. Vaccines 2014, 10, 1569–1583. [Google Scholar] [CrossRef]
- Besson, S.; Boucher, E.; Laurin, D.; Manches, O.; Aspord, C.; Hannani, D.; Fender, P. Stimulation of the immune system by a tumor antigen-bearing adenovirus-inspired VLP allows control of melanoma growth. Mol. Ther.-Methods Clin. Dev. 2022, 28, 76–89. [Google Scholar] [CrossRef]
- Hartmaier, R.J.; Charo, J.; Fabrizio, D.; Goldberg, M.E.; Albacker, L.A.; Pao, W.; Chmielecki, J. Genomic analysis of 63,220 tumors reveals insights into tumor uniqueness and targeted cancer immunotherapy strategies. Genome Med. 2017, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Desrichard, A.; Snyder, A.; Chan, T.A. Cancer Neoantigens and Applications for Immunotherapy. Clin. Cancer Res. 2016, 22, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Slingluff, C.L.; Slingluff, C.L., Jr. The Present and Future of Peptide Vaccines for Cancer. Cancer J. 2011, 17, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Bijker, M.S.; Eeden, S.J.F.v.D.; Franken, K.L.; Melief, C.J.M.; van der Burg, S.H.; Offringa, R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur. J. Immunol. 2008, 38, 1033–1042. [Google Scholar] [CrossRef]
- Dalvi, H.; Bhat, A.; Iyer, A.; Jyothi, V.G.S.S.; Jain, H.; Srivastava, S.; Madan, J. Armamentarium of Cryoprotectants in Peptide Vaccines: Mechanistic Insight, Challenges, Opportunities and Future Prospects. Int. J. Pept. Res. Ther. 2021, 27, 2965–2982. [Google Scholar] [CrossRef]
- Moldovan, I.; Targoni, O.; Zhang, W.; Sundararaman, S.; Lehmann, P.V. How frequently are predicted peptides actually recognized by CD8 cells? Cancer Immunol. Immunother. 2016, 65, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Tay, R.E.; Richardson, E.K.; Toh, H.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—New insights into old paradigms. Cancer Gene Ther. 2020, 28, 5–17. [Google Scholar] [CrossRef]
- Abdala, A.; Alvarez, I.; Brossel, H.; Calvinho, L.; Carignano, H.; Franco, L.; Gazon, H.; Gillissen, C.; Hamaidia, M.; Hoyos, C.; et al. BLV: Lessons on vaccine development. Retrovirology 2019, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Cai, J.-H.; Diao, H.-Y.; Guo, W.-M.; Yang, X.; Xing, S. The progress of peptide vaccine clinical trials in gynecologic oncology. Hum. Vaccines Immunother. 2022, 18, 2062982. [Google Scholar] [CrossRef]
- Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854. [Google Scholar] [CrossRef] [Green Version]
Type of Cancer | Incidence Rate *** [18] (%) | Mortality Rate *** [18] (%) | Causative Factor/Agent | Treatment Strategy ** [19] | Post Treatment 5-Year Survival Rate. [20] | |||
---|---|---|---|---|---|---|---|---|
Pathogen | Gene Mutation | Localized Disease * (%) | Regional Spread * (%) | Distant Metastasis * (%) | ||||
Breast Cancer | 58.5 | 17.7 | Human Papilloma virus (HPV), Mouse Mammary Tumour Virus(MMTV) Epstein-Barr virus (EBV) [21] | BRCA1, BRCA2, TP53, PTEN, STK11, CDH1, PALB2, CHECK2, ATM, NBN, and NF1. [22,23] | Surgery, Radiation therapy, Endocrine therapy Chemotherapy, Targeted therapy, Immunotherapy. | 99 | 86 | 30 |
Cervical Cancer | 15.6 | 8.8 | Sneathia, Pseudomonas, Ureaplasma urealyticum, Ureaplasma parvum, Chlamydia trachomatis, Trichomonas vaginalis, Atopobium HPV [24] | EGFR, KRAS and PIK3CA [25] CASP8, TMS1/ASC [26] ERBB3 [27] | Surgery, Chemotherapy, Targeted therapy, Immunotherapy. | 92 | 59 | 17 |
Endometrial Cancer | 10.8 | 2.5 | Porphyromonas, Atopobium vaginae, Pelomonas, Prevotella. [24] | PIK3CA, PIK3R1, PTEN, KRAS, FGFR2, ARID1A (BAF250a), and CTNNB1 (β-catenin), MLH1, TP53 (p53), PPP2R1A, HER-2/ERBB2, PIK3CA, and PTEN [24] | Surgery, Chemotherapy, Targeted therapy, Hormone therapy, Radiation therapy | 96 | 72 | 20 |
Ovarian Cancer | 8.1 | 5.4 | Proteobacteria/Firmicutes., HPV [24] | TP53, BARD1, CHEK2, RAD51, and PALB2, BRCA1 and BRCA2 [28] | Surgery, Chemotherapy, Targeted therapy, Immunotherapy | 93 | 75 | 31 |
Vaginal cancer | 0.46 | 0.21 | Proteobacteria and Firmicutes, HPV [24] | TP53, KRAS, RASA1, KMT2D, and JAK2 [29] | Surgery, Chemotherapy, Radiation therapy. | 69 | 57 | 26 |
Vulvar cancer | 1.2 | 0.45 | HPV [30] | PIK3CA, FBXW7, HRAS, FGFR3, STK11, AKT1, SMAD4, FLT3, JAK3, GNAQ, and PTEN [31] | Surgery, Chemotherapy, Radiation therapy, Targeted drug therapy, Immunotherapy. | 86 | 53 | 19 |
Peptide | Adjuvant | Mode of Administration | Therapeutic Strategy | Immune Response | Phase of Study | Phase of Clinical Trial | Study Sample | Reference |
---|---|---|---|---|---|---|---|---|
Three peptides of HER2/neu-(i) ECD; p42, p98 and p328 (ii) ICD p776, p927 and p1166 (iii) Peptides from both domains; p369, p688 and p971 | GM-CSF | Intradermal | Mixed vaccine | HER-2/neu IgG specific antibody responses ↑ | Clinical trial | Phase I | Stage III breast and ovarian cancer N = 38, Sub group:
| [82] |
E75 peptide | GM-CSF | Intradermal | Monotherapy | Clonal expansion of E75-specific CD8+ T cells ↑ NPBC recurrence↓ | Clinical trial | Two-Stage Safety Trial | Non-palpable breast cancer (NPBC) N = 53 | [83] |
GP2 peptide (HER2/neu, 654–662) | GM-CSF | Intradermal | Monotherapy | in vivo and ex vitro immune responses specific to GP2 ↑ | Clinical Trial | Phase I | Disease free lymph node-negative, (HLA)-A2+ breast cancer N = 18 | [84] |
31 pooled peptide | Incomplete Freund’s adjuvant (Montanide ISA51) | Subcutaneous | In combination with chemotherapy, hormonal therapy and radiotherapy | CTL and/or IgG responses ↑ | Clinical Trials | Phase II | Triple-negative breast cancer (TNBC) N = 79 Sub group:
| [85] |
Triple peptide-MUC1 (159–167),CEA (605–613) and ErbB2 (368–377) | Montanide ISA 51 | Subcutaneous | Multi peptide vaccine | IFN-γ producing CD8+ T cell response ↑ | Clinical Trial | Phase I/II | High-risk disease-free ovarian and breast cancer N = 14 Sub group:
| [86] |
9 MHC class I-restricted peptides from MAGE-A1, −A3, and -A10, CEA, NY-ESO-1, and HER2 | TLR3 agonist, poly-ICLC and peptide derived from tetanus toxoid | Intramuscular and intradermal | Monotherapy | Peptide specific CD8+ T cell response ↑ | Clinical Trial | Pilot study | Breast cancer patients with stage IB-IV resected. N = 12 Sub group:
| [87] |
AE37 and GP2 | GM-CSF | Intradermal | Monotherapy | AE37 specific CD4+ T cell response and GP2 specific CD8+ T cell response ↑ | Clinical Trial | Phase II | Breast cancer with disease-free node positive and high-risk node negative patients N= 456 | [88] |
Mixed 19-peptide vaccine derived from 11 different TAAs including EGFR | Freund’s adjuvant (Montanide ISA-51VG; Seppic) | Subcutaneous | Monotherapy | Peptide specific Ig ↑ | Clinical Trial | Phase II | Advanced metastatic triple-negative breast cancer (mTNBC) N = 14 | [89] |
HER2/neu-derived GP2 and GP2–P4 | KLH | Subcutaneous | monotherapy | Humoral immune response— IFN-γ, IL-2, IL-4 and Th1 and Th2 ↑ | Preclinical study | - | TUBO breast cancer model of BALB/c mice, overexpressing HER2/neu oncogene. | [45] |
HER2/neu-derived peptide AE36 | CpG-ODN | Subcutaneous | Monotherapy | Synthesis of cytokines ↑ CD8+ and CD4+ T cell responses ↑ | Preclinical study | - | TUBO breast cancer model of BALB/c mice | [90] |
Peptide | Adjuvant | Mode of Administration | Therapeutic Strategy | Immune Response | Phase of Study | Phase of Clinical Trial | Study Sample | Reference |
---|---|---|---|---|---|---|---|---|
HER-2/neu-derived E75/MUC1-derived M1.2 peptide | - | Subcutaneous | Autologous DCs pulsed with HER-2/neu– or MUC1-derived peptides | CEA- and MAGE-3 peptide-specific T-cell response ↑ MUC1-specific T lymphocytes ↑ MAGE-3- and CEA- peptide specific CD8+ T cell response ↑ | Clinical trial | Phase I/II | Metastatic breast cancer expressing HLA-A2 and HER-2/neu or MUC1 N = 7 breast cancer and N = 3 ovarian cancers | [95] |
MUC1 lipopeptide | Lipid A | Subcutaneous | Monotherapy | MUC1-specific CTL response↑ T cells expressing intracellular IFN-γ ↑ T cells reactive with H-2Db/MUC1 tetramer ↑ | Preclinical | - | MUC1 Transgenic mice | [101] |
p53- synthetic long peptide (SLP) | Montanide ISA51 | Subcutaneous | Monotherapy | IFN-γ producing T-cells ↑ p53-specific Th1 and Th2 CD4+ T-cell responses ↑ Th1 and Th2 cytokines ↑ Circulating p53-specific T-cells ↓ | Clinical trial | Phase II | Epithelial ovarian cancer N = 18 | [102] |
p53 SLP | Montanide ISA51 | Subcutaneous | Immunization preceded by Cyclophosphamide administration | p53-specific T cells ↑ Th1 and Th2 cytokines ↑ p53-specific IFN-γ-producing T cells ↑ | Clinical trial | Phase II | Epithelial ovarian cancer N = 19 | [103] |
Overlapping long peptides (OLP) from cancer-testis antigen NY-ESO-1 | Montanide-ISA-51 in Poly-polyinosinic-polycytidylic acid (ICLC) | Subcutaneous | Monotherapy | NY-ESO-1–specific antibody ↑ NY-ESO-1–specific CD8+ T cells ↑ NY-ESO-1–specific CD4+ T cells ↑ | Clinical trial | Phase I | Advanced ovarian cancer N = 11 | [104] |
p53-SLP® vaccine | Montanide ISA51, | Subcutaneous | Vaccination followed by chemotherapy | p53-specific IFN-γ ↑ | Clinical trial | Phase II | Epithelial ovarian cancer N = 17 | [105] |
p53 peptide | Montanide and GM-CSF | Subcutaneous Intravenous | Peptide admixed with Montanide and GM-CSF Peptide-pulsed dendritic cells | p53 specific immune response ↑ | Clinical trial | Phase II | Ovarian cancer N = 13 (Subcutaneous administration) N = 6 (Intravenous administration) | [106] |
Wilms’ tumor 1 (WT1) peptide | Montanide ISA 51 | Intradermal | Monotherapy | WT1 peptide-specific delayed-type hypersensitivity (DTH) reaction ↑ | Clinical trial | Phase II | Ovarian carcinoma N = 24 Cervical carcinoma N = 11 Uterine sarcoma N = 5 | [107] |
Cancer-testis (CT) peptide | - | Subcutaneous | Combination with 5 CT peptides | CT peptide- specific CTLs ↑ | Clinical trial | Phase I | HLA-A24-positive patients with metastatic and advanced breast cancer. N = 9 | [108] |
Personalized peptide vaccine (PPV) | Montanide ISA51VG | Subcutaneous | PPV monotherapy/PPV in combination with chemotherapy | Peptide specific IgG responses ↑ Peptide specific CTL response ↑ Interleukin (IL)-6, C Reactive Protein (CRP) and Serum amyloid A (SAA) levels ↑ | Clinical trial | Phase II | Recurrent ovarian cancer N = 42 Sub group: (Platinum-sensitive n = 17 and platinum resistant n = 25) | [109] |
WT1 peptide/MUC1 long peptide/ | OK-432, | Intradermal | Chemotherapy followed by DC-based immunotherapy | WT1-specific CTL ↑ | Clinical trial | - | Recurrent ovarian cancer (ROC) N = 56 Sub-group: (Serous cystadeno carcinoma n = 37, Endometrioid adenocarcinoma n = 6, clear cell adenocarcinoma n = 5, other cancers n = 4 | [110] |
Five HLA-A2402-restricted epitope peptides from KOC1, TTK, URLC10, DEPDC1 and MPHOSPH1 | Incomplete Freund’s. | Subcutaneous | Combination therapy with Cyclophosphamide | T cell response ↑ Overall survival ↑ | Clinical trial | Phase I | Cervical cancer and other solid tumors N = 18 Subgroup: (cervical cancer n = 1, other solid tumors n = 17) | [111] |
Folate receptor alpha | GM-CSF | intradermal | Combination therapy with low-dose Cyclophosphamide | T cell response ↑ | Clinical trial | Phase 1 | Stage II-III breast or stage II-IV ovarian cancer N = 22 Subgroup: (breast cancer n = 8 ovarian cancer n = 14) | [112] |
Qβ-MUC1 | Incomplete Freund’s adjuvant | Subcutaneous | Immunotherapy | IgG antibodies ↑ | Preclinical study | - | MUC1.Tg mice | [113] |
RNF43 peptide pulsed DCs | - | Subcutaneous | Combination therapy with low-dose Cyclophosphamide | Serum IL-6 level ↑ IFNγ-producing, tumor-reactive CD8+ T cells ↑ Treg Cells ↓ | Clinical trial | Phase I | Cervical cancer and other solid tumors N = 10 Subgroup: (cervical cancer n = 1 other solid tumors n = 9). | [114] |
Peptides derived from FOXM1, MELK, Holiday Junction Recognition protein VEGF receptors 1 and 2 | Incomplete Freund’s adjuvant | - | Immunotherapy | FOXM1 and MELK specific T-cell responses ↑ | Clinical trial | Phase I | Recurrent or persistent cervical cancer N = 21 | [115] |
DC vaccine pulsed with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) | - | Intranodal | Carboplatin/Paclitaxel adjuvant chemotherapy; Immunomodulation with low dose Cyclophosphamide | Proposed epitope spreading, increase in pre-existing NeoAgs-specific T cell clones and immune response against patient-specific antigens | Clinical trial | Phase I/II | Advanced high-grade ovarian serous carcinoma N = 16 | [116] |
Folate-binding protein- derived E39 peptide | GM-CSF | Intradermal | Monotherapy | Disease free survival↑ | Clinical trial | Phase I/IIa | Ovarian, endometria, fallopian, or peritoneal cancer N = 51 | [117] |
MUC1 | TLR7 agonists | Intraperitoneal | Monotherapy | Cytokine production ↑ CD3+/CD8+ T-cells ↑ Antibody titre ↑ Tumor weight ↓ | Preclinical study | - | 4T1 mouse breast cancer cells, MCF-7 human breast cancer cells, MB231 human breast cancer cells BALB/c mice | [118] |
MHC class I restricted neoantigen peptide-loaded DC vaccine | - | Intranodal | Immunotherapy | Neoantigen-specific T cell responses ↑ CA-125 levels ↓ | Clinical trial | - | Chemorefractory ovarian cancer and malignant ascites N = 1 | [119] |
HSP90 derived MHC class II epitopes | Complete Freund’s adjuvant | Intravenous | Combined with STING agonist and/or anti CTLA-4 antibody | HSP90-specific IgG responses ↑ Th1 immune response ↑ CD8+ T cells response ↑ T reg cells ↑ | Preclinical study | - | Breast cancer murine model | [120] |
Commercial Name of Vaccine | Vaccine Composition | Effective against Which Type of Cancer | Acts against Which Strain | Dosage | Current Status of the Vaccine | ||
---|---|---|---|---|---|---|---|
Peptides | Adjuvant | Other Components | |||||
Gardasil | HPV—6L1, 11L1, 16L1, 18 L1 [137] | Aluminum (Amorphous Aluminum Hydroxyphosphate Sulfate), [137] | Sodium chloride, L-histidine, polysorbate 80, sodium borate [137] | Cervical, vulval, vaginal, and anal cancers and their associated precursor lesions (and a subset of head and neck cancers) Genital warts and laryngeal papillomas [138] | HPV types 6, 11, 16, 18 [139] | 3 doses of 0.5-mL: intramuscularly at 0, 2 months, 6 months [139] | Licensed, Merck and Co. [137,140,141] |
Cervarix | HPV—16 L1, 18 L1. [142] | AlSO4 (aluminium salt + MPL (3-O-desacyl-4′-monophosphoryl lipid A) [142] | Sodium chloride and sodium dihydrogen phosphate dihydrate [142] | Cervical, vulval, vaginal, and anal cancers and their associated precursor lesions (and a subset of head and neck cancers) [138] | HPV 16 and 18 [142] | 3 doses of 0.5 mL, intramuscular injections at 0, 1, and 6 [138] | Licensed, GlaxoSmithKline [140,141] |
Gardasil 9 | HPV—6 L1, 11 L1, 16 L1, 18 L1, 31 L1, 33 L1, 45 L1, 52 L1, 58 L1 [143] | Aluminum (provided as AAHS), [143] | Sodium chloride, L-histidine, polysorbate 80, sodium borate [143] | Cervical, vulvar, vaginal, anal, oropharyngeal and Genital warts (condyloma acuminata) [143] | HPV-6, 11,16,18,31, 33,45,52, 58 [144] | 2 or 3 doses Intramuscularly, depending on age at initiation [144] | Licensed Merck and Co. [140,141] |
Cecolin | HPV—16 L1 18 L1 [145] | Aluminum hydroxide [145] | Phosphate buffered saline. [145] | Cervical cancer, CIN grade I-III and adenocarcinoma in situ (AIS). [145] | HPV 16/18 [140] | 2-dose Intramuscularly for girls aged 9–14 years, 3-dose Intramuscularly for young women [146] | Licensed in China. WHO prequalification Status: Current [141,144,147] |
EG-HPV | HPV—16 L1,18L1 [148] | CIA06 (Aluminum hydroxide + dLOS (CIA05) [148] | - | Cervical cancer [148,149] | HPV type 16 and type 18 [148] | 3 doses at 0, 1, 6 [148] | Clinical phase I trial, Eyegene Inc. Korea [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lekshmy, M.; Dhanya, C.R.; Smrithi, J.S.; Sindhurani, J.A.; Vandanamthadathil, J.J.; Veettil, J.T.; Anila, L.; Lathakumari, V.S.; Nayar, A.M.; Madhavan, M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals 2023, 16, 1054. https://doi.org/10.3390/ph16071054
Lekshmy M, Dhanya CR, Smrithi JS, Sindhurani JA, Vandanamthadathil JJ, Veettil JT, Anila L, Lathakumari VS, Nayar AM, Madhavan M. Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals. 2023; 16(7):1054. https://doi.org/10.3390/ph16071054
Chicago/Turabian StyleLekshmy, Manju, Chandrasekharan Rajalekshmi Dhanya, Jayashree SatheeshKumar Smrithi, Janaki Anandavallyamma Sindhurani, Jiji Joseph Vandanamthadathil, Jayakrishnan Therthala Veettil, Leelamma Anila, Vishnu Sasidharan Lathakumari, Adhira M. Nayar, and Maya Madhavan. 2023. "Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape" Pharmaceuticals 16, no. 7: 1054. https://doi.org/10.3390/ph16071054
APA StyleLekshmy, M., Dhanya, C. R., Smrithi, J. S., Sindhurani, J. A., Vandanamthadathil, J. J., Veettil, J. T., Anila, L., Lathakumari, V. S., Nayar, A. M., & Madhavan, M. (2023). Peptide Vaccines as Therapeutic and Prophylactic Agents for Female-Specific Cancers: The Current Landscape. Pharmaceuticals, 16(7), 1054. https://doi.org/10.3390/ph16071054