Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration
Abstract
1. Introduction
2. Results
2.1. Method Development
2.2. Stacking Preconcentration
2.3. Analysis of Spiked Plasma Samples
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. CE-MS
4.3. Validation
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cismowski, M.J. Tyrosine Kinase Inhibitors, in xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–4. [Google Scholar]
- Shawver, L.K.; Slamon, D.; Ullrich, A. Smart drugs: Tyrosine kinase inhibitors in cancer therapy. Cancer Cell 2002, 1, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Zámečníková, A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert. Opin. Drug. Discov. 2014, 9, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, S.; Shi, Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020, 13, 143. [Google Scholar] [CrossRef]
- Ates, H.C.; Roberts, J.A.; Lipman, J.; Cass, A.E.G.; Urban, G.A.; Dincer, C. On-site therapeutic drug monitoring. Trends Biotechnol. 2020, 38, 1262–1277. [Google Scholar] [CrossRef] [PubMed]
- Garzón, V.; Pinacho, D.G.; Bustos, R.-H.; Garzón, G.; Bustamante, S. Optical biosensors for therapeutic drug monitoring. Biosensors 2019, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Figueras, A. Review of the Evidence to Include TDM in the Essential In Vitro Diagnostics List and Prioritization of Medicines to be Monitored; Fundació Institut Català de Farmacologia: Barcelona, Spain, 2019. [Google Scholar]
- Kang, J.-S.; Lee, M.-H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009, 24, 2687654. [Google Scholar] [CrossRef]
- Paal, M.; Zoller, M.; Schuster, C.; Vogeser, M.; Schütze, G. Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method. J. Pharm. Biomed. Anal. 2018, 152, 102–110. [Google Scholar] [CrossRef]
- Bustos, R.; Zapata, C.; Esteban, E.; García, J.-C.; Jáuregui, E.; Jaimes, D. Label-free quantification of anti-TNF-α in patients treated with adalimumab using an optical biosensor. Sensors 2018, 18, 691. [Google Scholar] [CrossRef]
- Suntornsuk, L. Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal. Bioanal. Chem. 2010, 398, 29–52. [Google Scholar] [CrossRef]
- Torano, J.S.; Ramautar, R.; de Jong, G. Advances in capillary electrophoresis for the life sciences. J. Chromatogr. B 2019, 1118–1119, 116–136. [Google Scholar] [CrossRef]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary electrophoresis: Trends and recent advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, M.; Quirino, J.P. Can we replace liquid chromatography with the greener capillary electrophoresis? Curr. Opin. Green Sustain. Chem. 2021, 31, 100515. [Google Scholar] [CrossRef]
- Kitagawa, F.; Otsuka, K. Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J. Chromatogr. A 2014, 1335, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Grochocki, W.; Markuszewski, M.J.; Quirino, J.P. Different detection and stacking techniques in capillary electrophoresis for metabolomics. Anal. Methods 2016, 8, 1216–1221. [Google Scholar] [CrossRef]
- Gackowski, M.; Przybylska, A.; Kruszewski, S.; Koba, M.; Madra-Gackowska, K.; Bogacz, A. Recent applications of capillary electrophoresis in the determination of active compounds in medicinal plants and pharmaceutical formulations. Molecules 2021, 26, 4141. [Google Scholar] [CrossRef] [PubMed]
- Petr, J.; Jiang, C.X.; Ševčík, J.; Tesařová, E.; Armstrong, D.W. Sterility testing by CE: A comparison of online preconcentration approaches in capillaries with greater internal diameters. Electrophoresis 2009, 30, 3870–3876. [Google Scholar] [CrossRef]
- Mičová, K.; Friedecký, D.; Faber, E.; Polýnková, A.; Adam, T. Flow injection analysis vs. ultra high performance liquid chromatography coupled with tandem mass spectrometry for determination of imatinib in human plasma. Clin. Chim. Acta 2010, 411, 1957–1962. [Google Scholar] [CrossRef] [PubMed]
- Friedecký, D.; Mičová, K.; Faber, E.; Hrdá, M.; Široká, J.; Adam, T. Detailed study of imatinib metabolization using high-resolution mass spectrometry. J. Chromatogr. A 2015, 1409, 173–181. [Google Scholar] [CrossRef]
- Miura, M.; Takahashi, N. Routine therapeutic drug monitoring of tyrosine kinase inhibitors by HPLC-UV or LC-MS/MS methods. Drug Metabol. Pharmacokin. 2016, 31, 12–20. [Google Scholar] [CrossRef]
- Pearce, C.M.; Resmini, M. Towards point of care systems for the therapeutic drug monitoring of imatinib. Anal. Bioanal. Chem. 2020, 412, 5925–5933. [Google Scholar] [CrossRef]
- Picard, S.; Titier, K.; Etienne, G.; Teilhet, E.; Ducint, D.; Bernard, M.-A.; Lassalle, R.; Marit, G.; Reiffers, J.; Begaud, B.; et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007, 109, 3496–3499. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Lloyd, P.; Schran, H. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 2005, 44, 879–894. [Google Scholar] [CrossRef] [PubMed]
- Haouala, A.; Widmer, N.; Guidi, M.; Montemurro, M.; Leyvraz, S.; Buclin, T.; Eap, C.B.; Decosterd, L.A.; Csajka, C. Prediction of free imatinib concentrations based on total plasma concentrations in patients with gastrointestinal stromal tumours. Br. J. Clin. Pharmacol. 2013, 75, 1007–1018. [Google Scholar] [CrossRef]
- Pasquini, B.; Orlandini, S.; Furlanetto, S.; Gotti, R.; Del Bubba, M.; Boscaro, F.; Bertaccini, B.; Douša, M.; Pieraccini, G. Quality by design as a risk-based strategy in pharmaceutical analysis: Development of a liquid chromatography—Tandem mass spectrometry method for the determination of nintedanib and its impurities. J. Chromatogr. A 2020, 1611, 460615. [Google Scholar] [CrossRef]
- Matsumoto, A.; Shiraiwa, K.; Suzuki, Y.; Tanaka, K.; Kawano, M.; Iwasaki, T.; Tanaka, R.; Tatsuta, R.; Tsumura, H.; Itoh, H. Sensitive quantification of free pazopanib using ultra-high performance liquid chromatography coupled to tandem mass spectrometry and assessment of clinical application. J. Pharm. Biomed. Anal. 2021, 206, 114348. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, F.; Solas, C.; Giocanti, M.; Lacarelle, B.; Deville, J.-L.; Gravis, G.; Ciccolini, J. A simple and rapid liquid chromatography—Mass spectrometry method to assay cabozantinib in plasma: Application to therapeutic drug monitoring in patients with renal cell carcinoma. J. Chromatogr. B 2020, 1138, 121968. [Google Scholar] [CrossRef]
- Ezzeldin, E.; Iqbal, M.; Herqash, R.N.; ElNahhas, T. Simultaneous quantitative determination of seven novel tyrosine kinase inhibitors in plasma by a validated UPLC-MS/MS method and its application to human microsomal metabolic stability study. J. Chromatogr. B 2020, 1136, 121851. [Google Scholar] [CrossRef] [PubMed]
- Merienne, C.; Rousset, M.; Ducint, D.; Castaing, N.; Titier, K.; Molimard, M.; Bouchet, S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. J. Pharm. Biomed. Anal. 2018, 150, 112–120. [Google Scholar] [CrossRef]
- Koller, D.; Vaitsekhovich, V.; Mba, C.; Steegmann, J.L.; Zubiaur, P.; Abad-Santos, F.; Wojnicz, A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta 2020, 208, 120450. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, W.; Yang, Y. Simultaneous identification and determination of eleven tyrosine kinase inhibitors by supercritical fluid chromatography—Mass spectrometry. Anal. Methods 2019, 11, 2211–2222. [Google Scholar] [CrossRef]
- Horská, J.; Ginterová, P.; Ševčík, J.; Petr, J. CZE separation of new drugs for treatment of leukemia. Chromatographia 2014, 77, 1477–1482. [Google Scholar] [CrossRef]
- Rodriguez, J.; Castaneda, G.; Munoz, L.; Lopez, S. Development and validation of a non-aqueous capillary electrophoresis method for the determination of imatinib, codeine and morphine in human urine. Anal. Methods 2014, 6, 3842–3848. [Google Scholar] [CrossRef]
- Gonzales, A.G.; Taraba, T.; Hraníček, J.; Kozlík, P.; Coufal, P. Determination of dasatinib in the tablet dosage form by ultra high performance liquid chromatography, capillary zone electrophoresis, and sequential injection analysis. J. Sep. Sci. 2017, 40, 400–406. [Google Scholar] [CrossRef]
- Rodriguez, J.; Castaneda, G.; Munoz, L.; Villa, J.C. Quantitation of sunitinib, an oral multitarget tyrosine kinase inhibitor, and its metabolite in urine samples by nonaqueous capillary electrophoresis time of flight mass spectrometry. Electrophoresis 2015, 36, 1580–1587. [Google Scholar] [CrossRef]
- Forough, M.; Farhadi, K.; Eyshi, A.; Molaei, R.; Khalili, H.; Kouzegaran, V.J.; Matin, A.A. Rapid ionic liquid-supported nano-hybrid composite reinforced hollow-fibed electromembrane extraction followed by field-amplified sample injection-capillary electrophoresis: An effective approach for extraction and quantification of imatinib mesylate in human plasma. J. Chromatogr. A 2017, 1516, 21–34. [Google Scholar] [PubMed]
- Sanz, I.L.; Bernardo, F.J.G.; Penalvo, G.C.; Flores, J.R. Determination of dabrafenib and trametinib in serum by dispersive solid phase extraction with multi-walled carbon nanotubes and capillary electrophoresis coupled to ultraviolet/visible detection. Microchem. J. 2021, 165, 160180. [Google Scholar]
- Ahmed, O.S.; Ladner, Y.; Montels, J.; Philibert, L.; Perrin, C. Coupling of salting-our assisted liquid-liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J. Chromatogr. A 2018, 1579, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.S.; Ladner, Y.; Xia, J.; Montels, J.; Philibert, L.; Perrin, C. A fully automated on-line salting-out assisted liquid-liquid extraction capillary electrophoresis methodology: Application to tyrosine kinase inhibitors in human plasma. Talanta 2020, 208, 120391. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.S.; Ladner, Y.; Bousquet, C.; Montels, J.; Dubský, P.; Philibert, L.; Perrin, C. Direct salting-out assisted liquid-liquid extraction (SALLE) from human blood: Application for the analysis of tyrosine kinase inhibitors. Microchem. J. 2020, 155, 104791. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, L.; Chen, D.D.Y. Quantification of imatinib and related compounds using capillary electrophoresis—Tandem mass spectrometry with field-amplified sample stacking. Electrophoresis 2020, 41, 1843–1850. [Google Scholar] [CrossRef]
- Niessen, W.M.A.; Rosing, H.; Beijnen, J.H. Interpretation of MS-MS spectra of small-molecule signal transduction inhibitors using accurate-m/z data and m/z-shifts with stable-isotope-labeled analogues and metabolites. Int. J. Mass. Spectrom. 2021, 464, 116559. [Google Scholar] [CrossRef]
- Beckers, J.L.; Boček, P. Sample stacking in capillary zone electrophoresis: Principles, advantages and limitations. Electrophoresis 2000, 21, 2747–2767. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.L.; Quirino, J.P.; Terabe, S. On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications. J. Chromatogr. A 2008, 1184, 504–541. [Google Scholar] [CrossRef] [PubMed]
- Kehl, N.; Schlichtig, K.; Dürr, P.; Bellut, L.; Dörje, F.; Fietkau, R.; Pavel, M.; Mackensen, A.; Wullich, B.; Maas, R.; et al. An easily expandable multi-drug LC-MS assay for the simultaneous quantification of 57 oral antitumor drugs in human plasma. Cancers 2021, 13, 6329. [Google Scholar] [CrossRef]
- Miura, M. Therapeutic drug monitoring of imatinib, nilotinib, and patients with chronic myeloid leukemia. Biol. Pharm. Bull. 2015, 38, 645–654. [Google Scholar] [CrossRef]
- García-Ferrer, M.; Wojnicz, A.; Mejía, G.; Koller, D.; Zubiaur, P.; Abad-Santos, F. Utility of therapeutic drug monitoring of imatinib, nilotinib, and dasatinib in chronic myeloid leukemia: A systematic review and meta-analysis. Clin. Ther. 2019, 41, 2258–2570.e7. [Google Scholar] [CrossRef]
- Available online: https://web.natur.cuni.cz/gas/peakmaster.html (accessed on 15 March 2021).
Compound | Parent Ion (m/z) | Quantification Transition Ion (m/z) | Collision Energy for Quantification Transition (eV) | Confirmation Transition Ion (m/z) | Collision Energy for Confirmation Transition (eV) |
---|---|---|---|---|---|
Dasatinib | 488 | 401 | 20 | 232 | 40 |
Erlotinib | 394 | 336 | 20 | 278 | 30 |
Canertinib | 486 | 128 | 15 | 100 | 40 |
Bosutinib | 530 | 141 | 10 | 113 | 50 |
Parameter | Analyte | |||
---|---|---|---|---|
Bosutinib | Dasatinib | Canertinib | Erlotinib | |
Calibration range (mol × L−1) | 1 × 10−8–1 × 10−5 | 3×10−9–1 × 10−5 | 3×10−9–1 × 10−5 | 3×10−9–1 × 10−5 |
Calibration equation | y = 1.528 × 108x + 145 | y = 1.148 × 108x + 94 | y = 4.977 × 108x + 167 | y = 8.417 × 108x + 385 |
Correlation coefficient | 0.9921 | 0.9849 | 0.9976 | 0.9943 |
LOD (nmol·L−1) | 21.6 | 23.0 | 8.0 | 3.9 |
LOQ (nmol·L−1) | 65.4 | 69.7 | 24.1 | 11.9 |
Intraday repeatability of migration time (%) | 0.55 | 2.11 | 1.01 | 3.18 |
Interday repeatability of migration time (%) | 1.76 | 3.76 | 1.57 | 3.85 |
Intraday repeatability of peak heights (%) | 3.17 | 1.94 | 2.62 | 2.20 |
Interday repeatability of peak heights (%) | 5.89 | 5.21 | 8.11 | 3.60 |
Recovery (%) | 103.2 | 96.4 | 96.1 | 101.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petr, J. Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals 2023, 16, 186. https://doi.org/10.3390/ph16020186
Petr J. Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals. 2023; 16(2):186. https://doi.org/10.3390/ph16020186
Chicago/Turabian StylePetr, Jan. 2023. "Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration" Pharmaceuticals 16, no. 2: 186. https://doi.org/10.3390/ph16020186
APA StylePetr, J. (2023). Determination of Tyrosine Kinase Inhibitors via Capillary Electrophoresis with Tandem Mass Spectrometry and Online Stacking Preconcentration. Pharmaceuticals, 16(2), 186. https://doi.org/10.3390/ph16020186