In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method for Quantification of APR
2.2. Equilibrium Solubility of APR
2.3. Screening of Surfactants
2.4. Screening of Cosurfactants and Cosolvents
2.5. Construction of Pseudo Ternary Phase Diagrams
2.6. Nanoemulsion Droplet Size Measurements in Blank Formulations
2.7. APR Loading Capacity of Formulations
2.8. Nanoemulsion Droplet Size Measurements in APR Loaded Formulations
2.9. In Vitro Drug Precipitation Test from Saturated SNEDDS
2.10. Selection of PPI for Super-SNEDDS
2.11. In Vitro Lipolysis Test
2.12. Preparation of Solid Super-SNEDDS and Selection of Carrier
2.13. In Vitro Drug Release
2.14. Fourier Transform Infrared (FTIR) Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Method for Quantification of APR
3.2.2. Equilibrium Solubility of APR
3.2.3. Screening of Surfactants
3.2.4. Screening of Cosurfactants and Cosolvents
3.2.5. Construction of Pseudo Ternary Phase Diagrams
3.2.6. Preparation of SNEDDS Formulations
3.2.7. Nanoemulsion Droplet Size Measurements
3.2.8. In Vitro Drug Precipitation Test of Saturated SNEDDS
3.2.9. Selection of PPI for Super-SNEDDS
3.2.10. In Vitro Lipolysis Test
3.2.11. Preparation of Solid Super-SNEDDS and Selection of Carrier
3.2.12. In Vitro Drug Release
3.2.13. Fourier Transform Infrared (FTIR) Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dando, T.M.; Perry, C.M. Aprepitant: A Review of its Use in the Prevention of Chemotherapy-Induced Nausea and Vomiting. Drugs 2004, 64, 777–794. [Google Scholar] [CrossRef]
- Rojas, C.; Raje, M.; Tsukamoto, T.; Slusher, B.S. Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis. Eur. J. Pharmacol. 2014, 722, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Aapro, M.S.; Walko, C.M. Aprepitant: Drug-drug interactions in perspective. Ann. Oncol. 2010, 21, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.; An, J.; Park, C.; Kim, D.; Lee, J. Design and Characterization of Phosphatidylcholine-Based Solid Dispersions of Aprepitant for Enhanced Solubility and Dissolution. Pharmaceutics 2020, 12, 407. [Google Scholar] [CrossRef]
- McPherson, S.; Perrier, J.; Dunn, C.; Khadra, I.; Davidson, S.; Ainousah, B.; Wilson, C.G.; Halbert, G. Small scale design of experiment investigation of equilibrium solubility in simulated fasted and fed intestinal fluid. Eur. J. Pharm. Biopharm. 2020, 150, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Shono, Y.; Jantratid, E.; Kesisoglou, F.; Reppas, C.; Dressman, J.B. Forecasting in vivo oral absorption and food effect of micronized and nanosized aprepitant formulations in humans. Eur. J. Pharm. Biopharm. 2010, 76, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Penumetcha, S.S.; Gutta, L.N.; Dhanala, H.; Yamili, S.; Challa, S.; Rudraraju, S.; Rudraraju, S.; Rudraraju, V. Hot melt extruded Aprepitant-Soluplus solid dispersion: Preformulation considerations, stability and in vitro study. Drug Dev. Ind. Pharm. 2016, 42, 1609–1620. [Google Scholar] [CrossRef]
- Kalvakuntla, S.; Deshpande, M.; Attari, Z.; Kunnatur, B.K. Preparation and Characterization of Nanosuspension of Aprepitant by H96 Process. Adv. Pharm. Bull. 2016, 6, 83–90. [Google Scholar] [CrossRef]
- Attari, Z.; Kalvakuntla, S.; Reddy, M.S.; Deshpande, M.; Rao, C.M.; Koteshwara, K.B. Formulation and characterisation of nanosuspensions of BCS class II and IV drugs by combinative method. J. Exp. Nanosci. 2016, 11, 276–288. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Park, C.; Meghani, N.M.; Tran, T.T.D.; Tran, P.H.L.; Park, J.B.; Lee, B.J. Utilization of a fattigation platform gelatin-oleic acid sodium salt conjugate as a novel solubilizing adjuvant for poorly water-soluble drugs via self-assembly and nanonization. Int. J. Pharm. 2020, 575, 118892. [Google Scholar] [CrossRef]
- Ren, L.L.; Zhou, Y.; Wei, P.; Li, M.; Chen, G.G. Preparation and Pharmacokinetic Study of Aprepitant-Sulfobutyl Ether-beta-Cyclodextrin Complex. AAPS PharmSciTech 2014, 15, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.L.; John, M.; Lee, S.L.; Tyner, K.M. Development Considerations for Nanocrystal Drug Products. AAPS J. 2017, 19, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Olver, I.; Shelukar, S.; Thompson, K.C. Nanomedicines in the treatment of emesis during chemotherapy: Focus on aprepitant. Int. J. Nanomed. 2007, 2, 13–18. [Google Scholar] [CrossRef]
- EMA. Emend Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/emend-epar-product-information_en.pdf (accessed on 11 March 2021).
- Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev. 2011, 63, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, S.; Sharma, R.; Singh, K.; Rana, V. Aprepitant loaded solid preconcentrated microemulsion for enhanced bioavailability: A comparison with micronized Aprepitant. Eur. J. Pharm. Sci. 2015, 78, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Date, A.A.; Desai, N.; Dixit, R.; Nagarsenker, M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010, 5, 1595–1616. [Google Scholar] [CrossRef]
- Balakumar, K.; Raghavan, C.V.; Selvan, N.T.; Prasad, R.H.; Abdu, S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces 2013, 112, 337–343. [Google Scholar] [CrossRef]
- Mosharraf, M.; Nystrom, C. Apparent solubility of drugs in partially crystalline systems. Drug Dev. Ind. Pharm. 2003, 29, 603–622. [Google Scholar] [CrossRef]
- Kuentz, M. Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discov. Today 2012, 9, e97–e104. [Google Scholar] [CrossRef]
- Manallack, D.T.; Prankerd, R.J.; Yuriev, E.; Oprea, T.I.; Chalmers, D.K. The significance of acid/base properties in drug discovery. Chem. Soc. Rev. 2013, 42, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Elnaggar, Y.S.R.; El-Massik, M.A.; Abdallah, O.Y. Self-nanoemulsifying drug delivery systems of tamoxifen citrate: Design and optimization. Int. J. Pharm. 2009, 380, 133–141. [Google Scholar] [CrossRef] [PubMed]
- IOI-Oleochemical. Imwitor® 988 Technical Data Sheet. Available online: https://www.ioioleo.de/wp-content/uploads/2020/03/IOI_Oleo_Pharma_EXCIPIENTS.pdf (accessed on 2 June 2021).
- Rahman, M.A.; Harwansh, R.; Mirza, M.A.; Hussain, S.; Hussain, A. Oral lipid based drug delivery system (LBDDS): Formulation, characterization and application: A review. Curr. Drug Deliv. 2011, 8, 330–345. [Google Scholar] [CrossRef]
- Alskar, L.C.; Porter, C.J.; Bergstrom, C.A. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations. Mol. Pharm. 2016, 13, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, H.; Holm, R.; Mullertz, A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int. J. Pharm. 2013, 453, 215–224. [Google Scholar] [CrossRef]
- Nasr, A.; Gardouh, A.; Ghorab, M. Novel Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Oral Delivery of Olmesartan Medoxomil: Design, Formulation, Pharmacokinetic and Bioavailability Evaluation. Pharmaceutics 2016, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Parmar, N.; Singla, N.; Amin, S.; Kohli, K. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf. B Biointerfaces 2011, 86, 327–338. [Google Scholar] [CrossRef]
- AboulFotouh, K.; Allam, A.A.; El-Badry, M.; El-Sayed, A.M. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil. Eur. J. Pharm. Sci. 2017, 109, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Alghananim, A.; Ozalp, Y.; Mesut, B.; Serakinci, N.; Ozsoy, Y.; Gungor, S. A Solid Ultra Fine Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) of Deferasirox for Improved Solubility: Optimization, Characterization, and In Vitro Cytotoxicity Studies. Pharmaceuticals 2020, 13, 162. [Google Scholar] [CrossRef]
- Silva, A.E.; Barratt, G.; Cheron, M.; Egito, E.S. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int. J. Pharm. 2013, 454, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, F.S.; Gibault, E.; Ljusberg-Wahren, H.; Arleth, L.; Pedersen, J.S.; Müllertz, A. Characterization of prototype self-nanoemulsifying formulations of lipophilic compounds. J. Pharm. Sci. 2007, 96, 876–892. [Google Scholar] [CrossRef]
- Date, A.A.; Nagarsenker, M.S. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int. J. Pharm. 2007, 329, 166–172. [Google Scholar] [CrossRef]
- Thomas, N.; Holm, R.; Mullertz, A.; Rades, T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J. Control. Release 2012, 160, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W.; Porter, C.J. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev. 2008, 60, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Sawant, K.K. Self micro-emulsifying drug delivery system: Formulation development and biopharmaceutical evaluation of lipophilic drugs. Curr. Drug Deliv. 2009, 6, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Dash, R.N.; Mohammed, H.; Humaira, T.; Reddy, A.V. Solid supersaturatable self-nanoemulsifying drug delivery systems for improved dissolution, absorption and pharmacodynamic effects of glipizide. J. Drug Deliv. Sci. Technol. 2015, 28, 28–36. [Google Scholar] [CrossRef]
- Abo Enin, H.A.; Abdel-Bar, H.M. Solid super saturated self-nanoemulsifying drug delivery system (sat-SNEDDS) as a promising alternative to conventional SNEDDS for improvement rosuvastatin calcium oral bioavailability. Expert Opin. Drug Deliv. 2016, 13, 1513–1521. [Google Scholar] [CrossRef]
- Brouwers, J.; Brewster, M.E.; Augustijns, P. Supersaturating drug delivery systems: The answer to solubility-limited oral bioavailability? J. Pharm. Sci. 2009, 98, 2549–2572. [Google Scholar] [CrossRef]
- Fong, S.Y.; Bauer-Brandl, A.; Brandl, M. Oral bioavailability enhancement through supersaturation: An update and meta-analysis. Expert Opin. Drug Deliv. 2017, 14, 403–426. [Google Scholar] [CrossRef]
- BASF. Soluplus® Technical Information. Available online: https://pharma.basf.com/products/soluplus (accessed on 2 June 2021).
- Xu, S.; Dai, W.G. Drug precipitation inhibitors in supersaturable formulations. Int. J. Pharm. 2013, 453, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Bannow, J.; Yorulmaz, Y.; Lobmann, K.; Mullertz, A.; Rades, T. Improving the drug load and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) using polymeric precipitation inhibitors. Int. J. Pharm. 2020, 575, 118960. [Google Scholar] [CrossRef]
- Elgart, A.; Cherniakov, I.; Aldouby, Y.; Domb, A.J.; Hoffman, A. Improved oral bioavailability of BCS class 2 compounds by self nano-emulsifying drug delivery systems (SNEDDS): The underlying mechanisms for amiodarone and talinolol. Pharm. Res. 2013, 30, 3029–3044. [Google Scholar] [CrossRef] [PubMed]
- Arnold, Y.E.; Imanidis, G.; Kuentz, M. In vitro digestion kinetics of excipients for lipid-based drug delivery and introduction of a relative lipolysis half life. Drug Dev. Ind. Pharm. 2012, 38, 1262–1269. [Google Scholar] [CrossRef]
- Patel, J.; Dhingani, A.; Garala, K.; Raval, M.; Sheth, N. Quality by design approach for oral bioavailability enhancement of irbesartan by self-nanoemulsifying tablets. Drug Deliv. 2014, 21, 412–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beg, S.; Swain, S.; Singh, H.P.; Patra, C.N.; Rao, M.E.B. Development, Optimization, and Characterization of Solid Self-Nanoemulsifying Drug Delivery Systems of Valsartan Using Porous Carriers. AAPS PharmSciTech 2012, 13, 1416–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.W.; Zou, M.J.; Piao, H.Y.; Liu, Y.; Tang, B.; Gao, Y.; Ma, N.; Cheng, G. Characterization and Pharmacokinetic Study of Aprepitant Solid Dispersions with Soluplus. Molecules 2015, 20, 11345–11356. [Google Scholar] [CrossRef] [Green Version]
- Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomed. 2017, 12, 8801–8811. [Google Scholar] [CrossRef] [Green Version]
Surfactant | % Transmittance | Appearance |
---|---|---|
Kolliphor® RH40 | 98.56 | Clear |
Kolliphor® ELP | 97.47 | Clear |
Kolliphor® HS15 | 96.00 | Clear |
Tween® 20 | 87.83 | Bluish |
Tween® 60 | 84.78 | Bluish |
Tween® 80 | 75.27 | Bluish white |
Kolliphor® P124 | 45.80 | Grayish white |
Brij® O10 | 45.15 | Grayish white |
Labrafil® M 2125 CS | 19.25 | Grayish white |
Labrasol® | 16.92 | Grayish white |
Labrafil® M 1944 CS | 11.18 | Grayish white |
Oil | Surfactant | Cosurfactant or Cosolvent | % Transmittance | Appearance |
---|---|---|---|---|
Imwitor® 988 | Kolliphor® RH40 | Capryol™ 90 | 99.68 | Clear |
PEG 200 | 99.62 | Clear | ||
Lauroglycol™ 90 | 99.33 | Clear | ||
Transcutol® P | 99.28 | Clear | ||
Propylene glycol | 98.91 | Clear | ||
PEG 400 | 98.90 | Clear | ||
Plurol® Oleique CC | 98.88 | Clear | ||
* Kolliphor® RH40 | 98.56 | Clear | ||
Lauroglycol™ FCC | 97.33 | Clear | ||
Kolliphor® ELP | PEG 200 | 99.77 | Clear | |
PEG 400 | 99.62 | Clear | ||
Capryol™ 90 | 99.48 | Clear | ||
Lauroglycol™ FCC | 99.08 | Clear | ||
Propylene glycol | 99.05 | Clear | ||
* Kolliphor® ELP | 97.47 | Clear | ||
Transcutol® P | 97.30 | Clear | ||
Lauroglycol™ 90 | 95.58 | Clear | ||
Plurol® Oleique CC | 70.13 | Bluish white | ||
Kolliphor® HS15 | PEG 200 | 99.90 | Clear | |
Transcutol® P | 99.74 | Clear | ||
PEG 400 | 99.55 | Clear | ||
Propylene glycol | 99.46 | Clear | ||
Capryol™ 90 | 98.93 | Clear | ||
Lauroglycol™ FCC | 97.51 | Clear | ||
* Kolliphor® HS15 | 96.00 | Clear | ||
Lauroglycol™ 90 | 85.46 | Bluish | ||
Plurol® Oleique CC | 75.66 | Bluish white |
Oil | Surfactant | Cosolvent | Smix (Surfactant: Cosolvent) | Total Area | ||
---|---|---|---|---|---|---|
1:1 | 3:1 | 1:3 | ||||
Imwitor® 988 | Kolliphor® RH40 | Transcutol® P | 335.1 | 352.5 | 343.8 | 1031.4 |
Kolliphor® ELP | 337.2 | 307.3 | 328.4 | 972.9 | ||
Kolliphor® HS15 | 321.8 | 280.8 | 320.2 | 922.8 |
Formulation Code | Z-Average (nm) | PDI |
---|---|---|
10:10:80 | 30.27 ± 8.55 | 0.319 |
10:20:70 | 20.44 ± 5.65 | 0.305 |
10:30:60 | 15.02 ± 2.43 | 0.105 |
10:40:50 | 15.05 ± 2.63 | 0.122 |
10:50:40 | 13.81 ± 1.98 | 0.083 |
10:60:30 | 13.36 ± 1.48 | 0.049 |
10:70:20 | 14.22 ± 2.28 | 0.102 |
10:80:10 | 14.57 ± 2.23 | 0.094 |
20:10:70 | 30.44 ± 4.35 | 0.082 |
20:20:60 | 30.60 ± 9.08 | 0.352 |
20:30:50 | 22.45 ± 6.40 | 0.325 |
20:40:40 | 16.12 ± 2.25 | 0.078 |
20:50:30 | 15.38 ± 2.32 | 0.091 |
20:60:20 | 14.41 ± 2.07 | 0.083 |
20:70:10 | 14.47 ± 2.55 | 0.124 |
30:10:60 | 38.66 ± 4.36 | 0.051 |
30:20:50 | 27.44 ± 5.01 | 0.133 |
30:30:40 | 45.31 ± 15.98 | 0.498 |
30:40:30 | 48.62 ± 17.93 | 0.543 |
30:50:20 | 24.09 ± 7.48 | 0.386 |
30:60:10 | 16.42 ± 2.56 | 0.097 |
Loaded APR | 21 mg | 25 mg | 30 mg | ||||
---|---|---|---|---|---|---|---|
% Ratio (O:S:Cs) | Time | Z-Average (nm) | PDI | Z-Average (nm) | PDI | Z-Average (nm) | PDI |
30:10:60 | 0 h | 48.06 ± 5.10 | 0.045 | 49.77 ± 3.73 | 0.022 | 52.24 ± 5.56 | 0.045 |
1 h | 48.20 ± 5.53 | 0.053 | 49.52 ± 6.78 | 0.075 | 52.97 ± 8.69 | 0.108 | |
2 h | 47.52 ± 25.04 | 0.035 | 53.99 ± 24.73 | 0.266 | 96.28 ± 24.67 | 0.288 | |
4 h | 48.97 ± 8.53 | 0.121 | 124.8 ± 28.22 | 0.204 | 130.8 ± 33.3 | 0.260 | |
20:10:70 | 0 h | 36.69 ± 2.19 | 0.014 | 38.21 ± 4.16 | 0.047 | 38.96 ± 4.24 | 0.047 |
1 h | 38.40 ± 5.34 | 0.077 | 38.97 ± 5.32 | 0.074 | 39.84 ± 7.25 | 0.133 | |
2 h | 36.87 ± 4.91 | 0.071 | 44.60 ± 9.35 | 0.176 | 63.63 ± 12.88 | 0.164 | |
4 h | 161.2 ± 45.02 | 0.312 | 546.5 ± 214.2 | 0.614 | 674.1 ± 322.0 | 0.913 | |
30:20:50 | 0 h | 28.08 ± 2.08 | 0.022 | 29.19 ± 3.79 | 0.068 | 28.96 ± 3.23 | 0.050 |
1 h | 28.18 ± 1.63 | 0.013 | 28.17 ± 2.14 | 0.023 | 28.77 ± 2.28 | 0.025 | |
2 h | 28.03 ± 3.22 | 0.053 | 27.95 ± 3.43 | 0.060 | 30.77 ± 8.01 | 0.271 | |
4 h | 29.14 ± 6.75 | 0.215 | 118.4 ± 26.10 | 0.194 | 3059 ± 1530 | 1 | |
10:30:60 | 0 h | 23.16 ± 5.96 | 0.265 | 20.07 ± 5.48 | 0.298 | 496.7 ± 248.4 | 1 |
1 h | 16.55 ± 2.73 | 0.109 | 2686 ± 1343 | 1 | 649.6 ± 275.6 | 0.720 | |
2 h | 205.3 ± 57.75 | 0.317 | 1054 ± 508 | 0.927 | 4637 ± 2319 | 1 | |
4 h | 1897 ± 949 | 1 | 2568 ± 1284 | 1 | 4673 ± 2337 | 1 | |
10:40:50 | 0 h | 14.40 ± 2.23 | 0.096 | 15.36 ± 3.02 | 0.154 | 14.27 ± 1.43 | 0.040 |
1 h | 14.54 ± 1.98 | 0.083 | 16.29 ± 3.76 | 0.213 | 75.08 ± 14.99 | 0.160 | |
2 h | 14.60 ± 1.86 | 0.062 | 26.51 ± 5.57 | 0.177 | 728.9 ± 327.3 | 0.806 | |
4 h | 14.66 ± 1.70 | 0.048 | 194.8 ± 59.85 | 0.377 | 1118 ± 559 | 0.969 | |
20:40:40 | 0 h | 21.25 ± 5.84 | 0.302 | 24.33 ± 7.49 | 0.379 | not dissolved | |
1 h | 20.36 ± 5.24 | 0.265 | 22.76 ± 6.75 | 0.352 | |||
2 h | 22.13 ± 6.29 | 0.323 | 22.68 ± 6.99 | 0.380 | |||
4 h | 103.0 ± 19.14 | 0.138 | 1828 ± 898 | 0.964 | |||
10:50:40 | 0 h | 13.99 ± 2.38 | 0.116 | 13.54 ± 1.22 | 0.033 | not dissolved | |
1 h | 14.01 ± 3.66 | 0.123 | 14.56 ± 2.65 | 0.133 | |||
2 h | 15.03 ± 1.07 | 0.141 | 445 ± 178.4 | 0.643 | |||
4 h | 15.26 ± 3.00 | 0.154 | 856.6 ± 400.9 | 0.876 | |||
20:50:30 | 0 h | 15.46 ± 2.26 | 0.086 | not dissolved | not dissolved | ||
1 h | 15.52 ± 2.05 | 0.071 | |||||
2 h | 15.60 ± 1.90 | 0.062 | |||||
4 h | 15.58 ± 1.86 | 0.057 | |||||
10:60:30 | 0 h | 13.67 ± 1.82 | 0.071 | not dissolved | not dissolved | ||
1 h | 13.71 ± 1.61 | 0.055 | |||||
2 h | 13.74 ± 1.47 | 0.046 | |||||
4 h | 13.80 ± 1.59 | 0.053 | |||||
20:60:20 | 0 h | 14.48 ± 1.80 | 0.061 | not dissolved | not dissolved | ||
1 h | 14.78 ± 1.84 | 0.065 | |||||
2 h | 14.85 ± 1.89 | 0.068 | |||||
4 h | 15.14 ± 2.03 | 0.072 |
Formulation | AUC (mg·min·mL−1) |
---|---|
30:10:60 | 31.380 |
20:10:70 | 23.888 |
10:30:60 | 28.478 |
30:20:50 | 24.473 |
10:40:50 | 26.438 |
20:40:40 | 26.850 |
10:50:40 | 29.753 |
20:50:30 | 35.910 |
10:60:30 | 36.458 |
20:60:20 | 38.558 |
10:70:20 | 36.353 |
30:60:10 | 32.205 |
10:80:10 | 30.728 |
20:70:10 | 29.258 |
Formulation | AUC (mg.min.mL−1) |
---|---|
30 mg APR (without PPI) | 45.206 |
30 mg APR + 5% Kollidon® 25 | 46.705 |
30 mg APR + 5% Kollidon® VA64 | 50.702 |
30 mg APR + 5% Soluplus® | 55.916 |
30 mg APR + 10% Soluplus® | 47.676 |
40 mg APR + 5% Soluplus® | 66.621 |
40 mg APR + 10% Soluplus® | 69.270 |
Powder | Bulk Density (g/mL) | Tapped Density (g/mL) | Hausner Ratio | Carr’s Index | Flowability |
---|---|---|---|---|---|
Syloid® XDP 3050 | 0.233 | 0.286 | 1.23 | 18.53 | Fair |
Syloid® XDP 3150 | 0.244 | 0.278 | 1.14 | 12.23 | Good |
Neusilin® UFL2 | 0.104 | 0.179 | 1.72 | 41.90 | Very, very poor |
Neusilin® US2 | 0.179 | 0.213 | 1.19 | 15.96 | Fair |
Florite® R | 0.077 | 0.127 | 1.65 | 39.37 | Very, very poor |
super-SNEDDS: Neusilin® UFL2 2 g (70.2 mg APR): 1 g | 0.359 | 0.511 | 1.42 | 29.75 | Poor |
super-SNEDDS: Neusilin® US2 2 g (70.2 mg APR): 1 g | 0.409 | 0.573 | 1.40 | 28.62 | Poor |
super-SNEDDS: Neusilin® US2 1.5 (52.6 mg APR): 1 g | 0.390 | 0.476 | 1.22 | 18.07 | Fair |
super-SNEDDS: Florite® R 5 g (175.5 mg APR): 1 g | 0.243 | 0.532 | 2.19 | 54.32 | Very, very poor |
super-SNEDDS: Florite® R 3 g (105.3 mg APR): 1 g | 0.298 | 0.474 | 1.59 | 37.13 | Very poor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazlı, H.; Mesut, B.; Özsoy, Y. In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility. Pharmaceuticals 2021, 14, 1089. https://doi.org/10.3390/ph14111089
Nazlı H, Mesut B, Özsoy Y. In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility. Pharmaceuticals. 2021; 14(11):1089. https://doi.org/10.3390/ph14111089
Chicago/Turabian StyleNazlı, Hakan, Burcu Mesut, and Yıldız Özsoy. 2021. "In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility" Pharmaceuticals 14, no. 11: 1089. https://doi.org/10.3390/ph14111089
APA StyleNazlı, H., Mesut, B., & Özsoy, Y. (2021). In Vitro Evaluation of a Solid Supersaturated Self Nanoemulsifying Drug Delivery System (Super-SNEDDS) of Aprepitant for Enhanced Solubility. Pharmaceuticals, 14(11), 1089. https://doi.org/10.3390/ph14111089