A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain
Abstract
:1. Introduction
2. Results
2.1. LC–MS/MS Analysis
2.2. Method Validation
2.3. Pharmacokinetics Study
2.4. Brain Nuclei Distribution and Neuroprotective Effect
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Instrumentation and Analytical Conditions
4.3. Animals
4.4. Samples Preparation
4.5. Method Validation
4.6. Pharmacokinetics Study
4.7. Brain Nuclei Distribution
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic Acid: A Comprehensive Review of the Dietary Sources, Processing Effects, Bioavailability, Beneficial Properties, Mechanisms of Action, and Future Directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef] [PubMed]
- Abrankó, L.; Clifford, M.N. An Unambiguous Nomenclature for the Acylquinic Acids Commonly Known as Chlorogenic Acids. J. Agric. Food Chem. 2017, 65, 3602–3608. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Xiang, R.; Fu, C.; Qu, Z.; Liu, C. The Regulatory Effect of Chlorogenic Acid On Gut-Brain Function and its Mechanism: A Systematic Review. Biomed. Pharmacother. 2022, 149, 112831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ju, W.Z.; Chen, M.; Liu, F.; Tan, H.S.; Song, R.J. Pharmacokinetics of Chlorogenic Acid in Mailuoning Injection for Healthy Volunteers. Chin. J. Clin. Pharm. Ther. 2009, 14, 536–540. [Google Scholar]
- Li, H.Y.; Zhao, W.; Wang, X.L.; Wang, T.; Wang, C.X. Sensitive Electrochemical Determination of Chlorogenic Acid in Traditional Chinese Medicine Product and its Interaction with Dna. J. Instrumental Anal. 2017, 36, 398–402,408. [Google Scholar]
- Qiu, X.L.; Ren, X.L.; Zhang, H.J.; Xiao, W.; Qi, A.D. Study On Degradation Kinetics of Chlorogenic Acid in Reduning Injection. J. Pharm. Anal. 2012, 32, 2240–2245. [Google Scholar]
- Feng, Y.; Yu, Y.H.; Wang, S.T.; Ren, J.; Camer, D.; Hua, Y.Z.; Zhang, Q.; Huang, J.; Xue, D.L.; Zhang, X.F.; et al. Chlorogenic Acid Protects D-Galactose-Induced Liver and Kidney Injury Via Antioxidation and Anti-Inflammation Effects in Mice. Pharm. Biol. 2016, 54, 1027–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoyama, A.T.; Santin, J.R.; Machado, I.D.; de Oliveira E Silva, A.M.; de Melo, I.L.P.; Mancini-Filho, J.; Farsky, S.H.P. Antiulcerogenic Activity of Chlorogenic Acid in Different Models of Gastric Ulcer. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 5–14. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Wang, J.K.; Ballevre, O.; Luo, H.L.; Zhang, W.G. Antihypertensive Effects and Mechanisms of Chlorogenic Acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.; Choi, M.S.; Lee, M.K. Chlorogenic Acid Exhibits Anti-Obesity Property and Improves Lipid Metabolism in High-Fat Diet-Induced-Obese Mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Gao, L.J.; Li, X.Q.; Meng, S.; Ma, T.Y.; Wan, L.H.; Xu, S.J. Chlorogenic Acid Alleviates Aβ25-35-Induced Autophagy and Cognitive Impairment Via the Mtor/Tfeb Signaling Pathway. Drug Des. Dev. Ther. 2020, 14, 1705–1716. [Google Scholar] [CrossRef] [PubMed]
- Heitman, E.; Ingram, D.K. Cognitive and Neuroprotective Effects of Chlorogenic Acid. Nutr. Neurosci. 2016, 20, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.J.; Qi, R.B.; Zhang, J.; Wang, Z.G.; Wang, H.D.; Hu, C.F.; Zhao, Y.R.; Bie, M.; Wang, Y.P.; Fu, Y.M.; et al. Chlorogenic Acid Inhibits Lps-Induced Microglial Activation and Improves Survival of Dopaminergic Neurons. Brain Res. Bull. 2012, 88, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Chen, H.X.; Li, H.; Tang, Y.; Yang, L.; Cao, S.S.; Qin, D.L. Antidepressant Potential of Chlorogenic Acid-Enriched Extract From Eucommia Ulmoides Oliver Bark with Neuron Protection and Promotion of Serotonin Release through Enhancing Synapsin I Expression. Molecules 2016, 21, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.P.; Yu, J.; Luo, J.Y.; Li, H.S.; Han, F.J.; Chen, X.G.; De Hu, Z. Determination and Pharmacokinetic Study of Chlorogenic Acid in Rat Dosed with Yin-Huang Granules by Rp-Hplc. Biomed. Chromatogr. 2006, 20, 206–210. [Google Scholar] [CrossRef]
- Gao, R.; Lin, Y.; Liang, G.; Yu, B.; Gao, Y. Comparative Pharmacokinetic Study of Chlorogenic Acid After Oral Administration of Lonicerae Japonicae Flos and Shuang-Huang-Lian in Normal and Febrile Rats. Phytother. Res. 2014, 28, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.S.; Pereira, S.M.F.; Arantes, M.B.S.; Glória, L.L.; Nunes, C.R.; Passos, M.D.S.; Vieira, I.J.C.; Moraes, L.P.D.; Rodrigues, R.; Oliveira, D.B. Bioanalytical Method Validation for the Quantification of the Chlorogenic Acid in Capsicum Baccatum through High Performance Liquid Chromatography (Hplc-Dad). Food Chem. 2020, 325, 126929. [Google Scholar] [CrossRef]
- De Luca, S.; Ciotoli, E.; Biancolillo, A.; Bucci, R.; Magrì, A.D.; Marini, F. Simultaneous Quantification of Caffeine and Chlorogenic Acid in Coffee Green Beans and Varietal Classification of the Samples by Hplc-Dad Coupled with Chemometrics. Environ. Sci. Pollut. Res. 2018, 25, 28748–28759. [Google Scholar] [CrossRef]
- Maity, N.; Nema, N.K.; Sellamuthu, M.K.; Sarkar, B.K.; Mukherjee, P.K. Simultaneous Estimation of Hydroxychavicol and Chlorogenic Acid From Piper Betel L. Through Rp-Hplc. Nat. Prod. Res. 2012, 26, 1939–1941. [Google Scholar] [CrossRef]
- Pardridge, W.M. Csf, Blood–Brain Barrier, and Brain Drug Delivery. Expert Opin. Drug Deliv. 2016, 13, 963–975. [Google Scholar] [CrossRef]
- Doran, A.C.; Osgood, S.M.; Mancuso, J.Y.; Shaffer, C.L. An Evaluation of Using Rat-Derived Single-Dose Neuropharmacokinetic Parameters to Project Accurately Large Animal Unbound Brain Drug Concentrations. Drug Metab. Dispos. 2012, 40, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.J.; Yamujala, R.; Wang, Y.H.; Wang, H.; Wu, W.H.; Lawton, M.A.; Long, C.L.; Di, R. Acetylcholineestarase-Inhibiting Alkaloids from Lycoris radiata Delay Paralysis of Amyloid Beta-Expressing Transgenic C. elegans CL4176. PLoS ONE 2013, 8, e63874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fares, M.Y.; Hegazy, M.A.; El-Sayed, G.M.; Abdelrahman, M.M.; Abdelwahab, N.S. Quality by Design Approach for Green Hplc Method Development for Simultaneous Analysis of Two Thalassemia Drugs in Biological Fluid with Pharmacokinetic Study. RSC Adv. 2022, 12, 13896–13916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xing, M.; Chen, W.; Zhang, J.; Qi, H.; Xu, X. Hplc–Apci–Ms/Ms Method for the Determination of Catalpol in Rat Plasma and Cerebrospinal Fluid: Application to an in Vivo Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2012, 70, 337–343. [Google Scholar] [CrossRef]
- Rao, R.N.; Maurya, P.K.; Shinde, D.D.; Khalid, S. Precolumn Derivatization Followed by Liquid Chromatographic Separation and Determination of Tramiprosate in Rat Plasma by Fluorescence Detector: Application to Pharmacokinetics. J. Pharm. Biomed. Anal. 2011, 55, 282–287. [Google Scholar] [CrossRef]
- Feng, Y.S.; Sun, C.Y.; Yuan, Y.Y.; Zhu, Y.; Wan, J.Y.; Firempong, C.K.; Omari-Siaw, E.; Xu, Y.; Pu, Z.Q.; Yu, J.N.; et al. Enhanced Oral Bioavailability and in Vivo Antioxidant Activity of Chlorogenic Acid Via Liposomal Formulation. Int. J. Pharm. 2016, 501, 342–349. [Google Scholar] [CrossRef]
- He, C.L.; Tang, Y.; Wu, J.M.; Long, T.; Yu, L.; Teng, J.F.; Qiu, W.Q.; Pan, R.; Yu, C.L.; Qin, D.L.; et al. Chlorogenic Acid Delays the Progression of Parkinson’s Disease Via Autophagy Induction in Caenorhabditis elegans. Nutr. Neurosci. 2021, 19, 1–14. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, W.; Zhang, P.J.; Gong, X.C.; Tu, P.F.; Tang, L.; Li, J.; Song, Y.L. Quality Structural Annotation for the Metabolites of Chlorogenic Acid in Rat. Food Chem. 2022, 379, 132134. [Google Scholar] [CrossRef]
- Pinta, M.N.; Montoliu, I.; Aura, A.M.; Seppänen-Laakso, T.; Barron, D.; Moco, S. In Vitro Gut Metabolism of [U-13 C]-Quinic Acid, the Other Hydrolysis Product of Chlorogenic Acid. Mol. Nutr. Food Res. 2018, 62, e1800396. [Google Scholar] [CrossRef]
- Mude, H.; Maroju, P.A.; Balapure, A.; Ganesan, R.; Dutta, J.R. Water-Soluble Caffeic Acid-Dopamine Acid-Base Complex Exhibits Enhanced Bactericidal, Antioxidant, and Anticancer Properties. Food Chem. 2022, 374, 131830. [Google Scholar] [CrossRef]
- Baeza, G.; Sarriá, B.; Mateos, R.; Bravo, L. Dihydrocaffeic Acid, a Major Microbial Metabolite of Chlorogenic Acids, Shows Similar Protective Effect than a Yerba Mate Phenolic Extract Against Oxidative Stress in Hepg2 Cells. Food Res. Int. 2016, 87, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Sun, X.L.; Watanabe, M.; Okamoto, M.; Hatano, T. Chlorogenic Acid and its Metabolite M-Coumaric Acid Evoke Neurite Outgrowth in Hippocampal Neuronal Cells. Biosci. Biotechnol. Biochem. 2008, 72, 885–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, M.S.; Xiang, L.L. Pharmacological Action and Potential Targets of Chlorogenic Acid. Adv. Pharmacol. 2020, 87, 71–88. [Google Scholar] [PubMed]
- Gonthier, M.P.; Verny, M.A.; Besson, C.; Rémésy, C.; Scalbert, A. Chlorogenic Acid Bioavailability Largely Depends On its Metabolism by the Gut Microflora in Rats. J. Nutr. 2003, 133, 1853–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liu, C.S.; Chen, Q.Z.; Wang, S.; Xiong, Y.A.; Jing, J.; Lv, J.J. Characterization, Pharmacokinetics and Tissue Distribution of Chlorogenic Acid-Loaded Self-Microemulsifying Drug Delivery System. Eur. J. Pharm. Sci. 2017, 100, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Gao, Y.; Zhao, B.N. Research Progress On Pharmacokinetics of Chlorogenic Acid. Chin. J. Tradit. Chin. Med. 2020, 35, 5095–5099. [Google Scholar]
- Li, Y.H.; Bai, H.; Huang, H.; Zhu, M.; Zhang, D.H.; Huang, X.W. Forward Genetic Screening of a Novel Gene Hmgs-1 Involved in Alzheimer Disease Pathogenesis in a Transgenic Caenorhabditis elegans Model. Biochem. Biophys. Res. Commun. 2020, 525, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Tangrodchanapong, T.; Sornkaew, N.; Yurasakpong, L.; Niamnont, N.; Nantasenamat, C.; Sobhon, P.; Meemon, K. Beneficial Effects of Cyclic Ether 2-Butoxytetrahydrofuran From Sea Cucumber Holothuria Scabra Against Aβ Aggregate Toxicity in Transgenic Caenorhabditis elegans and Potential Chemical Interaction. Molecules 2021, 26, 2195. [Google Scholar] [CrossRef] [PubMed]
Biological Matrices | Spiked (ng/mL) | Interday (RSD, %) | Intraday (RSD, %) | Accuracy (mean ± SD, %) |
---|---|---|---|---|
Plasma | 2 | 8.00 | 5.90 | 95.69 ± 6.84 |
50 | 4.70 | 3.81 | 101.55 ± 4.77 | |
400 | 3.81 | 2.22 | 106.81 ± 4.07 | |
CSF | 2 | 7.70 | 7.70 | 99.73 ± 7.68 |
50 | 3.56 | 3.56 | 106.73 ± 3.80 | |
400 | 2.40 | 2.40 | 104.92 ± 2.51 | |
Brain | 2 | 5.31 | 6.89 | 96.25 ± 8.09 |
50 | 5.67 | 4.19 | 101.43 ± 5.87 | |
400 | 6.40 | 5.83 | 95.78 ± 4.53 |
Analyte | Spiked (ng/mL) | Matrix Effect (Mean ± SD, %) | Matrix Effect (Mean ± SD, %) | Matrix Effect (Mean ± SD, %) |
---|---|---|---|---|
5-CQA | 2 | 97.32 ± 7.97 | 107.08 ± 8.76 | 98.43 ± 6.98 |
50 | 95.82 ± 5.98 | 105.06 ± 6.56 | 101.45 ± 3.89 | |
400 | 93.77 ± 4.09 | 103.14 ± 4.50 | 105.41 ± 5.62 | |
IS | 1000 | 102.80 ± 3.13 | 101.93 ± 2.78 | 103.98 ± 3.14 |
Matrix | Nominal (ng/mL) | Postpreparative (4–8 °C, 18 h) | Short-Term (25 °C, 2 h) | After Three Freeze-Thaw Cycles | |||
---|---|---|---|---|---|---|---|
Measured (ng/mL) | RSD (%) | Measured (ng/mL) | RSD (%) | Measured (ng/mL) | RSD (%) | ||
Plasma | 2 | 2.21 ± 0.17 | 7.52 | 2.21 ± 0.17 | 7.52 | 2.21 ± 0.17 | 7.52 |
50 | 52.81 ± 3.06 | 5.79 | 52.81 ± 3.06 | 5.79 | 52.81 ± 3.06 | 5.79 | |
400 | 406.82 ± 13.06 | 3.21 | 406.82 ± 13.06 | 3.21 | 406.82 ± 13.06 | 3.21 | |
CSF | 2 | 2.16 ± 0.11 | 5.09 | 1.91 ± 0.13 | 6.81 | 1.84 ± 0.11 | 5.98 |
50 | 51.77 ± 1.03 | 1.99 | 50.09 ± 3.01 | 6.01 | 47.35 ± 4.35 | 9.19 | |
400 | 404.00 ± 18.50 | 4.58 | 387.67 ± 36.13 | 9.32 | 364.29 ± 30.46 | 8.36 | |
Brain | 2 | 1.98 ± 0.14 | 3.88 | 2.08 ± 0.31 | 6.78 | 2.13 ± 0.09 | 2.51 |
50 | 50.83 ± 1.14 | 1.99 | 51.87 ± 2.04 | 2.45 | 51.23 ± 3.24 | 2.45 | |
400 | 405.87 ± 16.37 | 4.31 | 407.61 ± 26.01 | 3.78 | 405.31 ± 16.43 | 5.21 |
Parameter | In CSF | In Plasma |
---|---|---|
Cmax (ng/mL) | 148.35 ± 43.13 | 42,545.60 ± 3040.20 |
t1/2 (h) | 0.44 ± 0.27 | 1.24 ± 0.96 |
AUC0-t (ng/h/mL) | 142.30 ± 67.33 | 34,985.91 ± 17,066.36 |
AUC0-∞ (ng/h/mL) | 176.81 ± 77.44 | 60,509.74 ± 39,713.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, C.; Zhou, X.; Yu, L.; Wu, A.; Yang, L.; Chen, J.; Tang, X.; Zou, W.; Wu, J.; Zhu, L. A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain. Pharmaceuticals 2023, 16, 178. https://doi.org/10.3390/ph16020178
Bai C, Zhou X, Yu L, Wu A, Yang L, Chen J, Tang X, Zou W, Wu J, Zhu L. A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain. Pharmaceuticals. 2023; 16(2):178. https://doi.org/10.3390/ph16020178
Chicago/Turabian StyleBai, Chongfei, Xiaogang Zhou, Lu Yu, Anguo Wu, Le Yang, Jianping Chen, Xue Tang, Wenjun Zou, Jianming Wu, and Linjie Zhu. 2023. "A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain" Pharmaceuticals 16, no. 2: 178. https://doi.org/10.3390/ph16020178
APA StyleBai, C., Zhou, X., Yu, L., Wu, A., Yang, L., Chen, J., Tang, X., Zou, W., Wu, J., & Zhu, L. (2023). A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain. Pharmaceuticals, 16(2), 178. https://doi.org/10.3390/ph16020178