Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystallographic Results
2.2. Elucidation of Ionization States
2.3. Conformation Analysis
2.4. PXRD Analysis
2.5. DSC Analysis
2.6. FT−IR Analysis
2.7. Equilibrium Solubility
2.8. Powder Dissolution Experiments
2.9. Stability
3. Materials and Methods
3.1. Materials
3.2. Sample Preparations
3.2.1. Liquid-Assisted Grinding and Slurry
3.2.2. Slow Evaporation Method
3.3. Single-Crystal X-ray Diffraction (SCXRD) Analysis
3.4. Powder X-ray Diffraction (PXRD) Analysis
3.5. Thermal Analysis
3.6. Fourier Transform Infrared Spectroscopy (FT−IR) Analysis
3.7. Equilibrium Solubility
3.8. Powder Dissolution Experiments
3.9. Stability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loose, D.S.; Kan, P.B.; Hirst, M.A.; Marcus, R.A.; Feldman, D. Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes. J. Clin. Investig. 1983, 71, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Pont, A.; Williams, P.L.; Loose, D.S.; Feldman, D.; Reitz, R.E.; Bochra, C.; Stevens, D.A. Ketoconazole blocks adrenal steroid synthesis. Ann. Intern. Med. 1982, 97, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Van den Bossche, H.; Willemsens, G.; Cools, W.; Cornelissen, F.; Lauwers, W.F.; van Cutsem, J.M. In vitro and in vivo effects of the antimycotic drug ketoconazole on sterol synthesis. Antimicrob. Agents Chemother. 1980, 17, 922–928. [Google Scholar] [CrossRef]
- Dismukes, W.; Stamm, A.; Graybill, J. Treatment of systemic mycoses with ketoconazole: Emphasis on toxicity and clinical response in 52 patients: National institute of allergy and infectious diseases collaborative antifungal study. Ann. Intern. Med. 1983, 93, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Thienpont, D.; Van Cutsem, J.; Borgers, M. Ketoconazole in experimental candidosis. Clin. Infect. Dis. 1980, 2, 570–577. [Google Scholar] [CrossRef]
- Van Tyle, J.H. Ketoconazole. Mechanism of action, spectrum of activity, pharmacokinetics, drug interactions, adverse reactions and therapeutic use. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1984, 4, 343–373. [Google Scholar] [CrossRef]
- Borgers, M.; Van Den Bossche, H.; Brabander, M.D. The mechanism of action of the new antimycotic ketoconazole. Am. J. Med. 1983, 74, 2–8. [Google Scholar] [CrossRef]
- Esclusa-Diaz, M.T.; Guimaraens-Méndez, M.; Pérez-Marcos, M.B.; Vila-Jato, J.L.; Torres-Labandeira, J.J. Characterization and in vitro dissolution behaviour of ketoconazole/β- and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int. J. Pharm. 1996, 143, 203–210. [Google Scholar] [CrossRef]
- Wu, C.Y.; Benet, L.Z. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 2005, 22, 11–23. [Google Scholar] [CrossRef]
- Aggarwal, A.K.; Jain, S. Physicochemical characterization and dissolution study of solid dispersions of ketoconazole with nicotinamide. Chem. Pharm. Bull. 2011, 59, 629–638. [Google Scholar] [CrossRef]
- Dressman, J.B.; Reppas, C. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 2000, 11, S73–S80. [Google Scholar] [CrossRef] [PubMed]
- Demirel, M.; Yurtdaş, G.; Genç, L. Inclusion complexes of ketoconazole with beta-cyclodextrin: Physicochemical characterization and in vitro dissolution behaviour of its vaginal suppositories. J. Incl. Phenom. Macrocycl. Chem. 2011, 70, 437–445. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Haq, N.; Alam, P.; Abdel-Kader, M.S.; Foudah, A.I.; Shakeel, F. Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. J. Mol. Liq. 2021, 331, 115700. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alsarra, I.A.; Alshehri, S. Solubility, Hansen solubility parameters and thermodynamic behavior of emtricitabine in various (polyethylene glycol-400+water) mixtures: Computational modeling and thermodynamics. Molecules 2020, 25, 1559. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alsarra, I.A. Equilibrium solubility determination, Hansen solubility parameters and solution thermodynamics of cabozantinib malate in different monosolvents of pharmaceutical importance. J. Mol. Liq. 2021, 324, 115146. [Google Scholar] [CrossRef]
- Alshehri, S.; Shakeel, F.; Alam, P.; Peña, Á.; Jouyban, A.; Martinez, F. Effect of temperature and polarity on the solubility and preferential solvation of sinapic acid in aqueous mixtures of DMSO and Carbitol. J. Mol. Liq. 2021, 340, 117268. [Google Scholar] [CrossRef]
- Nemec, V.; Lisac, K.; Bedekovi, N.; Fotović, L.; Stilinović, V.; Cinčić, D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: Salts, cocrystals and salt cocrystals. CrystEngComm 2021, 23, 3063–3083. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, B.; Xing, W.; Jia, H.; Wang, X.; Gong, N.; Lu, Y.; Du, G. A series of stable, metastable and unstable salts of Imatinib with improved solubility. Chin. Chem. Lett. 2022, 33, 2159–2164. [Google Scholar] [CrossRef]
- Ross, S.A.; Lamprou, D.A.; Douroumis, D. Engineering and manufacturing of pharmaceutical co-crystals: A review of solvent-free manufacturing technologies. Chem. Commun. 2016, 52, 8772–8786. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Perry, M.L.; Almarsson, Ö.; Zaworotko, M.J. Pharmaceutical cocrystals: Along the path to improved medicines. Chem. Commun. 2016, 52, 640–655. [Google Scholar] [CrossRef]
- Putra, O.D.; Yoshida, T.; Umeda, D.; Higashi, K.; Uekusa, H.; Yonemochi, E. Crystal structure determination of dimenhydrinate after more than 60 years: Solving salt–cocrystal ambiguity via solid-state characterizations and solubility study. Cryst. Growth Des. 2016, 16, 5223–5229. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Zhao, F.-K.; Pang, H.; Chen, L.-Z.; Shi, R.-B.; Fang, B.-H. Pharmaceutical cocrystals and salts of enrofloxacin: Structure and properties. J. Mol. Struct. 2022, 1265, 133335. [Google Scholar] [CrossRef]
- Wong, S.N.; Chen, Y.C.S.; Xuan, B.; Sun, C.C.; Chow, S.F. Cocrystal engineering of pharmaceutical solids: Therapeutic potential and challenges. CrystEngComm 2021, 23, 7005–7038. [Google Scholar] [CrossRef]
- Yu, Y.-M.; Wang, L.-Y.; Bu, F.-Z.; Wang, L.-L.; Li, Y.-T.; Wang, C.; Wu, Z.-Y. The supramolecular self-assembly of 5-fluorouracil and caffeic acid through cocrystallization strategy opens up a new way for the development of synergistic antitumor pharmaceutical cocrystal. CrystEngComm 2020, 22, 7992–8006. [Google Scholar] [CrossRef]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst. Growth Des. 2018, 18, 6380–6387. [Google Scholar] [CrossRef]
- Almansa, C.; Mercè, R.; Tesson, N.; Farran, J.; Tomàs, J.; Plata-Salamán, C.R. Co-crystal of tramadol hydrochloride–celecoxib (ctc): A novel API–API co-crystal for the treatment of pain. Cryst. Growth Des. 2017, 17, 1884–1892. [Google Scholar] [CrossRef]
- Newman, A.; Wenslow, R. Solid form changes during drug development: Good, bad, and ugly case studies. AAPS Open 2016, 2, 2. [Google Scholar] [CrossRef]
- Desiraju, G.R. Supramolecular synthons in crystal engineering—A new organic synthesis (pp. 2311–2327). Angew. Chem. Int. Ed. 1995, 34, 2311–2327. [Google Scholar] [CrossRef]
- Aakeröy, C.B.; Beatty, A.M.; Helfrich, B.A. “Total Synthesis “supramolecular style: Design and hydrogen-bond-directed assembly of ternary supermolecules. Angew. Chem. Int. Ed. 2001, 40, 3240–3242. [Google Scholar] [CrossRef]
- Martin, F.A.; Pop, M.M.; Borodi, G.; Filip, X.; Kacso, I. Ketoconazole salt and co-crystals with enhanced aqueous solubility. Cryst. Growth Des. 2013, 13, 4295–4304. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Deng, Z.; Zhang, H. Ketoconazole: Solving the poor solubility via cocrystal formation with phenolic acids. Cryst. Growth Des. 2020, 20, 6973–6982. [Google Scholar] [CrossRef]
- Shayanfara, A.; Jouyban, A. Physicochemical characterization of a new cocrystal of ketoconazole. Powder Technol. 2014, 262, 242–248. [Google Scholar] [CrossRef]
- Hiendrawan, S.; Hartanti, A.W.; Veriansyah, B.; Widjojokusumo, E.; Tjandrabinata, R.R. Solubility enhancement of ketoconazole via salt and cocrystal formation. Int. J. Pharm. Pharm. Sci. 2015, 7, 160–164. [Google Scholar]
- Indra, I.; Janah, F.M.; Aryani, R. Enhancing the solubility of ketoconazole via pharmaceutical cocrystal. J. Phys. Conf. Ser. 2019, 1179, 012134. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Liu, M.; Xing, W.; Hu, K.; Yang, S.; He, G.; Gong, N.; Du, G.; Lu, Y. Design, preparation, characterization and evaluation of five cocrystal hydrates of fluconazole with hydroxybenzoic acids. Pharmaceutics 2022, 14, 2486. [Google Scholar] [CrossRef] [PubMed]
- Gołdyn, M.; Larowska, D.; Nowak, W.; Bartoszak-Adamska, E. Synthon hierarchy in theobromine cocrystals with hydroxybenzoic acids as coformers. CrystEngComm 2019, 21, 7373–7388. [Google Scholar] [CrossRef]
- Leyssens, T.; Tumanova, N.; Robeyns, K.; Candoni, N.; Veesler, S. Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: Caffeine/dicarboxylic acid cocrystals. CrystEngComm 2014, 16, 9603–9611. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, B.; Xing, W.; Liu, M.; Yang, D.; He, G.; Wang, F.; Zhang, L.; Gong, N.; Lu, Y.; et al. Five cocrystal forms of antitumor drug temozolomide with p-hydroxybenzoic acid: Structure, computational analysis, characterizations, stability, and transformation. Cryst. Growth Des. 2022, 22, 7195–7206. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 1 June 2023).
- Cruz-Cabeza, A.J. Acid–base crystalline complexes and the pKa rule. CrystEngComm 2012, 14, 6362–6365. [Google Scholar] [CrossRef]
- Tothadi, S.; Shaikh, T.R.; Gupta, S.; Dandela, R.; Vinod, C.P.; Nangia, A.K. Can we identify the salt–cocrystal continuum state using XPS? Cryst. Growth Des. 2021, 21, 735–747. [Google Scholar] [CrossRef]
- Stevens, J.S.; Byard, S.J.; Seaton, C.C.; Sadiq, G.; Davey, R.J.; Schroeder, S.L.M. Proton transfer and hydrogen bonding in the organic solid state: A combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. Phys. Chem. Chem. Phys. 2014, 16, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, Y.; Xing, C.; Wang, Y.; Zhang, H.; Gong, N.; Lu, Y.; Du, G. Venlafaxine caffeic acid salt: Synthesis, structural characterization, and hypoglycemic effect analysis. ACS Omega 2021, 6, 13895–13903. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, B.; Jia, L.; Wang, Y. Tuning physicochemical properties of antipsychotic drug aripiprazole with multicomponent crystal strategy based on structure and property relationship. Cryst. Growth Des. 2020, 20, 3747–3761. [Google Scholar] [CrossRef]
- Lehtonen, O.; Hartikainen, J.; Rissanen, K.; Ikkala, O.; Pietilä, L.O. Hydrogen bonding and protonation in acid–base complexes: Methanesulfonic acid-pyridine. J. Chem. Phys. 2002, 116, 2417–2424. [Google Scholar] [CrossRef]
- Kastelic, J.; Hodnik, Ž.; Šket, P.; Plavec, J.; Lah, N.; Leban, I.; Pajk, M.; Planinšek, O.; Kikelj, D. Fluconazole cocrystals with dicarboxylic acids. Cryst. Growth Des. 2010, 10, 4943–4953. [Google Scholar] [CrossRef]
- Bis, J.A.; Zaworotko, M.J. The 2-aminopyridinium-carboxylate supramolecular heterosynthon: A robust motif for generation of multiple-component crystals. Cryst. Growth Des. 2005, 5, 1169–1179. [Google Scholar] [CrossRef]
- Weyna, D.R.; Shattock, T.; Vishweshwar, P.; Zaworotko, M.J. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: Mechanochemistry vs slow evaporation a from aolution. Cryst. Growth Des. 2009, 9, 1106–1123. [Google Scholar] [CrossRef]
- Bis, J.B.; Vishweshwar, P.; Weyna, D.; Zaworotko, M. Hierarchy of supramolecular synthons: Persistent hydroxyl. pyridine hydrogen bonds in cocrystals that contain a cyano acceptor. Mol. Pharm. 2007, 4, 401–416. [Google Scholar] [CrossRef]
- Allu, S.; Bolla, G.; Tothadi, S.; Nangia, A.K. Novel pharmaceutical cocrystals and salts of bumetanide. Cryst. Growth Des. 2020, 20, 793–803. [Google Scholar] [CrossRef]
- Da Silva, C.C.; Guimarães, F.F.; Ribeiro, L.; Martins, F.T. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy. Spectrochim. Acta Part A 2016, 167, 89–95. [Google Scholar] [CrossRef]
- Cheney, M.L.; Shan, N.; Healey, E.R.; Hanna, M.; Wojtas, L.; Zaworotko, M.J.; Sava, V.; Song, S.; Sanchez-Ramos, J.R. Effects of crystal form on solubility and pharmacokinetics: A crystal engineering case study of lamotrigine. Cryst. Growth Des. 2010, 10, 394–405. [Google Scholar] [CrossRef]
- Ren, S.; Liu, M.; Hong, C.; Li, G.; Sun, J.; Wang, J.; Zhang, L.; Xie, Y. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharm. Sin. B 2019, 9, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-L.; Chen, J.-M.; Lu, T.-B. Pharmaceutical cocrystallization: An effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm 2018, 20, 5292–5316. [Google Scholar] [CrossRef]
- Kuleshovaa, L.N.; Hofmanna, D.W.M.; Boese, R. Lattice energy calculation—A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chem. Phys. Lett. 2013, 564, 26–32. [Google Scholar] [CrossRef]
- Reddy, L.S.; Bethune, S.J.; Kampf, J.W.; Rodríguez-Hornedo, N. Cocrystals and salts of gabapentin: PH dependent cocrystal stability and solubility. Cryst. Growth Des. 2009, 9, 378–385. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M.; Schneider, T.R. SHELXL: High-resolution refinement. Methods Enzymol. 1997, 277, 319–343. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howardd, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Crystallogr. Sect. A 2015, 71, 59–75. [Google Scholar] [CrossRef]
- Palma, N.D.; Boyer, F. Software—JADE; INRIA: Paris, France, 2010. [Google Scholar]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef]
- Korhammer, K.; Neumann, K.; Opel, O.; Ruck, W.K.L. Thermodynamic and kinetic study of CaCl2-CH3OH adducts for solid sorption refrigeration by TGA/DSC. Appl. Energy 2018, 230, 1255–1278. [Google Scholar] [CrossRef]
- Vyazovkin, S. Thermal analysis. Anal. Chem. 2010, 82, 4936–4949. [Google Scholar] [CrossRef]
- Irina, K.; Lucia, R.; Mircea, P.; Gheorghe, B.; Ioan, B. Structural characterization of ambazone salt with niflumic acid. Spectroscopy 2015, 27, 49–58. [Google Scholar] [CrossRef]
- Holanda, B.B.C.; Alarcon, R.T.; Gaglieri, C.; de Souza, A.R.; Castro, R.A.E.; Rosa, P.C.P.; Tangerino, D.J.A.; Bannach, G. Thermal studies, degradation kinetic, equilibrium solubility, DFT, MIR, and XRPD analyses of a new cocrystal of gemfibrozil and isonicotinamide. J. Therm. Anal. Calorim. 2019, 136, 2049–2062. [Google Scholar] [CrossRef]
- Budiman, A.; Husni, P.; Shafira; Alfauziah, T.Q. The development of glibenclamide-saccharin cocrystaltablet formulations to increase the dissolution rate of the drug. Int. J. Appl. Pharm. 2019, 11, 359–364. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Guiding principles for stability studies of bulk drugs and pharmaceutical preparations. In Pharmacopoeia of People’s Republic of China, 2020 ed.; Chinese Pharmacopoeia Commission: Beijing, China, 2020; Volume IV, p. 457. [Google Scholar]
Title 1 | KTZ−GTA | KTZ−26DHB | KTZ−PCA-II | KTZ−35DNB |
---|---|---|---|---|
Formula | C26H28Cl2N4O4, C5H8O4 | (C26H29Cl2N4O4)+, (C7H5O4)− | C26H28Cl2N4O4, C7H6O4 | C26H28Cl2N4O4, C7H4N2O6 |
Formula weight | 663.54 | 685.54 | 685.54 | 743.54 |
Crystal size (mm) | 0.15 × 0.17 × 0.23 | 0.28 × 0.33 × 0.44 | 0.21 × 0.28 × 0.44 | 0.11 × 0.14 × 0.46 |
Description | block | column | column | needle |
Crystal system | monoclinic | monoclinic | triclinic | monoclinic |
Space group | P21/c | P21 | P − 1 | P21/c |
Unit cell parameters (Å, °) | 14.894 (1) | 8.086 (1) | 11.916 (1) | 14.942 (1) |
8.757 (1) | 22.186 (1) | 12.090 (1) | 31.193 (1) | |
24.930 (1) | 9.312 (1) | 13.515 (1) | 7.377 (1) | |
90 | 90 | 99.35 (1) | 90 | |
96.02 (1) | 95.77 (1) | 110.56 (1) | 94.83 (1) | |
90 | 90 | 110.41 (1) | 90 | |
Volume (Å3) | 3233.74 (14) | 1662.07 (11) | 1615.97 (12) | 3426.00 (6) |
Z | 4 | 2 | 2 | 4 |
Density (g cm−3) | 1.363 | 1.370 | 1.409 | 1.442 |
Independent reflections | 6542 | 6261 | 6152 | 6604 |
Reflections with I > 2σ(I) | 5303 | 6094 | 5716 | 5748 |
Rint | 0.0571 | 0.0427 | 0.0417 | 0.0552 |
Final R, wR(F2) value | 0.065, 0.171 | 0.040, 0.109 | 0.047, 0.128 | 0.044, 0.118 |
GOF | 1.074 | 1.063 | 1.037 | 1.038 |
CCDC | 2253852 | 2253850 | 2253853 | 2253851 |
Samples | pKa Values | ΔpKa Values | C−O Bond Length (Å) | C=O(C−O−) Bond Length (Å) | C−N−C Bond Angle (°) |
---|---|---|---|---|---|
KTZ | 6.5 | - | - | - | 104.1 |
KTZ−GTA | 4.3 | 2.2 | 1.326/1.317 | 1.203/1.197 | 105.4 |
KTZ−26DHB | 1.6 | 3.9 | 1.252 | 1.280 | 109.3 |
KTZ−PCA-II | 4.5 | 2.0 | 1.318 | 1.205 | 105.6 |
KTZ−35DNB | 2.8 | 3.7 | 1.285 | 1.235 | 106.6 |
Samples | −C=O Stretching | Samples | −C=O Stretching |
---|---|---|---|
KTZ | 1644 | / | / |
GTA | 1686 | KTZ−GTA | 1706 |
VNA | 1673 | KTZ−VNA | 1698 |
26DHB | 1663 | KTZ−26DHB | 1645 |
PCA | 1667 | KTZ−PCA-II | 1693 |
35DNB | 1698 | KTZ−35DNB | 1719 |
Samples | Solubility of CCFs (μg mL−1) | Concentration (μg mL−1) | |
---|---|---|---|
Ultrapure Water | pH 4.5 Acetate Buffer | ||
KTZ | - | 1.20 ± 0.27 | 239.48 ± 4.69 |
KTZ−GTA | 6500 | 2165.56 ± 251.34 | 339.87 ± 28.33 |
KTZ−VNA | 4300 | 321.57 ± 10.03 | 365.44 ± 51.10 |
KTZ−26DHB | 1600 | 139.13 ± 14.25 | 263.76 ± 8.51 |
KTZ−PCA | 4500 | 386.34 ± 89.30 | 308.06 ± 33.95 |
KTZ−35DNB | 2800 | 191.67 ± 15.95 | 273.66 ± 9.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, L.; Liu, M.; Yang, D.; He, G.; Zhang, B.; Gong, N.; Lu, Y.; Du, G. Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals 2023, 16, 1349. https://doi.org/10.3390/ph16101349
Yu H, Zhang L, Liu M, Yang D, He G, Zhang B, Gong N, Lu Y, Du G. Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals. 2023; 16(10):1349. https://doi.org/10.3390/ph16101349
Chicago/Turabian StyleYu, Hongmei, Li Zhang, Meiju Liu, Dezhi Yang, Guorong He, Baoxi Zhang, Ningbo Gong, Yang Lu, and Guanhua Du. 2023. "Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering" Pharmaceuticals 16, no. 10: 1349. https://doi.org/10.3390/ph16101349
APA StyleYu, H., Zhang, L., Liu, M., Yang, D., He, G., Zhang, B., Gong, N., Lu, Y., & Du, G. (2023). Enhancing Solubility and Dissolution Rate of Antifungal Drug Ketoconazole through Crystal Engineering. Pharmaceuticals, 16(10), 1349. https://doi.org/10.3390/ph16101349