Umbilical Cord-Derived Wharton’s Jelly for Regenerative Medicine Applications: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Degenerative Disc Disease
2.2. Osteoporotic Vertebral Compression Fracture
2.3. Peripheral Nerve Injury
2.4. Osteoarthritis
2.5. Osteochondral Defect
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koyuncu, N.; Karcioglu, O. Musculoskeletal complaints in health care personnel in hospital: An interdepartmental, cross-sectional comparison. Medicine 2018, 97, e12597. [Google Scholar] [CrossRef]
- Gupta, A.; El-Armin, S.F., 3rd; Levy, H.J.; Sze-Tu, R.; Ibim, S.E.; Maffulli, N. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. J. Orthop. Surg. Res. 2020, 15, 49. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Rodriguez, H.C.; Potty, A.G.; Levy, H.J.; El-Amin, S.F., III. Treatment of Knee Osteoarthritis with Intraarticular Umbilical Cord-Derived Wharton’s Jelly: A Case Report. Pharmaceuticals 2021, 14, 883. [Google Scholar] [CrossRef]
- Lamplot, J.D.; Rodeo, S.A.; Brophy, R.H. A Practical Guide for the Current Use of Biologic Therapies in Sports Medicine. Am. J. Sports Med. 2019, 48, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef]
- Minguell, J.J.; Erices, A.; Conget, P. Mesenchymal Stem Cells. Exp. Biol. Med. 2001, 226, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Andia, I.; Maffulli, N. New biotechnologies for musculoskeletal injuries. Surgeon 2019, 17, 244–255. [Google Scholar] [CrossRef]
- Patel, J.M.; Saleh, K.S.; Burdick, J.A.; Mauck, R.L. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater. 2019, 93, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Sezgin, E.A.; Atik, O.S. Are orthobiologics the next chapter in clinical orthopedics? A literature review. Eklem. Hastalik. Cerrahisi 2018, 29, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Duerr, R.A.; Ackermann, J.; Gomoll, A.H. Amniotic-Derived Treatments and Formulations. Clin. Sports Med. 2019, 38, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Chirichella, P.S.; Jow, S.; Iacono, S.; Wey, H.E.; Malanga, G.A. Treatment of Knee Meniscus Pathology: Rehabilitation, Surgery, and Orthobiologics. PMR 2019, 11, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.S.; Thiemermann, C. Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells 2010, 28, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Mohamed-Ahmed, S.; Fristad, I.; Lie, S.A.; Suliman, S.; Mustafa, K.; Vindenes, H.; Idris, S.B. Adipose-derived and bone marrow mesenchymal stem cells: A donor-matched comparison. Stem Cell Res. Ther. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Usuelli, F.G.; D’Ambrosi, R.; Maccario, C.; Indino, C.; Manzi, L.; Maffulli, N. Adipose-derived stem cells in orthopaedic pathologies. Br. Med. Bull. 2017, 124, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Troyer, D.L.; Weiss, M.L. Concise Review: Wharton’s Jelly-Derived Cells Are a Primitive Stromal Cell Population. Stem Cells 2008, 26, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Carlin, R.; Davis, D.; Weiss, M.; Schultz, B.; Troyer, D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 2006, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Rocca, G.; Anzalone, R.; Corrao, S.; Magno, F.; Loria, T.; Lo Iacono, M.; Stefano, A.D.; Giannuzzi, P.; Marasa, L.; Cappello, F.; et al. Isolation and characterization of Oct-4þ/HLA-Gþ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem. Cell Biol. 2009, 131, 267.e82. [Google Scholar] [CrossRef]
- Vangsness, C.T.; Sternberg, H.; Harris, L. Umbilical Cord Tissue Offers the Greatest Number of Harvestable Mesenchymal Stem Cells for Research and Clinical Application: A Literature Review of Different Harvest Sites. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 1836–1843. [Google Scholar] [CrossRef]
- Sobolewski, K.; Małkowski, A.; Bańkowski, E.; Jaworski, S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta 2005, 26, 747–752. [Google Scholar] [CrossRef]
- Rodriguez, H.C.; Gupta, M.; Cavazos-Escobar, E.; El-Amin, S.F., 3rd; Gupta, A. Umbilical cord: An allogenic tissue for potential treatment of COVID-19. Hum. Cell 2021, 34, 1–13. [Google Scholar] [CrossRef]
- Schugar, R.C.; Chirieleison, S.M.; Wescoe, K.E.; Schmidt, B.T.; Askew, Y.; Nance, J.J.; Evron, J.M.; Péault, B.; Deasy, B.M. High Harvest Yield, High Expansion, and Phenotype Stability of CD146 Mesenchymal Stromal Cells from Whole Primitive Human Umbilical Cord Tissue. J. Biomed. Biotechnol. 2009, 2009, 789526. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Zhang, Y.; Gao, L.; Jiang, S.; Ruan, D. Human Wharton’s Jelly Cells Activate Degenerative Nucleus Pulposus Cells In Vitro. Tissue Eng. Part A 2018, 24, 1035–1043. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Qiao, S.; Liu, X.; Liu, C.; Zhu, D.; Su, J.; Wang, Z. Effects of Wharton’s jelly cells of the human umbilical cord on acute spinal cord injury in rats, and expression of interleukin-1β and nerve growth factor in spinal cord tissues. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1254–1258. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, H.; Gu, T.; Zhou, M.; Jia, Z.; Jiang, G.; Chen, C.; Han, Z.; Xu, C.; Wang, D.; et al. The effects of human Wharton’s jelly cell transplantation on the intervertebral disc in a canine disc degeneration model. Stem Cell Res. Ther. 2015, 6, 154. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Kim, K.T.; Kim, K.G.; Choi, U.Y.; Kyung, J.W.; Sohn, S.; Lim, S.H.; Choi, H.; Ahn, T.K.; Choi, H.J.; et al. Safety and efficacy of Wharton’s jelly-derived mesenchymal stem cells with teriparatide for osteoporotic vertebral fractures: A phase I/IIa study. Stem Cells Transl. Med. 2021, 10, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, S.M.; El-Shal, A.S.; Ahmed, F.E.; Shaban, S.F.; Wahdan, R.A.; Kandel, W.A.; Senger, M.S. Combined Wharton’s jelly derived mesenchymal stem cells and nerve guidance conduit: A potential promising therapy for peripheral nerve injuries. Int. J. Biochem. Cell Biol. 2017, 86, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Sofia, V.; Nasrul, E.; Manjas, M.; Revilla, G. The The Influence of Wharton Jelly Mesenchymal Stem Cell toward Matrix Metalloproteinase-13 and RELA Synoviocyte Gene Expression on Osteoarthritis. Open Access Maced. J. Med. Sci. 2019, 7, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Guo, W.; Wang, M.; Hao, C.; Gao, S.; Zhang, X.; Li, X.; Chen, M.; Jing, X.; et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr. Cartil. 2018, 26, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Valiyaveettil, M.; Achur, R.N.; Muthusamy, A.; Gowda, D.C. Characterization of chondroitin sulfate and dermatan sulfate proteoglycans of extracellular matrices of human umbilical cord blood vessels and Wharton’s jelly. Glycoconj. J. 2004, 21, 361.e75. [Google Scholar] [CrossRef]
- Franc, S.; Rousseau, J.-C.; Garrone, R.; van der Rest, M.; Moradi-Améli, M. Microfibrillar composition of umbilical cord matrix: Characterization of fibrillin, collagen VI and intact collagen V. Placenta 1998, 19, 95–104. [Google Scholar] [CrossRef]
- Pennati, G. Biomechanical properties of the human umbilical cord. Biorheology 2001, 38, 355–366. [Google Scholar]
- Jadalannagari, S.; Converse, G.; McFall, C.; Buse, E.; Filla, M.; Villar, M.T.; Artigues, A.; Mellot, A.J.; Wang, J.; Detamore, M.S.; et al. Decellularized Wharton’s Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications. PLoS ONE 2017, 12, e0172098. [Google Scholar] [CrossRef]
- Martinez, C.; Fernandez, C.; Prado, M.; Ozols, A.; Olmedo, D.G. Synthesis and characterization of a novel scaffold for bone tissue engineering based on Wharton’s jelly. J. Biomed. Mater. Res. A 2017, 105, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Converse, G.L.; Li, D.; Buse, E.E.; Hopkins, R.A.; Aljitawi, O.S. Wharton’s Jelly Matrix Decellularization for Tissue Engineering Applications. Host-Fungus Interact. 2017, 1577, 25–33. [Google Scholar] [CrossRef]
- Penolazzi, L.; Pozzobon, M.; Bergamin, L.S.; D’Agostino, S.; Francescato, R.; Bonaccorsi, G.; De Bonis, P.; Cavallo, M.; Lambertini, E.; Piva, R. Extracellular Matrix from Decellularized Wharton’s Jelly Improves the Behavior of Cells from Degenerated Intervertebral Disc. Front. Bioeng. Biotechnol. 2020, 8, 262. [Google Scholar] [CrossRef]
- ClinicalTrials.gov [Internet]. 2020 Identifier NCT03866330, Wharton’s Jelly-Derived Mesenchymal Stem Cells in Osteoarthritis; National Library of Medicine (US): Bethesda, MD, USA, 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03866330 (accessed on 28 August 2021).
- Berger, D.R.; Centeno, C.J.; Kisiday, J.D.; McIlwraith, C.W.; Steinmetz, N.J. Colony Forming Potential and Protein Composition of Commercial Umbilical Cord Allograft Products in Comparison With Autologous Orthobiologics. Am. J. Sports Med. 2021, 49, 3404–3413. [Google Scholar] [CrossRef]
- Ribitsch, I.; Baptista, P.M.; Lange-Consiglio, A.; Melotti, L.; Patruno, M.; Jenner, F.; Schnabl-Feichter, E.; Dutton, L.C.; Connolly, D.J.; van Steenbeek, F.G.; et al. Large Animal Models in Regenerative Medicine and Tissue Engineering: To Do or Not to Do. Front. Bioeng. Biotechnol. 2020, 8, 972. [Google Scholar] [CrossRef]
- Iacono, E.; Brunori, L.; Pirrone, A.; Pagliaro, P.P.; Ricci, F.; Tazzari, P.L.; Merlo, B. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton’s jelly in the horse. Reproduction 2012, 4, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Jia, Y.; Yuan, M.; Guo, W.; Huang, J.; Zhao, B.; Peng, J.; Xu, W.; Lu, S.; Guo, Q. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model. BioMed Res. Int. 2017, 2017, 8760383. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Y.; Yang, D.; Luo, F.; Liang, W.; Guo, S.; Xu, J. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009, 126, 220.e32. [Google Scholar] [CrossRef]
- Weiss, M.L.; Anderson, C.; Medicetty, S.; Seshareddy, K.B.; Weiss, R.J.; VanderWerff, I.; Troyer, D.; McIntosh, K.R. Immune Properties of Human Umbilical Cord Wharton’s Jelly-Derived Cells. Stem Cells 2008, 26, 2865–2874. [Google Scholar] [CrossRef] [PubMed]
- Main, B.J.; Valk, J.A.; Maffulli, N.; Rodriguez, H.C.; Gupta, M.; Stone, I.W.; El-Amin, S.F., 3rd; Gupta, A. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications in orthopedic surgery: A systematic review protocol. J. Orthop. Surg. Res. 2020, 15, 527. [Google Scholar] [CrossRef]
Authors | Design | Group Controls | Group Interventions | Outcome Measurement |
---|---|---|---|---|
Degenerative Disc Disease | ||||
Han et al., 2018 | Basic Science | Fluorescently labeled human Wharton’s jelly cells (106) | + Degenerative human nucleus pulposus cells with cell-to-cell contact for 7 days; + Degenerative human nucleus pulposus cells without cell-to-cell contact for 7 days; | PCR gene expression of MSC markers |
Cheng et al., 2016 | Animal Model: Cohort | Rat model with sham surgery. | + Incomplete transection of spinal cord at L3 + 106 Wharton’s jelly cells injected into the femoral vein following L3. | Motor recovery using BBB scale at time points up to 28 days; PCR; Histologic pathology at 28 days; |
Yan Zhang et al., 2015 | Animal Model: Cohort | Canine model with L3-4 as uninjured control and L4-5 as the degenerative control. | + 106 WJC labeled via viral vector to L6-7 | Radiographs; MRI; Biomechanical testing at 24 weeks; PCR at 24 weeks; Histologic analysis at 24 weeks; |
Osteoporotic Vertebral Compression Fracture | ||||
Shim et al., 2021 | Human Model: Phase I/IIa Randomized Control Trial | Postmenopausal 50–89 year old females with recent (<6 weeks) single-level compression fracture and a diagnosis of osteoporosis were given a subcutaneous injection of 20 mg of teriperatide and 20 mg oral bazedoxifene daily for 6 months. | + 4 × 107 WJSC injected intramedullary into fractured vertebrae at day 0 and 2 × 108 WJSC injected intraveniously at day 7. | Clinical assessment (VAS, ODI, SF-36); Bone mineral density via DEXA scan; Bone turnover markers; Radiographical analysis; |
Peripheral Nerve Injury | ||||
Shalaby et al., 2017 | Animal Model: Cohort | Rats without sciatic nerve injury. | + Sciatic nerve 10 mm induced injury. + Sciatic nerve 10 mm induced injury with nerve conduit. Sciatic nerve 10 mm induced injury with nerve conduit housing Wharton’s jelly cells. | Characterization of Wharton’s jelly cells; Functional nerve analysis; Histologic analysis |
Osteoarthritis | ||||
Sofia et al., 2019 | Basic Science | Synoviocytes isolated from synovial tissue removed during total knee arthroplasty. | + Wharton’s Jelly cells for 24 h and 48 h. | PCR gene expression and concentration |
Osteochondral Defect | ||||
Y Zhang et al., 2018 | Animal Model: Cohort | Caprine model with induced 6.5 mm diameter osteochondral defect | + Microfracture. + Implantation of acellular cartilage extracellular matrix scaffold seeded with Wharton’s jelly cells. | Histologic analysis; Immunochemistry and immunofluorescence; Biomechanical testing; MRI evaluation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Main, B.J.; Maffulli, N.; Valk, J.A.; Rodriguez, H.C.; Gupta, M.; El-Amin, S.F., III; Gupta, A. Umbilical Cord-Derived Wharton’s Jelly for Regenerative Medicine Applications: A Systematic Review. Pharmaceuticals 2021, 14, 1090. https://doi.org/10.3390/ph14111090
Main BJ, Maffulli N, Valk JA, Rodriguez HC, Gupta M, El-Amin SF III, Gupta A. Umbilical Cord-Derived Wharton’s Jelly for Regenerative Medicine Applications: A Systematic Review. Pharmaceuticals. 2021; 14(11):1090. https://doi.org/10.3390/ph14111090
Chicago/Turabian StyleMain, Benjamin J., Nicola Maffulli, Josiah A. Valk, Hugo C. Rodriguez, Manu Gupta, Saadiq F. El-Amin, III, and Ashim Gupta. 2021. "Umbilical Cord-Derived Wharton’s Jelly for Regenerative Medicine Applications: A Systematic Review" Pharmaceuticals 14, no. 11: 1090. https://doi.org/10.3390/ph14111090
APA StyleMain, B. J., Maffulli, N., Valk, J. A., Rodriguez, H. C., Gupta, M., El-Amin, S. F., III, & Gupta, A. (2021). Umbilical Cord-Derived Wharton’s Jelly for Regenerative Medicine Applications: A Systematic Review. Pharmaceuticals, 14(11), 1090. https://doi.org/10.3390/ph14111090