Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of GQDs
2.2. Preparation and Characterization of GQDs/DOX@CCM
2.3. Biocompatibility In Vitro
2.4. DOX Encapsulation and Releasing
2.5. In Vitro Homologous Targeting
2.6. Antitumor Efficacy In Vitro
3. Materials and Methods
3.1. Materials
3.2. Cell Culture
3.3. Isolation of Cancer Cell Membrane
3.4. Preparation of GQDs and GQDs/DOX@CCM
3.5. Characterization
3.6. Photothermal Performance Measurements
3.7. Photothermal Conversion Efficiency Measurement
3.8. Biocompatibility In Vitro
3.9. Drug Encapsulation Efficiency and Drug Release In Vitro
3.10. Cellular Uptake
3.11. Homologous Recognition In Vitro
3.12. Anti-Tumor Effect In Vitro
3.13. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Hua, Y.Q.; Xu, G.Y.; Deng, S.Y.; Yang, D.K.; Gao, X. Targeting EZH2 for glioma therapy with a novel nanoparticle-siRNA complex. Int. J. Nanomed. 2019, 14, 2637–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizuno, Y.; Naoi, T.; Nishikawa, M.; Rattanakiat, S.; Hamaguchi, N.; Hashida, M.; Takakura, Y. Simultaneous delivery of doxorubicin and immunostimulatory CpG motif to tumors using a plasmid DNA/doxorubicin complex in mice. J. Control Release 2010, 141, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, X.B.; Xue, Y.X.; Gong, W.; Ma, J.; Xi, Z.; Que, Z.Y.; Liu, Y.H. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J. Hematol. Oncol. 2017, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.Y.; Huang, R.Y.; Li, G.Z.; Zeng, F.; Zhao, Z.; Liu, Y.W.; Hu, H.M.; Jiang, T. CKAP2 expression is associated with glioma tumor growth and acts as a prognostic factor in high-grade glioma. Oncol. Rep. 2018, 40, 2036–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Kuang, W.; Lu, S.G.; Guo, H.; Wu, M.J.; Ye, M.H.; Wu, L. Long noncoding RNA HOXB13-AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med. 2018, 7, 4718–4728. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Yu, H.J.; Zhang, Z.W.; Cao, M.; Zhang, Y.Y.; Li, Y.P. Shrapnel nanoparticles loading docetaxel inhibits metastasis and growth of breast cancer. Biomaterials 2015, 64, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.N.; Zhang, H.J.; Zhi, C.Y.; Gao, X.D.; Nakanishi, H. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int. J. Nanomed. 2018, 13, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.N.; Zhang, H.J.; Xu, S.; Zhi, C.Y.; Nakanishi, H.; Gao, X.D. Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Mater. Sci. Eng. C 2019, 96, 552–560. [Google Scholar] [CrossRef]
- Bertranda, N.; Wu, J.; Xu, X.Y.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2012, 2, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Furman, N.E.T.; Lupu-Haber, Y.; Bronshtein, T.; Kaneti, L.; Letko, N.; Weinstein, E.; Baruch, L.; Machluf, M. Reconstructed stem cell nanoghosts: A natural tumor targeting platform. Nano Lett. 2013, 13, 3248–3255. [Google Scholar] [CrossRef]
- Adiseshaiah, P.P.; Crist, R.M.; Hook, S.S.; McNeil, S.E. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol. 2016, 13, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Khawar, I.A.; Kim, J.H.; Kuh, H.J. Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control Release 2015, 201, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, T.J.; Zhao, Y.; Ding, Y.P.; Karp, J.M.; Peer, D. Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications. Adv. Mater. 2013, 25, 3508–3525. [Google Scholar] [CrossRef]
- Campbell, E.; Hasan, M.T.; Rodriguez, R.G.; Akkaraju, G.R.; Naumov, A.V. Doped graphene quantum dots for intracellular multicolor imaging and cancer detection. ACS Biomater. Sci. Eng. 2019, 5, 4671–4682. [Google Scholar] [CrossRef]
- Geng, B.J.; Shen, W.W.; Fang, F.L.; Qin, H.; Li, P.; Wang, X.L.; Li, X.K.; Pan, D.Y.; Shen, L.X. Enriched graphitic N dopants of carbon dots as F cores mediate photothermal conversion in the NIR-II window with high efficiency. Carbon 2020, 162, 220–233. [Google Scholar] [CrossRef]
- Wu, M.L.; Le, W.L.; Mei, T.X.; Wang, Y.C.; Chen, B.D.; Liu, Z.M.; Xue, C.Y. Cell membrane camouflaged nanoparticles: A new biomimetic platform for cancer photothermal therapy. Int. J. Nanomed. 2019, 14, 4431–4448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, X.; Cheng, P.H.; Pu, K.Y. Recent advances in cell membrane-camouflaged nanoparticles for cancer phototherapy. Small 2019, 15, e1804105. [Google Scholar] [CrossRef] [Green Version]
- Fang, R.H.; Jiang, Y.; Fang, J.C.; Zhang, L.F. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 2017, 128, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.W.; Hu, C.M.; Fang, R.H.; Luk, B.T.; Su, J.; Zhang, L.F. Surface functionalization of gold nanoparticles with red blood cell membranes. Adv. Mater. 2013, 25, 3549–3553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, L.; Cai, B.; Bu, L.L.; Liao, Q.Q.; Guo, S.S.; Zhao, X.Z.; Dong, W.F.; Liu, W. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 2017, 11, 3496–3505. [Google Scholar] [CrossRef]
- Sun, L.H.; Li, Q.; Hou, M.M.; Gao, Y.; Yang, R.H.; Zhang, L.; Xu, Z.G.; Kang, Y.J.; Xue, P. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Biomater. Sci. 2018, 6, 2881–2895. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.L.; Ran, D.; Lu, L.W.; Zhan, C.Y.; Ruan, H.T.; Hu, X.F.; Xie, C.; Jiang, K.; Li, J.Y.; Zhou, J.F.; et al. Ligand-modified cell membrane enables the targeted delivery of drug nanocrystals to glioma. ACS Nano 2019, 13, 5591–5601. [Google Scholar] [CrossRef]
- Huang, X.X.; Guo, B.; Liu, S.; Wan, J.; Broxmeyer, H.E. Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nat. Commun. 2018, 9, 2741. [Google Scholar] [CrossRef] [Green Version]
- Karp, J.M.; Teo, G.S. Mesenchymal sctem chell homing: The devil is in the details. Cell Stem Cell 2009, 4, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Ding, Y.P.; Zhang, Y.L.; Wang, B.; Zhao, X.; Cheng, K.M.; Huang, Y.X.; Taleb, M.; Zhao, J.; Dong, W.F.; et al. Surface functionalization of polymeric nanoparticles with umbilical cord derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl. Mater. Interfaces 2018, 10, 22963–72293. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.Y.; Lin, Z.H.; Jurado-Sánchez, B.; Lin, X.K.; Wu, Z.G.; He, Q. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small 2016, 12, 4056–4062. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.Y.; Lin, Z.H.; Wu, Z.G.; Lin, X.K.; He, Q. Stem cell membrane camouflaging on near-IR photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 34252–34260. [Google Scholar] [CrossRef] [PubMed]
- Fidler, I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 2003, 3, 453–458. [Google Scholar] [CrossRef]
- Sultan, A.S.; Xie, J.W.; LeBaron, M.J.; Ealley, E.L.; Nevalainen, M.T.; Rui, H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene 2005, 24, 746–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.Y.; Zheng, D.W.; Zhang, M.K.; Yu, W.Y.; Qiu, W.X.; Hu, J.J.; Feng, J.; Zhang, X.Z. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016, 16, 5895–5901. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Cheng, H.; Qiu, W.X.; Zhang, L.; Wan, S.S.; Zeng, J.Y.; Zhang, X.Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bio reductive therapy. Biomaterials 2017, 142, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Yu, G.T.; Meng, Q.F.; Bu, L.L.; Tian, R.; Lin, L.S.; Deng, H.Z.; Yang, W.J.; Zan, M.H.; Ding, J.X.; et al. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 2019, 29, 1905671. [Google Scholar] [CrossRef]
- Geng, B.J.; Qin, H.; Shen, W.W.; Li, P.; Fang, F.L.; Li, X.K.; Pan, D.Y.; Shen, L.X. Carbon dot/WS2 heterojunctions for NIR-II enhanced photothermal therapy of osteosarcoma and bone regeneration. Chem. Eng. J. 2020, 383, 123102. [Google Scholar] [CrossRef]
- Feng, S.N.; Li, H.; Ren, Y.J.; Zhi, C.Y.; Huang, Y.X.; Chen, F.X.; Zhang, H.J. RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Colloids Surf. B Biointerfaces 2020, 190, 110964. [Google Scholar] [CrossRef]
- Sun, H.P.; Su, J.H.; Me, Q.S.; Yin, G.Q.; Chen, L.L.; Gu, W.W.; Zhang, P.C.; Zhang, Z.W.; Yu, H.J.; Wang, S.L.; et al. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 2016, 28, 9281–9288. [Google Scholar] [CrossRef]
- Tran, D.L.; Thi, P.L.; Lee, S.M.; Thi, T.T.H.; Parka, K.D. Multifunctional surfaces through synergistic effects of heparin and nitric oxide release for a highly efficient treatment of blood-contacting devices. J. Control Release 2021, 329, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.J.; Shen, W.W.; Li, P.; Fang, F.L.; Qin, H.; Li, X.K.; Pan, D.Y.; Shen, L.X. Carbon dot-passivated black phosphorus nanosheet hybrids for synergistic cancer therapy in the NIR-II window. ACS Appl. Mater. Interfaces 2019, 11, 44949–44960. [Google Scholar] [CrossRef]
- Lin, H.; Gao, S.S.; Dai, C.; Chen, Y.; Shi, J.L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.G.; Yu, L.D.; Chen, Y.; Shi, J.L. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017, 17, 384–391. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Miao, C.; Tang, L.; Liu, Y.; Ni, P.; Gong, Y.; Li, H.; Chen, F.; Feng, S. Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma. Pharmaceuticals 2022, 15, 157. https://doi.org/10.3390/ph15020157
Ren Y, Miao C, Tang L, Liu Y, Ni P, Gong Y, Li H, Chen F, Feng S. Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma. Pharmaceuticals. 2022; 15(2):157. https://doi.org/10.3390/ph15020157
Chicago/Turabian StyleRen, Yajing, Chenlin Miao, Liang Tang, Yuxiang Liu, Pinyue Ni, Yan Gong, Hui Li, Fuxue Chen, and Shini Feng. 2022. "Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma" Pharmaceuticals 15, no. 2: 157. https://doi.org/10.3390/ph15020157
APA StyleRen, Y., Miao, C., Tang, L., Liu, Y., Ni, P., Gong, Y., Li, H., Chen, F., & Feng, S. (2022). Homotypic Cancer Cell Membranes Camouflaged Nanoparticles for Targeting Drug Delivery and Enhanced Chemo-Photothermal Therapy of Glioma. Pharmaceuticals, 15(2), 157. https://doi.org/10.3390/ph15020157