Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antioxidant Activity by TAC and FRAP Methods
2.3. Molecular Docking of the Selected Compounds
2.4. Molecular Dynamics Simulations
2.5. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET), and Pharmacokinetic Studies of the Synthesized Compounds
3. Materials and Methods
3.1. General Procedure
3.2. Synthesis of Benzimidazolones 2 and 3
3.3. General Procedure for Synthesis of Compounds 5 and 6
3.4. Antioxidant Activity
3.4.1. TAC by Phosphomolybdenum Method
3.4.2. Ferric Reducing Antioxidant Power (FRAP)
3.5. Computational Studies
3.5.1. Molecular Docking
3.5.2. Molecular Dynamics Simulations (MDs)
3.5.3. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) Profile Estimation
3.5.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, V.L.M.; Elguero, J.; Silva, A.M.S. Current Progress on Antioxidants Incorporating the Pyrazole Core. Eur. J. Med. Chem. 2018, 156, 394–429. [Google Scholar] [CrossRef] [PubMed]
- Çapan, İ.; Hawash, M.; Jaradat, N.; Sert, Y.; Servi, R.; Koca, İ. Design, Synthesis, Molecular Docking and Biological Evaluation of NewCarbazole Derivatives as Anticancer, and Antioxidant Agents. BMC Chem. 2023, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Abualhasan, M.; Hawash, M.; Aqel, S.; Al-Masri, M.; Mousa, A.; Issa, L. Biological Evaluation of Xanthene and Thioxanthene Derivatives as Antioxidant, Anticancer, and COX Inhibitors. ACS Omega 2023, 8, 38597–38606. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.; Haider, M.R.; Neha, K.; Yar, M.S. Free Radical Scavengers: An Overview on Heterocyclic Advances and Medicinal Prospects. Eur. J. Med. Chem. 2020, 204, 112607. [Google Scholar] [CrossRef] [PubMed]
- Kumara, K.; Prabhudeva, M.G.; Vagish, C.B.; Vivek, H.K.; Lokanatha Rai, K.M.; Lokanath, N.K.; Ajay Kumar, K. Design, Synthesis, Characterization, and Antioxidant Activity Studies of Novel Thienyl-Pyrazoles. Heliyon 2021, 7, e07592. [Google Scholar] [CrossRef] [PubMed]
- Renuka, N.; Vivek, H.K.; Pavithra, G.; Ajay Kumar, K. Synthesis of Coumarin Appended Pyrazolyl-1,3,4-Oxadiazoles and Pyrazolyl-1,3,4-Thiadiazoles: Evaluation of Their in Vitro Antimicrobial and Antioxidant Activities and Molecular Docking Studies. Russ. J. Bioorg. Chem. 2017, 43, 197–210. [Google Scholar] [CrossRef]
- Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized Benzimidazole Scaffolds: Privileged Heterocycle for Drug Design in Therapeutic Medicine: Recent Advances on Medicinal Applications of Benzimidazole. Arch. Pharm. Chem. Life Sci. 2016, 349, 475–506. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive Review in Current Developments of Benzimidazole-Based Medicinal Chemistry. Chem. Biol. Drug Des. 2015, 86, 19–65. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Benzimidazole and Its Derivatives as Cancer Therapeutics: The Potential Role from Traditional to Precision Medicine. Acta Pharm. Sin. B 2023, 13, 478–497. [Google Scholar] [CrossRef]
- Vausselin, T.; Séron, K.; Lavie, M.; Mesalam, A.A.; Lemasson, M.; Belouzard, S.; Fénéant, L.; Danneels, A.; Rouillé, Y.; Cocquerel, L.; et al. Identification of a New Benzimidazole Derivative as an Antiviral against Hepatitis C Virus. J. Virol. 2016, 90, 8422–8434. [Google Scholar] [CrossRef]
- Francesconi, V.; Cichero, E.; Schenone, S.; Naesens, L.; Tonelli, M. Synthesis and Biological Evaluation of Novel (Thio)Semicarbazone-Based Benzimidazoles as Antiviral Agents against Human Respiratory Viruses. Molecules 2020, 25, 1487. [Google Scholar] [CrossRef] [PubMed]
- Maghraby, M.T.-E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel Class of Benzimidazole-Thiazole Hybrids: The Privileged Scaffolds of Potent Anti-Inflammatory Activity with Dual Inhibition of Cyclooxygenase and 15-Lipoxygenase Enzymes. Bioorg. Med. Chem. 2020, 28, 115403. [Google Scholar] [CrossRef] [PubMed]
- Kamat, V.; Yallur, B.C.; Poojary, B.; Patil, V.B.; Nayak, S.P.; Krishna, P.M.; Joshi, S.D. Synthesis, Molecular Docking, Antibacterial, and Anti-inflammatory Activities of Benzimidazole-containing Tricyclic Systems. J. Chin. Chem. Soc. 2021, 68, 1055–1066. [Google Scholar] [CrossRef]
- Celik, I.; Sarıaltın, S.Y.; Çoban, T.; Kılcıgil, G. Design, Synthesis, in Vitro and in Silico Studies of Benzimidazole-Linked Oxadiazole Derivatives as Anti-inflammatory Agents. ChemistrySelect 2022, 7, e202201548. [Google Scholar] [CrossRef]
- Dhahri, M.; Khan, F.A.; Emwas, A.-H.; Alnoman, R.B.; Jaremko, M.; Rezki, N.; Aouad, M.R.; Hagar, M. Synthesis, DFT Molecular Geometry and Anticancer Activity of Symmetrical 2,2′-(2-Oxo-1H-Benzo[d]Imidazole-1,3(2H)-Diyl) Diacetate and Its Arylideneacetohydrazide Derivatives. Materials 2022, 15, 2544. [Google Scholar] [CrossRef] [PubMed]
- Madgula, K.; Dandu, S.; Kasula, S.; Halady, P. Microwave Synthesized Ionic Liquids as Green Catalysts for the Synthesis of Benzimidazoles: Spectral and Computational Studies for Potential Anticancer Activity. Inorg. Chem. Commun. 2022, 138, 109218. [Google Scholar] [CrossRef]
- Nawareg, N.A.; Mostafa, A.S.; El-Messery, S.M.; Nasr, M.N.A. New Benzimidazole Based Hybrids: Synthesis, Molecular Modeling Study and Anticancer Evaluation as TopoII Inhibitors. Bioorg. Chem. 2022, 127, 106038. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, S.; Rani, V.; Sharma, P. Pyrazole Containing Anti-HIV Agents: An Update. Med. Chem. 2022, 18, 831–846. [Google Scholar] [CrossRef]
- Acar Çevik, U.; Işık, A.; Evren, A.E.; Kapusız, Ö.; Gül, Ü.D.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of New Benzimidazole Derivatives Containing 1,3,4-Thiadiazole: Their in Vitro Antimicrobial, in Silico Molecular Docking and Molecular Dynamic Simulations Studies. SAR QSAR Environ. Res. 2022, 33, 899–914. [Google Scholar] [CrossRef]
- Saber, A.; Sebbar, N.K.; Sert, Y.; Alzaqri, N.; Hökelek, T.; El Ghayati, L.; Talbaoui, A.; Mague, J.T.; Baba, Y.F.; Urrutigoîty, M.; et al. Syntheses of N-Substituted Benzimidazolone Derivatives: DFT Calculations, Hirshfeld Surface Analysis, Molecular Docking Studies and Antibacterial Activities. J. Mol. Struct. 2020, 1200, 127174. [Google Scholar] [CrossRef]
- Pribut, N.; Basson, A.E.; van Otterlo, W.A.L.; Liotta, D.C.; Pelly, S.C. Aryl Substituted Benzimidazolones as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors. ACS Med. Chem. Lett. 2019, 10, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Ullah, H.; Rahim, F.; Ullah, I.; Taha, M.; Iqbal, N.; Khan, F.; Khan, M.S.; Shah, S.A.A.; Wadood, A.; et al. Synthesis, Biological Evaluation and Molecular Docking Study of Benzimidazole Derivatives as α-Glucosidase Inhibitors and Anti-Diabetes Candidates. J. Mol. Struct. 2023, 1276, 134774. [Google Scholar] [CrossRef]
- Ullah, H.; Majeed, A.; Rahim, F.; Hussain, A.; Khan, F.; Nawaz, H.; Khan, M.S.; Umar, A.; Wadood, A.; Samad, A. Synthesis of Benzimidazole-Thiosemicarbazone Hybrid Derivatives, in Vitro α-Glucosidase and α-Amylase Activities, and an in Silico Molecular Docking Study. Chem. Data Collect. 2023, 45, 101027. [Google Scholar] [CrossRef]
- Sahoo, B.M.; Banik, B.K.; Mazaharunnisa; Rao, N.S.; Raju, B. Microwave Assisted Green Synthesis of Benzimidazole Derivatives and Evaluation of Their Anticonvulsant Activity. Curr. Microw. Chem. 2019, 6, 23–29. [Google Scholar] [CrossRef]
- Swikriti; Babbar, R.; Saini, D.; Rawat, R.; Chigurupati, S.; Felemban, S.G.; Vargas-De-La-Cruz, C.; Behl, T. Design and Synthesis of Neoteric Benzylidene Amino-Benzimidazole Scaffolds for Antioxidant and Anti-Inflammatory Activity. Future Med. Chem. 2023, 15, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Patagar, D.N.; Batakurki, S.R.; Kusanur, R.; Patra, S.M.; Saravanakumar, S.; Ghate, M. Synthesis, Antioxidant and Anti-Diabetic Potential of Novel Benzimidazole Substituted Coumarin-3-Carboxamides. J. Mol. Struct. 2023, 1274, 134589. [Google Scholar] [CrossRef]
- Bhandari, S.V.; Nagras, O.G.; Kuthe, P.V.; Sarkate, A.P.; Waghamare, K.S.; Pansare, D.N.; Chaudhari, S.Y.; Mawale, S.N.; Belwate, M.C. Design, Synthesis, Molecular Docking and Antioxidant Evaluation of Benzimidazole-1,3,4 Oxadiazole Derivatives. J. Mol. Struct. 2023, 1276, 134747. [Google Scholar] [CrossRef]
- Abdelwahab, H.E.; Ibrahim, H.Z.; Omar, A.Z. Design, Synthesis, DFT, Molecular Docking, and Biological Evalution of Pyrazole Derivatives as Potent Acetyl Cholinestrease Inhibitors. J. Mol. Struct. 2023, 1271, 134137. [Google Scholar] [CrossRef]
- Abouelenein, M.G.; Ismail, A.E.-H.A.; Aboelnaga, A.; Tantawy, M.A.; El-Ebiary, N.M.A.; El-Assaly, S.A. Synthesis, DFT Calculations, In Silico Studies, and Biological Evaluation of Pyrano[2,3-c]Pyrazole and Pyrazolo[4′,3′:5,6]Pyrano[2,3-d]Pyrimidine Derivatives. J. Mol. Struct. 2023, 1275, 134587. [Google Scholar] [CrossRef]
- Sangepu, V.R.; Jain, K.K.; Bhoomireddy, R.D.; Sharma, D.; Venkateshwarlu, R.; Kapavarapu, R.; Dandela, R.; Pal, M. One-Pot Sonochemical Synthesis and in Silico/in Vitro Antitubercular Evaluation of 1-Methyl-3-Propyl-1H-Pyrazole Containing Polynuclear Fused N-Heteroarenes. J. Mol. Struct. 2023, 1278, 134909. [Google Scholar] [CrossRef]
- Patil, P.; Nippu, B.N.; Satyanarayan, N.D.; Pore, S.; Zond, R.; Gurav, A.; Hangirgekar, S.; Sankpal, S. Design, Synthesis, Docking Studies and Anticancer Evaluation of Spiro[Indoline-3,4′-Pyrano[2,3-c]Pyrazole] Derivatives on MIN-6 Cancer Cell Line. J. Mol. Struct. 2023, 1277, 134772. [Google Scholar] [CrossRef]
- Ren, B.; Liu, R.-C.; Ji, K.; Tang, J.-J.; Gao, J.-M. Design, Synthesis and in Vitro Antitumor Evaluation of Novel Pyrazole-Benzimidazole Derivatives. Bioorg. Med. Chem. Lett. 2021, 43, 128097. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M. Synthesis of Antimicrobial Benzimidazole–Pyrazole Compounds and Their Biological Activities. Antibiotics 2021, 10, 1002. [Google Scholar] [CrossRef] [PubMed]
- Zalaru, C.; Dumitrascu, F.; Draghici, C.; Tarcomnicu, I.; Marinescu, M.; Nitulescu, G.M.; Tatia, R.; Moldovan, L.; Popa, M.; Chifiriuc, M.C. New Pyrazolo-Benzimidazole Mannich Bases with Antimicrobial and Antibiofilm Activities. Antibiotics 2022, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Sultana, R.; Ali, A.; Twala, C.; Mehandi, R.; Rana, M.; Yameen, D.; Abid, M. Rahisuddin Synthesis, Spectral Characterization of Pyrazole Derived Schiff Base Analogs: Molecular Dynamic Simulation, Antibacterial and DNA Binding Studies. J. Biomol. Struct. Dyn. 2023, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Yao, J.; Liu, H.; Bai, X.; Gao, X.; Pan, Q.; Yang, W. Design, Synthesis, and Bioactivity of Novel Quinazolinone Scaffolds Containing Pyrazole Carbamide Derivatives as Antifungal Agents. Curr. Issues Mol. Biol. 2022, 44, 5605–5621. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Gupta, K.; Sivaraman, S.; Venkatachalam, P.; Yennamalli, R.M.; Shanmugam, S.R. Waste to Drugs: Identification of Pyrolysis by-Products as Antifungal Agents against Cryptococcus neoformans. J. Biomol. Struct. Dyn. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gudimani, P.; Hebbar, N.U.; Shastri, S.L.; Shastri, L.A.; Shettar, A.K.; Hoskeri, J.H.; Joshi, S.; Sunagar, V.A. A New Approach for the Synthesis of Tri-Substituted Pyrazole Propionic Acids Derivatives:Anti-Inflammatory, Antimicrobial and Molecular Docking Studies. J. Mol. Struct. 2023, 1285, 135405. [Google Scholar] [CrossRef]
- Karati, D.; Mahadik, K.R.; Trivedi, P.; Kumar, D. A Molecular Insight into Pyrazole Congeners as Antimicrobial, Anticancer, and Antimalarial Agents. Med. Chem. 2022, 18, 1044–1059. [Google Scholar] [CrossRef]
- Duhan, M.; Singh, R.; Devi, M.; Sindhu, J.; Bhatia, R.; Kumar, A.; Kumar, P. Synthesis, Molecular Docking and QSAR Study of Thiazole Clubbed Pyrazole Hybrid as α-Amylase Inhibitor. J. Biomol. Struct. Dyn. 2021, 39, 91–107. [Google Scholar] [CrossRef]
- Bakthavatchala Reddy, N.; Zyryanov, G.V.; Mallikarjuna Reddy, G.; Balakrishna, A.; Padmaja, A.; Padmavathi, V.; Suresh Reddy, C.; Garcia, J.R.; Sravya, G. Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents: Design and Synthesis of Some New Benzimidazole Containing Pyrazoles and Pyrazolyl Thiazoles as Potential Antimicrobial Agents. J. Heterocycl. Chem. 2019, 56, 589–596. [Google Scholar] [CrossRef]
- Desai, N.C.; Pandya, D.D.; Jadeja, D.J.; Panda, S.K.; Rana, M.K. Design, Synthesis, Biological Evaluation and Molecular Docking Study of Novel Hybrid of Pyrazole and Benzimidazoles. Chem. Data Collect. 2021, 33, 100703. [Google Scholar] [CrossRef]
- Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, Characterization, Anti-Ulcer Action and Molecular Docking Evaluation of Novel Benzimidazole-Pyrazole Hybrids. Chem. Cent. J. 2017, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Su, W.; Cheng, J.; Xiao, T.; Li, H.; Chen, D.; Zhang, Z. Benzimidazole Hybrids as Anticancer Drugs: An Updated Review on Anticancer Properties, Structure–Activity Relationship, and Mechanisms of Action (2019–2021). Arch. Pharm. 2022, 355, 2200051. [Google Scholar] [CrossRef] [PubMed]
- Chikkula, K.V.; Sundararajan, R. Analgesic, Anti-Inflammatory, and Antimicrobial Activities of Novel Isoxazole/Pyrimidine/Pyrazole Substituted Benzimidazole Analogs. Med. Chem. Res. 2017, 26, 3026–3037. [Google Scholar] [CrossRef]
- Neto, J.S.S.; Zeni, G. Alkynes and Nitrogen Compounds: Useful Substrates for the Synthesis of Pyrazoles. Chem. Eur. J. 2020, 26, 8175–8189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiong, C.; Zhong, J.; Zhou, Q. Synthesis of 1,3,5-Trisubstituted Pyrazole-4-Carboxylates through 1,3-Dipolar Cycloaddition of Nitrilimines with Allenoates. Tetrahedron 2022, 115, 132790. [Google Scholar] [CrossRef]
- Dhoddi, B.N.; Kurapati, R.; Kundur, G.R.; Bitla, S.; Puligilla, B.; Pochampally, J. Synthesis and In Vitro Cytotoxic Evaluation of Novel Triazole-Benzimidazole Embodied Pyrazole Derivatives against Breast Cancer. Synthesis 2022, 15, 1345–1351. [Google Scholar] [CrossRef]
- Jiang, R.; Mu, Y.; Zhang, W.; Hong, Y.; Iqbal, Z.; Hou, J.; Yang, Z.; Tang, D. Acid-Promoted Synthesis of Pyrazolo[4,3-c]Quinoline Derivatives by Employing Pyrazole-Arylamines and β-Keto Esters via Cleavage of C–C Bonds. Synth. Commun. 2022, 52, 1796–1804. [Google Scholar] [CrossRef]
- Sanghavi, K.N.; Kher, M.N.; Kapadiya, K.M. An Efficient Protocol for the Synthesis of Substituted 5-amino Pyrazole Bearing Benzo[d]Imidazolone Core and Their Antioxidant Activity. J. Heterocycl. Chem. 2023, 60, 993–1003. [Google Scholar] [CrossRef]
- Durgamma, S.; Muralikrishna, A.; Padmavathi, V.; Padmaja, A. Synthesis and Antioxidant Activity of Amido-Linked Benzoxazolyl/Benzothiazolyl/Benzimidazolyl-Pyrroles and Pyrazoles. Med. Chem. Res. 2014, 23, 2916–2929. [Google Scholar] [CrossRef]
- Bellam, M.; Gundluru, M.; Sarva, S.; Chadive, S.; Netala, V.R.; Tartte, V.; Cirandur, S.R. Synthesis and Antioxidant Activity of Some New N-Alkylated Pyrazole-Containing Benzimidazoles. Chem. Heterocycl. Comp. 2017, 53, 173–178. [Google Scholar] [CrossRef]
- Nardi, M.; Cano, N.C.H.; Simeonov, S.; Bence, R.; Kurutos, A.; Scarpelli, R.; Wunderlin, D.; Procopio, A. A Review on the Green Synthesis of Benzimidazole Derivatives and Their Pharmacological Activities. Catalysts 2023, 13, 392. [Google Scholar] [CrossRef]
- Adardour, M.; Zaballos-García, E.; Loughzail, M.; Dahaoui, S.; Baouid, A. Synthesis, Characterization and X-ray Structure of Heterocyclic Systems Prepared via 1,3-Dipolar Cycloaddition of Nitrile Oxides with Benzimidazolone. J. Mol. Struct. 2018, 1165, 153–161. [Google Scholar] [CrossRef]
- Adardour, M.; Boutafda, A.; Hdoufane, I.; Aghraz, A.; Hafidi, M.; Zaballos-García, E.; Cherqaoui, D.; Baouid, A. Efficient and Simple Synthesis of Novel 1,2,3-Triazolyl-Linked Benzimidazolone, Molecular Docking and Evaluation of Their Antimicrobial Activity. Synth. Commun. 2020, 50, 3490–3506. [Google Scholar] [CrossRef]
- Ait Lahcen, M.; Adardour, M.; Mortada, S.; Oubahmane, M.; Hmaimou, S.; Loughzail, M.; Hdoufane, I.; Lahmidi, S.; Faouzi, M.E.A.; Cherqaoui, D.; et al. Synthesis, Characterization, X-ray, α-Glucosidase Inhibition and Molecular Docking Study of New Triazolic Systems Based on 1,5-Benzodiazepine via 1,3-Dipolar Cycloaddition Reactions. J. Biomol. Struct. Dyn. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Gawande, N.M.; Khobragade, C.N. Synthesis and Biological Evaluation of a Novel Series of Pyrazole Chalcones as Anti-Inflammatory, Antioxidant and Antimicrobial Agents. Bioorg. Med. Chem. 2009, 17, 8168–8173. [Google Scholar] [CrossRef]
- Mukarram, S.; Bandgar, B.P.; Shaikh, R.U.; Ganapure, S.D.; Chavan, H.V. Synthesis of Novel α,α-Difluoro-β-Hydroxycarbonyl Pyrazole Derivatives as Antioxidant, Anti-Inflammatory and Anticancer Agents. Med. Chem. Res. 2017, 26, 262–273. [Google Scholar] [CrossRef]
- Oubahmane, M.; Hdoufane, I.; Delaite, C.; Sayede, A.; Cherqaoui, D.; El Allali, A. Design of Potent Inhibitors Targeting the Main Protease of SARS-CoV-2 Using QSAR Modeling, Molecular Docking, and Molecular Dynamics Simulations. Pharmaceuticals 2023, 16, 608. [Google Scholar] [CrossRef]
- Torres-Martínez, R.; García-Rodríguez, Y.M.; Ríos-Chávez, P.; Saavedra-Molina, A.; López-Meza, J.E.; Ochoa-Zarzosa, A.; Garciglia, R.S. Antioxidant Activity of the Essential Oil and Its Major Terpenes of Satureja macrostema (Moc. and Sessé Ex Benth.) Briq. Pharmacogn. Mag. 2018, 13, S875. [Google Scholar]
- Cele, N.; Awolade, P.; Seboletswe, P.; Olofinsan, K.; Islam, M.d.S.; Singh, P. α-Glucosidase and α-Amylase Inhibitory Potentials of Quinoline–1,3,4-Oxadiazole Conjugates Bearing 1,2,3-Triazole with Antioxidant Activity, Kinetic Studies, and Computational Validation. Pharmaceuticals 2022, 15, 1035. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.-P.; Evrard, C.; Clippe, A.; Stricht, D.V.; Bernard, A.; Knoops, B. Crystal Structure of Human Peroxiredoxin 5, a Novel Type of Mammalian Peroxiredoxin at 1.5 Å Resolution. J. Mol. Biol. 2001, 311, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef]
Compound | IC50 (µM) | |
---|---|---|
TAC | FRAP | |
5a | 44.62 ± 0.20 | 108.30 ± 0.59 |
5b | 247.80 ± 1.54 | 197.93 ± 2.05 |
5c | 14.00 ± 0.14 | 120.50 ± 1.38 |
6a | 56.55 ± 0.10 | 92.70 ± 0.43 |
6b | 12.47 ± 0.02 | 388.50 ± 1.59 |
6c | 12.82 ± 0.10 | 68.97 ± 0.26 |
Ascorbic Acid | 65.97 ± 1.53 | 88.12 ± 0.23 |
BHT | 31.76 ± 1.22 | -- |
Binding Affinity (Kcal/mol) | Hydrogen Binding | Hydrophobic Interaction | |||
---|---|---|---|---|---|
NB | Residues | NB | Residues | ||
5c | −6.2 | 0 | - | 7 | Pro40, Pro45, Phe120 |
6b | −6.3 | 4 | Thr44, Gly46, Cys47 | 4 | Pro40, Pro45, Leu116, Phe120 |
6c | −6.3 | 4 | Thr44, Gly46, Cys47 | 4 | Pro40, Pro45, Leu116, Phe120 |
Ascorbic acid | −4.5 | 5 | Thr44, Cys47, Arg127, Thr147 | 0 | - |
BHT | −4.6 | 0 | - | 6 | Pro40, Pro45, Ile119, Phe120 |
Benzoic acid | −4.5 | 4 | Thr44, Cys47, Arg127, Thr147 | 2 | Pro40, Arg127 |
5a | 5b | 5c | 6a | 6b | 6c | |
---|---|---|---|---|---|---|
Molecular weight (≤500 g/mol) | 456.54 | 476.95 | 444.53 | 458.55 | 478.97 | |
H-bond acceptors (≤10) | 4 | 4 | 4 | 4 | 4 | 4 |
H-bond donors (≤5) | 0 | 0 | 0 | 0 | 0 | 0 |
Rotatable bonds (≤10) | 7 | 7 | 7 | 7 | 7 | 7 |
TPSA (≤140 Å2) | 71.05 | 71.05 | 71.05 | 68.83 | 68.83 | 68.83 |
MLog Po/w (≤4.15) | 3.93 | 4.13 | 4.40 | 3.77 | 3.97 | 4.24 |
GI absorption | High | High | High | High | High | High |
BBB permeant | Yes | No | No | Yes | Yes | Yes |
P-gp substrate | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | No | No | No | No |
Lipinski’s rule (violation) | Yes (0) | Yes (0) | Yes (1) | Yes (0) | Yes (0) | Yes (1) |
Veber’s rule | Yes | Yes | Yes | Yes | Yes | Yes |
Bioavailability Score | 0.55 | Yes | Yes | Yes | Yes | Yes |
Brenk | 0 | 0 | 0 | 0 | 0 | 0 |
PAINS | 0 | 0 | 0 | 0 | 0 | 0 |
LD50 (mg/kg body weight) | 540 | 2450 | 564 | 1250 | 1350 | 1350 |
Predicted toxicity class | 4 | 5 | 4 | 4 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adardour, M.; Ait Lahcen, M.; Oubahmane, M.; Ettahiri, W.; Hdoufane, I.; Bouamama, H.; Alanazi, M.M.; Cherqaoui, D.; Taleb, M.; Garcia, E.Z.; et al. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals 2023, 16, 1648. https://doi.org/10.3390/ph16121648
Adardour M, Ait Lahcen M, Oubahmane M, Ettahiri W, Hdoufane I, Bouamama H, Alanazi MM, Cherqaoui D, Taleb M, Garcia EZ, et al. Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals. 2023; 16(12):1648. https://doi.org/10.3390/ph16121648
Chicago/Turabian StyleAdardour, Mohamed, Marouane Ait Lahcen, Mehdi Oubahmane, Walid Ettahiri, Ismail Hdoufane, Hafida Bouamama, Mohammed M. Alanazi, Driss Cherqaoui, Mustapha Taleb, Elena Zaballos Garcia, and et al. 2023. "Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants" Pharmaceuticals 16, no. 12: 1648. https://doi.org/10.3390/ph16121648
APA StyleAdardour, M., Ait Lahcen, M., Oubahmane, M., Ettahiri, W., Hdoufane, I., Bouamama, H., Alanazi, M. M., Cherqaoui, D., Taleb, M., Garcia, E. Z., & Baouid, A. (2023). Design, Synthesis, Molecular Modeling and Biological Evaluation of Novel Pyrazole Benzimidazolone Derivatives as Potent Antioxidants. Pharmaceuticals, 16(12), 1648. https://doi.org/10.3390/ph16121648