Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration
Abstract
:1. Introduction
2. Results
2.1. Method Development
2.2. Stacking Preconcentration
2.3. Analysis of Spiked Plasma Samples
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. CE-MS
4.3. Validation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cismowski, M.J. Tyrosine Kinase Inhibitors, in xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. [Google Scholar]
- Shawver, L.K.; Slamon, D.; Ullrich, A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell 2002, 1, 117–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zámečníková, A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert. Opin. Drug. Discov. 2014, 9, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020, 13, 143. [Google Scholar] [CrossRef]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Garzón, V.; Pinacho, D.G.; Bustos, R.-H.; Garzón, G.; Bustamante, S. Optical biosensors for therapeutic drug monitoring. Biosensors 2019, 9, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueras, A. Review of the Evidence to Include TDM in the Essential In Vitro Diagnostics List and Prioritization of Medicines to be Monitored; Fundació Institut Català de Farmacologia: Barcelona, Spain, 2019. [Google Scholar]
- Kang, J.-S.; Lee, M.-H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009, 24, 2687654. [Google Scholar] [CrossRef]
- Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. [Google Scholar] [CrossRef]
- Bustos, R.; Zapata, C.; Esteban, E.; García, J.-C.; Jáuregui, E.; Jaimes, D. Label-free quantification of anti-TNF-α in patients treated with adalimumab using an optical biosensor. Sensors 2018, 18, 691. [Google Scholar] [CrossRef] [Green Version]
- Suntornsuk, L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal. Bioanal. Chem. 2010, 398, 29–52. [Google Scholar] [CrossRef]
- Torano, J.S.; Ramautar, R.; de Jong, G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B 2019, 1118–1119, 116–136. [Google Scholar] [CrossRef]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary electrophoresis: Trends and recent advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, M.; Quirino, J.P. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr. Opin. Green Sustain. Chem. 2021, 31, 100515. [Google Scholar] [CrossRef]
- Kitagawa, F.; Otsuka, K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J. Chromatogr. A 2014, 1335, 43–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grochocki, W.; Markuszewski, M.J.; Quirino, J.P. Different detection and stacking techniques in capillary electrophoresis for metabolomics. Anal. Methods 2016, 8, 1216–1221. [Google Scholar] [CrossRef]
- Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Madra-Gackowska, K.; Bogacz, A. Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules 2021, 26, 4141. [Google Scholar] [CrossRef] [PubMed]
- Petr, J.; Jiang, C.X.; Ševčík, J.; Tesařová, E.; Armstrong, D.W. Sterility testing by CE: A comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis 2009, 30, 3870–3876. [Google Scholar] [CrossRef]
- Mičová, K.; Friedecký, D.; Faber, E.; Polýnková, A.; Adam, T. Flow injection analysis vs. ultra high performance liquid chromatography coupled with tandem mass spectrometry for determination of imatinib in human plasma. Clin. Chim. Acta 2010, 411, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Friedecký, D.; Mičová, K.; Faber, E.; Hrdá, M.; Široká, J.; Adam, T. Detailed study of imatinib metabolization using high-resolution mass spectrometry. J. Chromatogr. A 2015, 1409, 173–181. [Google Scholar] [CrossRef]
- Miura, M.; Takahashi, N. Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods. Drug Metabol. Pharmacokin. 2016, 31, 12–20. [Google Scholar] [CrossRef]
- Pearce, C.M.; Resmini, M. Towards point of care systems for the therapeutic drug monitoring of imatinib. Anal. Bioanal. Chem. 2020, 412, 5925–5933. [Google Scholar] [CrossRef]
- Picard, S.; Titier, K.; Etienne, G.; Teilhet, E.; Ducint, D.; Bernard, M.-A.; Lassalle, R.; Marit, G.; Reiffers, J.; Begaud, B.; et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007, 109, 3496–3499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, B.; Lloyd, P.; Schran, H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 2005, 44, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Haouala, A.; Widmer, N.; Guidi, M.; Montemurro, M.; Leyvraz, S.; Buclin, T.; Eap, C.B.; Decosterd, L.A.; Csajka, C. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br. J. Clin. Pharmacol. 2013, 75, 1007–1018. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, B.; Orlandini, S.; Furlanetto, S.; Gotti, R.; Del Bubba, M.; Boscaro, F.; Bertaccini, B.; Douša, M.; Pieraccini, G. Quality by design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography—Tandem mass spectrometry method for the determination of nintedanib and its impurities. J. Chromatogr. A 2020, 1611, 460615. [Google Scholar] [CrossRef]
- Matsumoto, A.; Shiraiwa, K.; Suzuki, Y.; Tanaka, K.; Kawano, M.; Iwasaki, T.; Tanaka, R.; Tatsuta, R.; Tsumura, H.; Itoh, H. Sensitive quantification of free pazopanib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and assessment of clinical application. J. Pharm. Biomed. Anal. 2021, 206, 114348. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, F.; Solas, C.; Giocanti, M.; Lacarelle, B.; Deville, J.-L.; Gravis, G.; Ciccolini, J. A simple and rapid liquid chromatography—Mass spectrometry method to assay cabozantinib in plasma: Application to therapeutic drug monitoring in patients with renal cell carcinoma. J. Chromatogr. B 2020, 1138, 121968. [Google Scholar] [CrossRef]
- Ezzeldin, E.; Iqbal, M.; Herqash, R.N.; ElNahhas, T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J. Chromatogr. B 2020, 1136, 121851. [Google Scholar] [CrossRef] [PubMed]
- Merienne, C.; Rousset, M.; Ducint, D.; Castaing, N.; Titier, K.; Molimard, M.; Bouchet, S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J. Pharm. Biomed. Anal. 2018, 150, 112–120. [Google Scholar] [CrossRef]
- Koller, D.; Vaitsekhovich, V.; Mba, C.; Steegmann, J.L.; Zubiaur, P.; Abad-Santos, F.; Wojnicz, A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta 2020, 208, 120450. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, W.; Yang, Y. Simultaneous identification and determination of eleven tyrosine kinase inhibitors by supercritical fluid chromatography—Mass spectrometry. Anal. Methods 2019, 11, 2211–2222. [Google Scholar] [CrossRef]
- Horská, J.; Ginterová, P.; Ševčík, J.; Petr, J. CZE separation of new drugs for treatment of leukemia. Chromatographia 2014, 77, 1477–1482. [Google Scholar] [CrossRef]
- Rodriguez, J.; Castaneda, G.; Munoz, L.; Lopez, S. Development and validation of a non-aqueous capillary electrophoresis method for the determination of imatinib, codeine and morphine in human urine. Anal. Methods 2014, 6, 3842–3848. [Google Scholar] [CrossRef]
- Gonzales, A.G.; Taraba, T.; Hraníček, J.; Kozlík, P.; Coufal, P. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis. J. Sep. Sci. 2017, 40, 400–406. [Google Scholar] [CrossRef]
- Rodriguez, J.; Castaneda, G.; Munoz, L.; Villa, J.C. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry. Electrophoresis 2015, 36, 1580–1587. [Google Scholar] [CrossRef]
- Forough, M.; Farhadi, K.; Eyshi, A.; Molaei, R.; Khalili, H.; Kouzegaran, V.J.; Matin, A.A. Rapid ionic liquid-supported nano-hybrid composite reinforced hollow-fibed electromembrane extraction followed by field-amplified sample injection-capillary electrophoresis: An effective approach for extraction and quantification of imatinib mesylate in human plasma. J. Chromatogr. A 2017, 1516, 21–34. [Google Scholar] [PubMed]
- Sanz, I.L.; Bernardo, F.J.G.; Penalvo, G.C.; Flores, J.R. Determination of dabrafenib and trametinib in serum by dispersive solid phase extraction with multi-walled carbon nanotubes and capillary electrophoresis coupled to ultraviolet/visible detection. Microchem. J. 2021, 165, 160180. [Google Scholar]
- Ahmed, O.S.; Ladner, Y.; Montels, J.; Philibert, L.; Perrin, C. Coupling of salting-our assisted liquid-liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J. Chromatogr. A 2018, 1579, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.S.; Ladner, Y.; Xia, J.; Montels, J.; Philibert, L.; Perrin, C. A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta 2020, 208, 120391. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.S.; Ladner, Y.; Bousquet, C.; Montels, J.; Dubský, P.; Philibert, L.; Perrin, C. Direct salting-out assisted liquid-liquid extraction (SALLE) from human blood: Application for the analysis of tyrosine kinase inhibitors. Microchem. J. 2020, 155, 104791. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, L.; Chen, D.D.Y. Quantification of imatinib and related compounds using capillary electrophoresis—Tandem mass spectrometry with field-amplified sample stacking. Electrophoresis 2020, 41, 1843–1850. [Google Scholar] [CrossRef]
- Niessen, W.M.A.; Rosing, H.; Beijnen, J.H. Interpretation of MS-MS spectra of small-molecule signal transduction inhibitors using accurate-m/z data and m/z-shifts with stable-isotope-labeled analogues and metabolites. Int. J. Mass. Spectrom. 2021, 464, 116559. [Google Scholar] [CrossRef]
- Beckers, J.L.; Boček, P. Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations. Electrophoresis 2000, 21, 2747–2767. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.L.; Quirino, J.P.; Terabe, S. On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications. J. Chromatogr. A 2008, 1184, 504–541. [Google Scholar] [CrossRef] [PubMed]
- Kehl, N.; Schlichtig, K.; Dürr, P.; Bellut, L.; Dörje, F.; Fietkau, R.; Pavel, M.; Mackensen, A.; Wullich, B.; Maas, R.; et al. An easily expandable multi-drug LC-MS assay for the simultaneous quantification of 57 oral antitumor drugs in human plasma. Cancers 2021, 13, 6329. [Google Scholar] [CrossRef]
- Miura, M. Therapeutic drug monitoring of imatinib, nilotinib, and patients with chronic myeloid leukemia. Biol. Pharm. Bull. 2015, 38, 645–654. [Google Scholar] [CrossRef] [Green Version]
- García-Ferrer, M.; Wojnicz, A.; Mejía, G.; Koller, D.; Zubiaur, P.; Abad-Santos, F. Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: A systematic review and meta-analysis. Clin. Ther. 2019, 41, 2258–2570.e7. [Google Scholar] [CrossRef]
- Available online: https://web.natur.cuni.cz/gas/peakmaster.html (accessed on 15 March 2021).
Compound | Parent Ion (m/z) | Quantification Transition Ion (m/z) | Collision Energy for Quantification Transition (eV) | Confirmation Transition Ion (m/z) | Collision Energy for Confirmation Transition (eV) |
---|---|---|---|---|---|
Dasatinib | 488 | 401 | 20 | 232 | 40 |
Erlotinib | 394 | 336 | 20 | 278 | 30 |
Canertinib | 486 | 128 | 15 | 100 | 40 |
Bosutinib | 530 | 141 | 10 | 113 | 50 |
Parameter | Analyte | |||
---|---|---|---|---|
Bosutinib | Dasatinib | Canertinib | Erlotinib | |
Calibration range (mol × L−1) | 1 × 10−8–1 × 10−5 | 3×10−9–1 × 10−5 | 3×10−9–1 × 10−5 | 3×10−9–1 × 10−5 |
Calibration equation | y = 1.528 × 108x + 145 | y = 1.148 × 108x + 94 | y = 4.977 × 108x + 167 | y = 8.417 × 108x + 385 |
Correlation coefficient | 0.9921 | 0.9849 | 0.9976 | 0.9943 |
LOD (nmol·L−1) | 21.6 | 23.0 | 8.0 | 3.9 |
LOQ (nmol·L−1) | 65.4 | 69.7 | 24.1 | 11.9 |
Intraday repeatability of migration time (%) | 0.55 | 2.11 | 1.01 | 3.18 |
Interday repeatability of migration time (%) | 1.76 | 3.76 | 1.57 | 3.85 |
Intraday repeatability of peak heights (%) | 3.17 | 1.94 | 2.62 | 2.20 |
Interday repeatability of peak heights (%) | 5.89 | 5.21 | 8.11 | 3.60 |
Recovery (%) | 103.2 | 96.4 | 96.1 | 101.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petr, J. Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals 2023, 16, 186. https://doi.org/10.3390/ph16020186
Petr J. Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals. 2023; 16(2):186. https://doi.org/10.3390/ph16020186
Chicago/Turabian StylePetr, Jan. 2023. "Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration" Pharmaceuticals 16, no. 2: 186. https://doi.org/10.3390/ph16020186
APA StylePetr, J. (2023). Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals, 16(2), 186. https://doi.org/10.3390/ph16020186