Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview
Abstract
:1. Introduction
2. Therapeutic Options
2.1. PD-1 and PD-L1 Pathway
2.1.1. Nivolumab
2.1.2. Pembrolizumab
2.1.3. Tislelizumab
2.1.4. Camrelizumab (SHR-1210)
2.1.5. Sintilimab (IBI308)
2.1.6. Toripalimab (JS001)
2.1.7. Atezolizumab
2.1.8. Spartalizumab (PDR001)
2.1.9. Genolimzumab
2.1.10. Durvalumab
2.1.11. Avelumab
2.2. CTLA-4 Pathway
2.2.1. Ipilimumab
2.2.2. Tremelimumab
3. Combination Therapy
4. Toxicity
5. Response Predictors
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- SanGiovanni, A.; Prati, G.M.; Fasani, P.; Ronchi, G.; Romeo, R.; Manini, M.; Del Ninno, E.; Morabito, A.; Colombo, M. The natural history of compensated cirrhosis due to hepatitis C virus: A 17-year cohort study of 214 patients. Hepatology 2006, 43, 1303–1310. [Google Scholar] [CrossRef]
- Akinyemiju, T.; Abera, S.; Ahmed, M.; Alam, N.; Alemayohu, M.A.; Allen, C.; Al-Raddadi, R.; Alvis-Guzman, N.; Amoako, Y.; Artaman, A.; et al. The Burden of Primary Liver Cancer and Underlying Etiologies from 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol. 2017, 3, 1683–1691. [Google Scholar] [CrossRef]
- Yang, J.D.; Harmsen, W.S.; Slettedahl, S.W.; Chaiteerakij, R.; Enders, F.T.; Therneau, T.M.; Orsini, L.; Kim, W.R.; Roberts, L.R. Factors That Affect Risk for Hepatocellular Carcinoma and Effects of Surveillance. Clin. Gastroenterol. Hepatol. 2011, 9, 617–623.e1. [Google Scholar] [CrossRef]
- Maucort-Boulch, D.; De Martel, C.; Franceschi, S.; Plummer, M. Fraction and incidence of liver cancer attributable to hepatitis B and C viruses worldwide. Int. J. Cancer 2018, 142, 2471–2477. [Google Scholar] [CrossRef] [Green Version]
- Yatsuji, S.; Hashimoto, E.; Tobari, M.; Taniai, M.; Tokushige, K.; Shiratori, K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J. Gastroenterol. Hepatol. 2009, 24, 248–254. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Prieto, J.; Melero, I.; Sangro, B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 681–700. [Google Scholar] [CrossRef]
- Makarova-Rusher, O.V.; Medina-Echeverz, J.; Duffy, A.G.; Greten, T.F. The yin and yang of evasion and immune activation in HCC. J. Hepatol. 2015, 62, 1420–1429. [Google Scholar] [CrossRef] [Green Version]
- Iñarrairaegui, M.; Melero, I.; Sangro, B. Immunotherapy of Hepatocellular Carcinoma: Facts and Hopes. Clin. Cancer Res. 2018, 24, 1518–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postow, M.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhaya, S.; Neftelino, S.T.; Hodge, J.P.; Oliva, C.; Campbell, J.R.; Yu, J.X. Combinations take centre stage in PD1/PDL1 inhibitor clinical trials. Nat. Rev. Drug Discov. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Abou-Alfa, G.K.; Bendell, J.C.; Kim, T.-Y.; Borad, M.J.; Yong, W.-P.; Morse, M.; Kang, Y.; Rebelatto, M.; Makowsky, M.; et al. Phase I/II study of durvalumab and tremelimumab in patients with unresectable hepatocellular carcinoma (HCC): Phase I safety and efficacy analyses. J. Clin. Oncol. 2017, 35, 4073. [Google Scholar] [CrossRef]
- Greten, T.F.; Lai, C.W.; Li, G.; Staveley-O’Carroll, K.F. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology 2019, 156, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Immuno-Oncology Therapy for Hepatocellular Carcinoma: Current Status and Ongoing Trials. Liver Cancer 2019, 8, 221–238. [Google Scholar] [CrossRef]
- Zongyi, Y.; Xiaowu, L. Immunotherapy for hepatocellular carcinoma. Cancer Lett. 2020, 470, 8–17. [Google Scholar] [CrossRef]
- Tagliamonte, M.; Mauriello, A.; Cavalluzzo, B.; Ragone, C.; Manolio, C.; Petrizzo, A.; Buonaguro, L. Tackling hepatocellular carcinoma with individual or combinatorial immunotherapy approaches. Cancer Lett. 2020, 473, 25–32. [Google Scholar] [CrossRef]
- Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science 2017, 355, 1428–1433. [Google Scholar] [CrossRef]
- Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.-S.; Laurent, A.; Azoulay, D.; et al. Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship With clinical and pathological features. Hepatology 2016, 64, 2038–2046. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.-Y.; Qiu, S.-J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.-Z.; Shi, Y.-H.; Xiao, Y.-S.; et al. Overexpression of PD-L1 Significantly Associates with Tumor Aggressiveness and Postoperative Recurrence in Human Hepatocellular Carcinoma. Clin. Cancer Res. 2009, 15, 971–979. [Google Scholar] [CrossRef] [Green Version]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.H.; Harding, J.J.; Merle, P.; et al. CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann. Oncol. 2019, 30, v874–v875. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Deva, S.; Lee, J.-S.; Lin, C.-C.; Yen, C.-J.; Millward, M.; Chao, Y.; Keam, B.; Jameson, M.; Hou, M.-M.; Kang, Y.-K.; et al. A phase Ia/Ib trial of tislelizumab, an anti-PD-1 antibody (ab), in patients (pts) with advanced solid tumors. Ann. Oncol. 2018, 29, x24–x25. [Google Scholar] [CrossRef]
- Markham, A.; Keam, S.J. Camrelizumab: First Global Approval. Drugs 2019, 79, 1355–1361. [Google Scholar] [CrossRef]
- Qin, S.-K.; Ren, Z.; Meng, Z.; Chen, Z.; Chai, X.; Xiong, J.; Bai, Y.; Yang, L.; Zhu, H.; Fang, W.; et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: A multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 571–580. [Google Scholar] [CrossRef]
- Hoy, S.M. Sintilimab: First Global Approval. Drugs 2019, 79, 341–346. [Google Scholar] [CrossRef]
- Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2019, 6, e12–e19. [Google Scholar] [CrossRef]
- Zhang, W.; Bi, X.; Sun, Y.; Yu, Y.; Zhou, J.-G.; Zeng, H.; Wu, F.; Luo, Y.; Yang, Y.; Chen, M.; et al. Preliminary results of sintilimab plus different dose of IBI305 (anti-VEGF monoclonal antibody) in patients with advanced hepatocellular carcinoma: A phase Ib study. J. Clin. Oncol. 2020, 38, 3079. [Google Scholar] [CrossRef]
- Keam, S.J. Toripalimab: First Global Approval. Drugs 2019, 79, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Chi, Z.; Chen, Y.B.; Liu, X.; Wu, D.; Chen, J.; Song, X.; Wang, W.; Dong, L.; Song, H.; et al. Safety, Efficacy, and Biomarker Analysis of Toripalimab in Previously Treated Advanced Melanoma: Results of the POLARIS-01 Multicenter Phase II Trial. Clin. Cancer Res. 2020, 26. [Google Scholar] [CrossRef] [Green Version]
- Necchi, A.; Joseph, R.; Loriot, Y.; Hoffman-Censits, J.; Perez-Gracia, J.; Petrylak, D.; Derleth, C.; Tayama, D.; Zhu, Q.; Ding, B.; et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: Post-progression outcomes from the phase II IMvigor210 study. Ann. Oncol. 2017, 28, 3044–3050. [Google Scholar] [CrossRef]
- Lee, M.S.; Ryoo, B.-Y.; Hsu, C.-H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Naing, A.; Gainor, J.F.; Gelderblom, H.; Forde, P.M.; Butler, M.O.; Lin, C.-C.; Sharma, S.; De Olza, M.O.; Varga, A.; Taylor, M.; et al. A first-in-human phase 1 dose escalation study of spartalizumab (PDR001), an anti–PD-1 antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, e000530. [Google Scholar] [CrossRef] [Green Version]
- Nathan, P. Spartalizumab plus dabrafenib and trametinib (Sparta-DabTram) in patients (pts) with previously untreated BRAF V600–mutant unresectable or metastatic melanoma: Results from the randomized part 3 of the phase III COMBI-i trial. Ann. Oncol. 2020, 31, S1142–S1215. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, Z.A.; Segal, N.H.; Jaeger, D.; Lee, K.-H.; Marshall, J.; Antonia, S.J.; Butler, M.; Sanborn, R.E.; Nemunaitis, J.; Carlson, C.A.; et al. Safety and clinical activity of durvalumab monotherapy in patients with hepatocellular carcinoma (HCC). J. Clin. Oncol. 2017, 35, 4071. [Google Scholar] [CrossRef]
- Kudo, M.; Motomura, K.; Wada, Y.; Inaba, Y.; Sakamoto, Y.; Kurosaki, M.; Umeyama, Y.; Kamei, Y.; Yoshimitsu, J.; Fujii, Y.; et al. First-line avelumab + axitinib in patients with advanced hepatocellular carcinoma: Results from a phase 1b trial (VEGF Liver 100). J. Clin. Oncol. 2019, 37, 4072. [Google Scholar] [CrossRef]
- Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008, 322, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chen, Z.; Yang, Y.; Jiang, Z.; Gu, Y.; Liu, Y.; Lin, C.; Pan, Z.; Yu, Y.; Jiang, M.; et al. Human CD14+CTLA-4+regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 2014, 59, 567–579. [Google Scholar] [CrossRef]
- O’Day, S.J.; Maio, M.; Chiarion-Sileni, V.; Gajewski, T.F.; Pehamberger, H.; Bondarenko, I.N.; Queirolo, P.; Lundgren, L.; Mikhailov, S.; Roman, L.; et al. Efficacy and safety of ipilimumab monotherapy in patients with pretreated advanced melanoma: A multicenter single-arm phase II study. Ann. Oncol. 2010, 21, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Gomez-Martin, C.; De La Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracian, A.C.; Acosta-Rivera, M.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.F.; et al. Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J. Clin. Oncol. 2019, 37, 327. [Google Scholar] [CrossRef]
- Jilkova, Z.M.; Aspord, C.; Decaens, T. Predictive Factors for Response to PD-1/PD-L1 Checkpoint Inhibition in the Field of Hepatocellular Carcinoma: Current Status and Challenges. Cancers 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef]
- Chang, B.; Huang, T.; Wei, H.; Shen, L.; Zhu, D.; He, W.; Chen, Q.; Zhang, H.; Li, Y.; Huang, R.; et al. The correlation and prognostic value of serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death-ligand 1 (sPD-L1) in patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 2019, 68, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhu, J.; Liu, Y.; Liu, C.; Wang, W.; Chen, F.; Ma, L. Development and validation of a novel immune-related prognostic model in hepatocellular carcinoma. J. Transl. Med. 2020, 18, 67. [Google Scholar] [CrossRef] [Green Version]
Pathway | Drug | Study Name/Phase | Setting | n | ORR | Result | Grade 3/4 AEs | Ref |
---|---|---|---|---|---|---|---|---|
PD-1 | Nivolumab | CheckMate 040 Phase 1/2 CheckMate 459 Phase 3 | First-line First-line | 214 743 | 20% 15% | Positive Negative | 25% 22% | [31] [32] |
Pembrolizumab | Keynote-224 Phase 2 Keynote-240 Phase 3 | Non-comparative Second-line | 104 413 | 18% 18% | Positive Negative | 24% 19% | [33] [34] | |
Tislelizumab | Phase 1a/1b | First in-human trial | 207 | 12% | Positive | 18% | [35] | |
Camrelizumab | Phase 2 | Second-line | 217 | 15% | Positive | 22% | [37] | |
Sintilimab | Phase 1b | Second-line | 50 | 26% | Positive | 12% | [40] | |
Spartalizumab | Phase 1 | First in-human trial | 58 | 3% | N/A | N/A | [46] | |
PD-L1 | Atezolizumab | GO30140 Phase 1b IMbrave150 Phase 3 | Monotherapy And + bevacizumab in advanced HCC + bevacizumab in first-line treatment | 59 104 501 | 17% 36% N/A | Positive Positive Positive | 5% 42% 57% | [44] [44] [45] |
Durvalumab | Phase 1/2 | HCC subgroup | 50 | 10% | Positive | 20% | [49] | |
Avelumab | Phase 1b | +axitinib | 22 | 14% | Positive | 73% | [50] | |
CTLA-4 | Ipilimumab | Checkmate 040 Phase 1/2 | +nivolumab | N/A | 31% | Positive | N/A | [31] |
Tremelimumab | Study-22 Phase 2 | Dose finding study | 332 | 24% | Positive | 16% | [47] |
Agent | Combining Modality | Mechanism | Trial Name/Code | n | Setting |
---|---|---|---|---|---|
Nivolumab | Ipilimumab | CTLA-4 | CheckMate040 | 148 | Advanced HCC (first-line) |
Ipilimumab | CTLA-4 | CheckMate9DW | 1084 | Advanced HCC (first-line) | |
Ipilimumab | CTLA-4 | CheckMate74W | 765 | Adjuvant to TACE | |
CheckMate9DX | 530 | Adjuvant after resection in patients with high risk of recurrence | |||
TACE | Chemoembolization | NCT04268888 | 522 | Adjuvant | |
Pembrolizumab | Lenvatinib + TACE | TKI + chemoembolization | LEAP-012 | 950 | Adjuvant |
Lenvatinib | TKI | LEAP-002 | |||
KEYNOTE-937 | 950 | Adjuvant to complete radiological response after resection or ablation | |||
BSC | KEYNOTE-394 | 750 | Advanced HCC | ||
Tislelizumab | Rationale 301 | 450 | Advanced HCC (first-line) | ||
Camrelizumab | FOLFOX4 | Chemo | NCT03605706 | 396 | Advanced HCC (first-line) |
Apatinib | VEGFR2 | NCT03764293 | 510 | Advanced HCC (first-line) | |
Sintilimab | IBI305 | VEGF | ORIENT-32 | 566 | Advanced HCC (first-line) |
SBRT | Radiation | NCT04167293 | 116 | Advanced HCC with portal vein invasion | |
Toripalimab | JUPITER 04 | 402 | vs placebo after resection | ||
Lenvatinib | TKI | NCT04523493 | 486 | vs placebo in advanced HCC | |
NCT03949231 | 200 | Toripalimab via hepatic artery/vein infusion in BCLC stage C HCC | |||
Atezolizumab | Cabozantinib | TKI | COSMIC-312 | 740 | Advanced HCC (first-line) |
Bevacizumab | VEGF | AMETHISTA | 150 | Advanced HCC (first-line) | |
Bevacizumab | VEGF | IMBrave 150 | 480 | Advanced HCC (first-line) | |
Bevacizumab | VEGF | IMBrave 050 | 662 | Adjuvant after resection in patients with high risk of recurrence | |
Durvalumab | Tremelimumab | CTLA-4 | HIMALAYA | 1324 | Advanced HCC (first-line) |
Bevacizumab + TACE | VEGF + chemoembolization | EMERALD-1 | 600 | vs placebo in loco regional HCC | |
Bevacizumab + TACE + Tremelimumab | VEGF + chemoembolization + CTLA-4 | EMERALD-2 | 888 | (Neo-)adjuvant to TACE in advanced HCC |
Agent | Combined With | Mechanism | Setting | n | Phase R(arm)/NR | Expected Finishing Date | ClinicalTrial.gov |
---|---|---|---|---|---|---|---|
Nivolumab | P1101 | Biological | Advanced HCC | 72 | 1/2 R(3) | 31-07-2023 | NCT04233840 |
Nivolumab | Pexa Vec | Oncolytic virus | Advanced HCC | 30 | 1/2 NR | 01-09-2020 | NCT03071094 |
Nivolumab | Bevacizumab | VEGF | Advanced HCC | 60 | 2 R(3) | 31-10-2021 | NCT04393220 |
Nivolumab | +/− Ipilimumab | CTLA-4 | Neo-adjuvant prior to resection | 30 | 2 R(2) | 30-09-2022 | NCT03222076 |
Nivolumab | TACE | Chemo | Adjuvant | 49 | 2 NR | 01-06-2023 | NCT03572582 |
Nivolumab | Regorafenib | TKI | Advanced HCC progressive under sorafenib | 60 | 2 NR | 01-12-2022 | NCT04170556 |
Nivolumab | Regorafenib | TKI | Advanced HCC | 42 | 2 NR | 30-05-2023 | NCT04310709 |
Nivolumab | SIRT | Radiation | Adjuvant | 27 | 1 | 01-07-2023 | NCT02837029 |
Nivolumab | SF1126 | mTOR inhibitor | Advanced HCC | 14 | 1 | 01-10-2022 | NCT03059147 |
Nivolumab | Lenvatinib | TKI | Advanced HCC | 30 | 1 | 01-06-2021 | NCT03418922 |
Nivolumab | Lenvatinib | TKI | Advanced HCC | 50 | 2 NR | 01-10-2021 | NCT03841201 |
Nivolumab | SIRT | Radiation | Advanced HCC | 40 | 2 NR | 01-12-2019 | NCT03033446 |
Nivolumab | BMS-986253/Cabiralizumab | Anti- IL-8/CSF1R | Advanced HCC | 74 | 2 R(3) | 05-08-2024 | NCT04050462 |
Nivolumab | BMS-986205 | IDO1 inhibitor | Advanced HCC (first/second line) | 23 | 1/2 NR | 01-06-2022 | NCT03695250 |
Nivolumab | Cabozantinib | TKI | Neo-adjuvant prior to resection | 15 | 1 | 01-03-2022 | NCT03299946 |
Nivolumab | Ipilimumab | CTLA-4 | Neo-adjuvant prior to resection | 40 | 2 NR | 31-12-2022 | NCT03510871 |
Nivolumab | Ipilimumab | CTLA-4 | Neo-adjuvant prior to resection | 32 | 2 NR | 01-09-2022 | NCT03682276 |
Nivolumab | Ipilimumab | CTLA-4 | Neo-adjuvant prior to TACE | 35 | 2 NR | 01-09-2024 | NCT04472767 |
Nivolumab | GT90001 | Anti-ALK-1 | Advanced HCC + metastasis | 20 | 1/2 NR | 25-09-2025 | NCT03893695 |
Nivolumab | Ipilimumab | CTLA-4 | Adjuvant after SBRT | 50 | 1 | 01-08-2022 | NCT03203304 |
Nivolumab | TACE | Chemo | Adjuvant | 522 | 2/3 R(2) | 01-06-2026 | NCT04268888 |
Nivolumab | Relatlimab | Anti-LAG-3 | Advanced HCC after TKI | 250 | 2 (R3) | 16-09-2023 | NCT04567615 |
Nivolumab | ABX196 | iNKT activation | Advanced HCC | 48 | 1/2 NR | 30-06-2021 | NCT03897543 |
Nivolumab | Sorafenib | TKI | Advanced HCC +/− metastasis | 40 | 2 NR | 30-09-2022 | NCT03439891 |
Pembrolizumab | Advanced HCC | 29 | 2 NR | 01-11-2022 | NCT02658019 | ||
Pembrolizumab | Advanced HCC (after sorafenib) | 60 | 2 NR | 01-12-2020 | NCT03163992 | ||
Pembrolizumab | Neo-adjuvant prior to resection/ablation | 50 | 2 NR | 31-10-2020 | NCT03337841 | ||
Pembrolizumab | Sorafenib | TKI | Advanced HCC +/− metastasis | 27 | 1/2 NR | 13-09-2021 | NCT03211416 |
Pembrolizumab | Lenvatinib | TKI | Advanced HCC | 104 | 1 | 31-08-2021 | NCT03006926 |
Pembrolizumab | Cabozantinib | TKI | Advanced HCC (first-line) | 29 | 2 NR | 13-09-2024 | NCT04442581 |
Pembrolizumab | Regorafenib | TKI | Advanced HCC (first-line) | 57 | 1 | 05-10-2022 | NCT03347292 |
Pembrolizumab | Bavatuximab | Anti- phospholipids | Advanced HCC | 34 | 2 NR | 01-04-2022 | NCT03519997 |
Pembrolizumab | TACE/MWA/RFA | Chemo/ablation | Adjuvant | 30 | 2 NR | 01-09-2023 | NCT03753659 |
Pembrolizumab | TACE | Chemo | Adjuvant | 26 | 1/2 NR | 31-12-2020 | NCT03397654 |
Pembrolizumab | Lenvatinib | TKI | Neo-adjuvant in HCC beyond Milan | 192 | N/A | 30-12-2024 | NCT04425226 |
Pembrolizumab | SBRT | Radiation | Advanced HCC progressive under sorafenib | 30 | 2 NR | 02-04-2022 | NCT03316872 |
Pembrolizumab | SIRT | Radiation | Advanced HCC | 30 | 1 | 01-01-2021 | NCT03099564 |
Tislelizumab | Regorafenib | TKI | Advanced HCC (first-line) | 125 | 2 R(2) | 01-03-2025 | NCT04183088 |
Tislelizumab | Lenvatinib | TKI | Advanced HCC +/− metastasis | 66 | 2 NR | 01-12-2022 | NCT04401800 |
Tislelizumab | Advanced HCC (second-line) | 249 | 2 NR | 01-09-2021 | NCT03419897 | ||
Camrelizumab | Advanced HCC | 1000 | N/A | 01-03-2023 | NCT04487704 | ||
Camrelizumab | Apatinib | VEGFR2 | Advanced HCC | 40 | 2 NR | 01-10-2020 | NCT04014101 |
Camrelizumab | Apatinib | VEGFR2 | Advanced HCC | 190 | 2 NR | 30-12-2019 | NCT03463876 |
Camrelizumab | Apatinib | VEGFR2 | After radical hepatectomy | 45 | N/A | 01-03-2020 | NCT03722875 |
Camrelizumab vs. TACE | After resection + PVTT | 40 | N/A | 31-01-2020 | NCT03914352 | ||
Camrelizumab vs. TACE | Apatinib + TACE | VEGFR2 + Chemo | Advanced HCC | 188 | 2 R(2) | 01-09-2023 | NCT04559607 |
Camrelizumab | SBRT/IMRT | Radiation | Adjuvant | 39 | 2 NR | 30-07-2020 | NCT04193696 |
Camrelizumab | Apatinib | VEGFR2 | Advanced HCC | 30 | 2 NR | 31-01-2021 | NCT03793725 |
Camrelizumab vs. HAI | Apatinib | VEGFR2 | After resection + high risk recurrence | 200 | 2 R(2) | 28-02-2023 | NCT03839550 |
Camrelizumab | Apatinib | VEGFR2 | Perioperative | 20 | 2 NR | 01-12-2021 | NCT04297202 |
Camrelizumab | Recurrent HCC after LTx | 20 | 1 | 01-07-2023 | NCT04564313 | ||
Camrelizumab | Apatinib + RT | VEGFR-2 + Radiation | Advanced HCC with metastasis | 27 | 2 NR | 01-08-2022 | NCT04523662 |
Camrelizumab | Apatinib + TACE + FOLFOX | VEGFR2 + Chemo | Adjuvant | 56 | 2 NR | 31-12-2023 | NCT04479527 |
Camrelizumab | Lenvatinib | TKI | Advanced HCC (first-line) | 53 | 1/2 NR | 01-08-2023 | NCT04443309 |
Camrelizumab | RFA | Ablation | Advanced HCC | 120 | 2 NR | 30-12-2026 | NCT04150744 |
Camrelizumab | Apatinib + HAI | VEGFR2 + chemo | BCLC-C HCC | 84 | 2 NR | 31-12-2025 | NCT04191889 |
Camrelizumab | Apatinib | VEGFR2 | Neo-adjuvant prior to LTx | 120 | 1/2 NR | 31-12-2021 | NCT04035876 |
Sintilimab | SBRT | Radiation | Adjuvant | 30 | 2 NR | 28-02-2022 | NCT03857815 |
Sintilimab | IBI305 | VEGF | Advanced HCC | 45 | 1 | 11-11-2021 | NCT04072679 |
Sintilimab | Ipilimumab | CTLA-4 | Advanced HCC | 47 | 1b | 01-04-2023 | NCT04401813 |
Sintilimab | TAI | Chemo | Adjuvant | 40 | 2 NR | 25-03-2022 | NCT03869034 |
Sintilimab | TACE | Chemo | Adjuvant | 25 | 2 NR | 10-05-2023 | NCT04297280 |
Sintilimab | Apatinib + Capecitabine | VEGFR2 + chemo | Advanced HCC | 46 | 2 NR | 01-06-2022 | NCT04411706 |
Sintilimab | TACE | Chemo | Neo-adjuvant in HCC A/B beyond Milan | 61 | 2 NR | 30-05-2022 | NCT04174781 |
Sintilimab | Radiotherapy | Radiation | Adjuvant in HCC + PVTT | 20 | 1 | 31-12-2021 | NCT04104074 |
Sintilimab | Lenvatinib | TKI | Advanced HCC | 56 | 2 NR | 30-08-2024 | NCT04042805 |
Sintilimab | Anlotinib | TKI | Advanced HCC | 20 | 2 NR | 30-12-2021 | NCT04052152 |
Sintilimab | TACE/MWA | Chemo/ablation | Advanced HCC | 45 | 1 | 30-09-2021 | NCT04220944 |
Sintilimab | SBRT | Radiation | Advanced HCC + metastasis | 84 | 2 R(2) | 01-07-2023 | NCT04547452 |
Toripalimab | After LTx | Transplant | Adjuvant | 20 | 1 | 31-10-2022 | NCT03966209 |
Toripalimab | ATG-008 | mTOR inhibitor | Advanced HCC | 38 | N/A | 17-03-2022 | NCT04337463 |
Toripalimab | Lenvatinib | TKI | Advanced HCC | 76 | 2 NR | 01-04-2023 | NCT04368078 |
Toripalimab | TAI | Chemo | Advanced HCC | 65 | 2 NR | 02-03-2021 | NCT03851939 |
Toripalimab | SBRT | Radiation | Advanced HCC + PVTT | 30 | 2 NR | 01-01-2021 | NCT04169399 |
Toripalimab | Lenvatinib, HAIC | TKI, chemo | Advanced HCC | 36 | 2 NR | 01-10-2020 | NCT04044313 |
Toripalimab | HAIC | Chemo | Advanced HCC + PVTT (first-line) | 60 | 2 R(2) | 20-10-2020 | NCT04135690 |
Toripalimab | Chemo + lenvatinib | Chemo + TKI | Advanced HCC + metastasis | 25 | 2 NR | 01-12-2020 | NCT04170179 |
Toripalimab | Sorafenib | TKI | Advanced HCC + PVTT | 39 | 1/2 NR | 01-10-2021 | NCT04069949 |
Atezolizumab vs. SIRT | Bevacizumab | VEGF | Advanced HCC | 128 | 2 R(2) | 01-01-2024 | NCT04541173 |
Atezolizumab | Bevacizumab + TACE | VEGF + chemo | (Neo-)Adjuvant prior to/following TACE in Advanced HCC | 106 | 2 R(2) | 01-03-2025 | NCT04224636 |
Atezolizumab | Bevacizumab | VEGF | Advanced HCC + HBV | 48 | 2 NR | 30-06-2022 | NCT04180072 |
Spartalizumab | +/−Capmatinib | MET-inhibitor | Advanced HCC | 90 | 1b/2 | 20-10-2020 | NCT02795429 |
Genolimzumab | Bozotinib | c-Met inhibitor | Locally advanced or metastatic HCC | 119 | 1/2 | 15-12-2020 | NCT03655613 |
Durvalumab | +/−Tremelimumab | Hypo-fractionated Radiotherapy | After initial treatment with anti-PD-1 | 30 | 2 NR | 01-08-2024 | NCT04430452 |
Durvalumab | Advanced HCC with active HBV | 43 | 2 NR | 31-12-2022 | NCT04294498 | ||
Durvalumab + Tremelimumab | TACE/RFA/Cryo | Chemo/Ablation | Advanced HCC | 90 | 2 NR | 31-12-2021 | NCT02821754 |
Durvalumab + Tremelimumab | SIRT/TACE | Radiation/Chemo | Advanced HCC | 84 | 2 R(2) | 30-09-2024 | NCT04522544 |
Durvalumab | Tivozanib | TKI | Advanced HCC (first-line) | 42 | 1/2 NR | 01-08-2022 | NCT03970616 |
Durvalumab | TACE + ablation | Chemo + ablation | Advanced HCC | 30 | N/A | 01-10-2024 | NCT04517227 |
Durvalumab | Tremelimumab + radiation | CTLA-4 + radiation | Advanced HCC | 70 | 2 NR | 31-10-2025 | NCT03482102 |
Durvalumab | Tremelimumab | CTLA-4 | Advanced HCC | 433 | 2 R(5) | 31-12-2021 | NCT02519348 |
Durvalumab | Bevacizumab | VEGF | Advanced HCC | 433 | 2 R(5) | 31-12-2021 | NCT02519348 |
Durvalumab | Advanced HCC | 433 | 2 R(5) | 31-12-2021 | NCT02519348 | ||
Durvalumab | Tremelimumab + TACE | CTLA-4 | Adjuvant after TACE | 30 | 2 NR | 01-11-2020 | NCT03638141 |
Durvalumab | SIRT | Radiation | Adjuvant after SIRT | 24 | 1/2 NR | 30-12-2021 | NCT04124991 |
Durvalumab | Lenvatinib | TKI | Advanced HCC + metastasis | 20 | N/A | 31-12-2025 | NCT04443322 |
Durvalumab | TACE + Bevacizumab + Tremelimumab | Chemo + VEGF + CTLA-4 | (Neo-)Adjuvant with TACE | 22 | 2 NR | 31-12-2022 | NCT03937830 |
Avelumab | Advanced HCC (second-line) | 30 | 2 NR | 31-03-2020 | NCT03389126 | ||
Tremelimumab | Advanced HCC | 433 | 2 R(5) | 31-12-2021 | NCT02519348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Doorn, D.J.; Takkenberg, R.B.; Klümpen, H.-J. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview. Pharmaceuticals 2021, 14, 3. https://doi.org/10.3390/ph14010003
van Doorn DJ, Takkenberg RB, Klümpen H-J. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview. Pharmaceuticals. 2021; 14(1):3. https://doi.org/10.3390/ph14010003
Chicago/Turabian Stylevan Doorn, Diederick J., Robert Bart Takkenberg, and Heinz-Josef Klümpen. 2021. "Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview" Pharmaceuticals 14, no. 1: 3. https://doi.org/10.3390/ph14010003
APA Stylevan Doorn, D. J., Takkenberg, R. B., & Klümpen, H. -J. (2021). Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview. Pharmaceuticals, 14(1), 3. https://doi.org/10.3390/ph14010003