Antioxidant, Anti-Inflammatory, and Antidiabetic Activities of Leaves and Stems of Uapaca bojeri Bail. (EUPHORBIACEAE), an Endemic Plant of Madagascar
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Bioactive Compound Content (TBCC) and TPC
2.2. In Vitro Antioxidant Capacity
2.3. Anti-Inflammatory Activity
2.3.1. Carrageenan-Induced Paw Oedema
2.3.2. Acetic Acid-Induced Writhing
2.4. Antidiabetic Activity
3. Materials and Methods
3.1. Plant Materials and Methanol Extract Preparation
3.2. Chemicals and Solvents
3.3. Total Phenolic Content (TPC)
3.4. Chromatographic Analysis
3.4.1. Samples Preparation Protocol for HPLC Analysis
3.4.2. Apparatus, Standard Curves, and Chromatographic Conditions
3.5. In Vitro Antioxidant Activities
3.5.1. DPPH Free Radical—Scavenging Capacity
3.5.2. Ferric Reducing Antioxidant Power (FRAP)
3.6. Animals
3.7. Anti-Inflammatory Activity
3.7.1. Carrageenan-Induced Paw Oedema
3.7.2. Acetic Acid-Induced Writhing Test
3.8. Anti-Diabetic Activity
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Robinson, J.G. An island of evolutionary exuberance. Science 2004, 304, 53. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.B.; Lee, M.K.; Rasoanaivo, P. Antiviral activities in plants endemic to Madagascar. Pharmceut. Biol. 2000, 38, 36–39. [Google Scholar] [CrossRef]
- Pernet, R.; Meyer, G. Pharmacopée de Madagascar. Off. Des Rech. Sci. 1957, 1, 86. Available online: http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers13-05/010057844.pdf (accessed on 18 November 2019).
- Kull, C.A.; Ratsirarson, J.; Randriamboavonjy, G. Les forêts de tapia des Hautes Terres malgaches. Terre Malgache 2005, 24, 22–58. Available online: https://popups.uliege.be:443/17804507/index.php?id=10045 (accessed on 6 November 2019).
- Verheggen, F.; Bogaert, J.; Haubruge, É. Les Vers à Soie Malgaches. 2013. Available online: https://books.google.cm/books?hl=fr&lr=&id=AEzwAwAAQBAJ&oi=fnd&pg=PA15&dq=les+vers+à+soie+malgaches&ots=69bUeaIiYj&sig=CWmI7vMg-956oY9GGLSvwhw1y2I&redir_esc=y#v=onepage&q=lesversàsoiemalgaches&f=false (accessed on 6 November 2019).
- Bourgeat, F. Sols sur socle ancien à Madagascar. Mémoire de l’ORSTOM 1972, 57, 338. [Google Scholar]
- Direction des Eaux et Forêts (DEF). Inventaire Écologique Forestier National. Recueil botanique de 200 espèces forestières- Antananarivo, Madagascar, EEDR Mamokatra/DFS/FTM/Ministère des Eaux et Forêts; Ministère des Eaux et Forêts: Abidjan, Ivory Coast, 1996; Volume 503. [Google Scholar]
- Silva, B.M.; Andrade, P.B.; Gonçalves, A.C.; Seabra, R.M.; Oliveira, M.B.; Ferreira, M.A. Influence of jam processing upon the contents of phenolics, organic acids and free amino acids in quince fruit (Cydonia oblonga Miller). Eur. Food Res. Technol. 2004, 218, 385–389. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerutti, A.K.; Bounous, G. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. J. Funct. Foods 2015, 18, 1070–1085. [Google Scholar] [CrossRef]
- Rakotoniaina, E.N.; Donno, D.; Randriamampionona, D.; Harinarivo, H.L.; Andriamaniraka, H.; Solo, N.R.; Soifoini, T.; Torti, V.; Rabemanantsoa, C.; Andrianjara, C.; et al. Insights into an endemic medicinal plant species of Madagascar and Comoros: The case of Famelona (Chrysophyllum boivinianum (Pierre) Baehni, Sapotaceae family). S. Afr. J. Bot. 2018, 117, 110–118. [Google Scholar] [CrossRef]
- Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Effect of extraction solvents and thermal drying methods on bioactive compounds and antioxidant properties of Catharanthus roseus (L) G. Don (Patricia white cultivar). J. Food Process. Pres. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Newell, A.M.; Yousef, G.G.; Lila, M.A.; Ramirez-Mares, M.V.; Gonzales de Meija, E. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J. Ethnopharmacol. 2010, 130, 536–544. [Google Scholar] [CrossRef]
- Chien, S.C.; Chen, M.L.; Kuo, H.T.; Tsai, Y.C.; Lin, B.F.; Kuo, Y.H. Anti-inflammatory Activities of New Succinic and Maleic Derivatives from the Fruiting Body of Antrodia camphorate. J. Agric. Food Chem. 2008, 56, 7017–7022. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ortega, M.; Ortiz-Moreno, A.; Hernandez-Navarro, M.D.; Chamorro-Cevallos, G.; Dorantes-Alvarez, L.; Necoechea-Mondragon, H. Antioxidant, antinociceptive, and anti-Inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J. Biomed. Biotechnol. 2012, 524019, 10. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Xiong, Y.L.; Kong, B.; Liu, Q.; Xia, X. Radical scavenging activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis. J. Funct. Foods 2012, 4, 382–390. [Google Scholar] [CrossRef]
- Soares, J.R.; Dins, T.C.P.; Cunha, A.P.; Almeida, L.M. Antioxidant activity of some extracts of Thymus zygis. Free Radic. Res. 1997, 26, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, L.; Kolay, E.; Aĝilönü, Y.; Aslan, Z.; Kargioĝlu, M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermo psisturcica. Saudi J. Biol. Sci. 2013, 20, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Montefusco-Pereira, C.V.; de Carvalho, M.J.; de Araújo Boleti, A.P.; Teixeira, L.S.; Matos, H.R.; Lima, E.S. Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Appl. Biochem. Biotechnol. 2013, 170, 1367–1378. [Google Scholar] [CrossRef]
- Donno, D.; Cerutti, A.K.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Serviceberry, a berry fruit with growing interest of industry: Physicochemical and quali-quantitative health-related compound characterisation. J. Funct. Foods 2016, 26, 157–166. [Google Scholar] [CrossRef]
- Roome, T.; Dar, A.; Naqvi, S.; Ali, S.; Choudhary, M.I. Aegiceras corniculatum extract suppresses initial and late phases of inflammation in rat paw and attenuates the production of eicosanoids in rat neutrophils and human platelets. J. Ethnopharmacol. 2008, 120, 248–254. [Google Scholar] [CrossRef]
- Deciga-Campos, M.; Palacios-Espinosa, F.J.; Reyes-Ramirez, A.; Mata, R. Antinociceptive and antiinflammatory effects of compounds isolated from Scaphyglottis livida and Maxillaria densa. J. Ethnopharmacol. 2007, 114, 161–168. [Google Scholar] [CrossRef]
- Goulart, S.; Moritz, G.I.M.; Lang, L.K.; Liz, R.; Schenkel, P.E.; Frode, S.T. Antiinflammatory evaluation of Solidago chilensis Meyen in a murine model of pleurisy. J. Ethnopharmacol. 2007, 13, 346–353. [Google Scholar] [CrossRef]
- Negus, S.S.; Vanderah, T.W.; Brandt, M.R.; Bilsky, E.J.; Becerra, L.; Borsook, D. Preclinical assessment of candidate analgesic drugs: Recent advances and future challenges. J. Pharmacol. Exp. Ther. 2006, 319, 507–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marles, R.J.; Farnsworth, N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995, 2, 137–189. [Google Scholar] [CrossRef]
- Malencić, D.; Maksimović, Z.; Popović, M.; Miladinović, J. Polyphenol Contents and Antioxidant Activity of Soybean Seed Extracts. Bioresour. Technol. 2008, 99, 6688–6691. [Google Scholar] [CrossRef] [PubMed]
- Peungvicha, P.; Thirawarapan, S.S.; Temsiririrkkul, R.; Watanabe, H.; Prasain, J.K.; Kadota, S. Hypoglycemic effect of the water extract of Piper sarmentosum in rats. J. Ethnopharmacol. 1998, 60, 27–32. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Marinoni, T.D.; Cerutti, A.K.; Canterino, S.; Bounous, G. Application of sensory, nutraceutical and genetic techniques to create a quality profile of ancient apple cultivars. J. Food Qual. 2012, 35, 169–181. [Google Scholar] [CrossRef]
- Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: An innovative technique in food supplement quality control. J. Food Sci. Technol. 2016, 53, 1071–1083. [Google Scholar] [CrossRef] [Green Version]
- Sreejayan, N.; Rao, M.N.A. Free radical scavenging activity of curcuminoids. Arzneim. Forsch. 1996, 46, 169–171. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Buisseret, B.; Guillemot-Legris, O.; Muccioli, G.G.; Alhouayek, M. Prostaglandin D2-glycerol ester decreases carrageenan-induced inflammation and hyperalgesia in mice. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2019, 1864, 609–618. [Google Scholar] [CrossRef]
- Olajide, O.A.; Awe, S.O.; Makinde, J.M.; Ekhelar, A.I.; Olusola, A.; Morebise, O.; Okpako, D.T. Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. J. Ethnopharmacol. 2000, 71, 179–186. [Google Scholar] [CrossRef]
- Tombozara, N.; Donno, D.; Razafindrakoto, Z.R.; Randriamampionona, D.; Ramanitrahasimbola, D.; Andrianjara, C.; Ramilison-Razafimahefa, R.D.; Rakotondramanana, D.A.; Beccaro, G.L. The first assessment on antioxidant and antidiabetic activities of leaves and stems of Vaccinium secundiflorum Hook. (Ericaceae), an endemic plant of Madagascar. S. Afr. J. Bot. 2020, 130, 422–429. [Google Scholar] [CrossRef]
Class | Standard | Stems (mg/100gDW) | Leaves (mg/100gDW) |
---|---|---|---|
Cinnamic acid | Caffeic acid | 2.08 ± 0.07 | 0.77 ± 0.45 |
Chlorogenic acid | n.d. | n.d. | |
Coumaric acid | n.d. | n.d. | |
Ferulic acid | n.d. | n.d. | |
Flavonols | Hyperosides | n.d. | 77.94 ± 6.37 |
Isoquercetrin | n.d. | n.d. | |
Quercetin | n.d. | 151.92 ± 13.35 | |
Quercitrin | n.d. | n.d. | |
Rutin | n.d. | 72.20 ± 7.97 | |
Benzoic acids | Ellagic acid | 335.14 ± 106.96 | 338.04 ± 123.79 |
Gallic acid | n.d. | n.d. | |
Catechins | Catechin | n.d. | n.d. |
Epicatechin | n.d. | n.d. | |
Tannins | Castalagin | 406.35 ± 223.20 | 943.83 ± 98.80 |
Vescalagin | n.d. | n.d. | |
Monoterpenes | Limonene | n.d. | n.d. |
Phellandrene | n.d. | n.d. | |
Sabinene | n.d. | 0.21 ± 0.05 | |
ƴ-terpinene | n.d. | n.d. | |
Terpinolene | n.d. | n.d. | |
Organic acids | Citric acid | n.d. | n.d. |
Malic acid | n.d. | n.d. | |
Oxalic acid | n.d. | n.d. | |
Quinic acid | n.d. | n.d. | |
Succinic acid | 533.74 ± 340.08 | 1275.65 ± 434.99 | |
Tartaric acid | n.d. | n.d. | |
Vitamins | Ascorbic acid | n.d. | n.d. |
Dehydroascorbic acid | n.d. | n.d. | |
Carotenoids | α-carotene | n.d. | n.d. |
β-carotene | n.d. | n.d. | |
β-cryptoxanthine | 0.78 ± 0.34 | 12.55 ± 6.54 | |
Lutein | 2.85 ± 0.07 | 20.99 ± 1.34 | |
Lycopene | 1.79 ± 0.95 | 1015.44 ± 253.01 | |
Zeaxanthine | n.d. | 0.46 ± 0.03 | |
TBCC | 1281.72 ± 671.67 | 3909.01 ± 822.90 |
Extract/Compound | TPC (mg of GAE/100 g of DW) | FRAP (mmol Fe2+/kg of DW) | DPPH Free Radical Scavenging Capacity | ||
---|---|---|---|---|---|
Linear Equation | R2 | IC 50 (μg/mL) | |||
Stems | 5854.17 ± 1247.65 | 70.17 ± 9.53 | y = 1.2467x + 8.464 | 0.9819 | 33.32 ± 0.69 a,b |
Leaves | 3624.72 ± 268.07 | 69.20 ± 1.41 | y = 1.0731x − 0.8258 | 0.9901 | 47.36 ± 3.00 a |
Gallic Acid | - | - | y = 2.7182x − 6.3455 | 0.9928 | 20.73 ± 1.35 |
Tested Substance | Dose (mg/kg) | Percent Anti-Inflammatory Activity (% A) | |||
---|---|---|---|---|---|
30 min | 60 min | 120 min | 180 min | ||
Control | - | 0.77 ± 0.77 | 6.19 ± 1.76 | 21.28 ± 2.48 | 25.39 ± 6.68 |
Indomethacin | 10 | 18.08 ± 0.77 a | 40.14 ± 8.08 b | 66.99 ± 7.74 a | 86.83 ± 5.54 a |
Leaf Extract | 50 | 6.94 ± 1.40 | 15.46 ± 1.47 b | 32.44 ± 2.10 b | 44.66 ± 2.69 b |
100 | 6.04 ± 1.28 | 17.33 ± 1.33 b | 29.36 ± 2.27 c | 46.89 ± 2.80 b | |
200 | 23.94 ± 2.01 c | 43.80 ± 4.31 a | 62.09 ± 3.33 a | 77.43 ± 2.49 a | |
400 | 28.77 ± 1.64 b | 44.71 ± 2.71 a | 61.16 ± 1.94 a | 83.62 ± 4.41 a | |
Stem Extract | 50 | 10.35 ± 0.38 b | 19.27 ± 1.34 a | 29.01 ± 1.92 c | 41.42 ± 0.80 b |
100 | 11.06 ± 2.44 c | 23.61 ± 1.32 a | 38.78 ± 1.65 b | 53.67 ± 1.90 a | |
200 | 16.35 ± 1.31 a | 29.23 ± 2.28 a | 53.19 ± 1.84 a | 65.47 ± 1.69 a | |
400 | 18.70 ± 3.50 a | 32.04 ± 1.43 a | 53.39 ± 1.37 a | 71.59 ± 3.21 a |
Treatment | Dose (mg/kg) | Number of Writhes (5–25 min) | Inhibition (%) |
---|---|---|---|
Control | - | 24.90 ± 2.25 | 0 |
Indomethacin | 10 | 3.90 ± 1.12 a | 84.34 |
Leaf Extract | 50 | 19.00 ± 1.15 c | 23.70 |
100 | 16.70 ± 0.82 b | 32.93 | |
200 | 13.20 ± 0.72 b | 46.99 | |
400 | 12.60 ± 1.34 b | 49.40 | |
Stem Extract | 50 | 19.70 ± 1.64 | 20.88 |
100 | 15.50 ± 0.67 b | 37.75 | |
200 | 12.30 ± 1.70 b | 50.60 | |
400 | 10.60 ± 1.22 b | 57.43 |
Group (n = 4) | Dose (mg/kg) | Time (min) | ||||
---|---|---|---|---|---|---|
0 | 15 | 30 | 60 | 120 | ||
Negative Control | - | 6.21 ± 0.11 0 | 23.13 ± 0.83 16.92 | 18.67 ± 0.42 12.46 | 12.25 ± 0.86 6.04 | 6.95 ± 0.29 0.74 |
Leaf Extract | 50 | 5.62 ± 0.29 0 | 24.54 ± 1.18 18.92 | 17.14 ± 0.69 11.52 | 11.87 ± 0.54 6.25 | 6.28 ± 0.58 0.66 |
100 | 6.22 ± 0.18 0 | 24.02 ± 0.78 17.80 | 16.10 ± 0.68 c 9.99 | 11.77 ± 0.71 5.55 | 6.40 ± 0.28 0.18 | |
200 | 5.72 ± 0.21 0 | 26.04 ± 1.07 20.32 | 12.11 ± 0.70 a 6.39 | 8.87 ± 0.60 c 3.15 | 5.78 ± 0.16 c 0.06 | |
400 | 6.12 ± 0.04 0 | 25.04 ± 0.36 18.92 | 10.89 ± 0.89 a 4.77 | 7.62 ± 0.31 b 1.5 | 5.63 ± 0.15 b –0.49 | |
Stem Extract | 50 | 6.00 ± 0.19 0 | 23.29 ± 1.01 17.29 | 17.14 ± 0.70 11.14 | 12.31 ± 0.48 6.31 | 6.76 ± 0.38 0.76 |
100 | 6.22 ± 0.17 0 | 24.50 ± 1.06 18.28 | 15.55 ± 0.42 b 9.33 | 12.02 ± 0.82 5.80 | 6.25 ± 0.21 0.03 | |
200 | 5.82 ± 0.41 0 | 24.54 ± 1.00 18.72 | 11.66 ± 0.51 a 5.84 | 9.36 ± 0.16 c 3.54 | 5.90 ± 0.27 c 0.08 | |
400 | 6.12 ± 0.04 0 | 25.04 ± 1.11 18.92 | 10.39 ± 0.30 a 4.27 | 8.35 ± 0.22 b 2.23 | 5.74 ± 0.09 b –0.38 | |
Glibenclamide | 10 | 5.25 ± 0.37 0 | 25.22 ± 2.18 19.97 | 12.71 ± 0.90 b 7.46 | 7.42 ± 0.39 b 2.17 | 6.58 ± 0.30 1.33 |
Chromatographic Method | Class | Standard | Retention Time (min) | Wavelength (nm) | Calibration Curve Equation | R2 | Calibration Curve Range (mg·L−1) | LOD (mg·L−1) | LOQ (mg·L−1) |
---|---|---|---|---|---|---|---|---|---|
A | Cinnamic acid | Caffeic acid | 4.54 | 330 | y = 59.046x + 200.6 | 0.996 | 111–500 | 0.305 | 1.016 |
Chlorogenic acid | 3.89 | 330 | y = 15.583x + 760.05 | 0.984 | 111–500 | 0.940 | 3.134 | ||
Coumaric acid | 6.74 | 330 | y = 8.9342x + 217.4 | 0.997 | 111–500 | 2.907 | 9.690 | ||
Ferulic acid | 7.99 | 330 | y = 3.3963x − 4.9524 | 1.000 | 111–500 | 1.245 | 4.150 | ||
Flavonols | Hyperosides | 10.89 | 330 | y = 7.1322x − 4.583 | 0.999 | 111–500 | 3.372 | 11.241 | |
Isoquercetrin | 11.24 | 330 | y = 8.3078x + 26.621 | 0.999 | 111–500 | 0.252 | 0.840 | ||
Quercetin | 17.67 | 330 | y = 3.4095x − 98.307 | 0.998 | 111–500 | 4.055 | 13.518 | ||
Quercitrin | 13.28 | 330 | y = 2.7413x + 5.6367 | 0.998 | 111–500 | 5.456 | 18.187 | ||
Rutin | 12.95 | 330 | y = 6.5808x + 30.831 | 0.999 | 111–500 | 2.937 | 9.790 | ||
B | Benzoic acids | Ellagic acid | 18.65 | 280 | y = 29.954x + 184.52 | 0.998 | 62.5–250 | 0.611 | 2.035 |
Gallic acid | 4.26 | 280 | y = 44.996x + 261.86 | 0.999 | 62.5–250 | 0.435 | 1.451 | ||
Catechins | Catechin | 10.31 | 280 | y = 8.9197x + 66.952 | 1.000 | 62.5–250 | 2.343 | 7.809 | |
Epicatechin | 14.30 | 280 | y = 12.88x − 43.816 | 0.999 | 62.5–250 | 0.763 | 2.543 | ||
Tannins | Castalagin | 16.35 | 280 | y = 4.236x − 8.535 | 1.000 | 62.5–250 | 1.009 | 3.363 | |
Vescalagin | 17.25 | 280 | y = 4.939x − 1.232 | 1.000 | 62.5–250 | 0.603 | 2.010 | ||
C | Monoterpenes | Limonene | 3.35 | 250 | y = 0.189x − 5.420 | 0.999 | 125–1000 | 8.654 | 28.847 |
Phellandrene | 3.57 | 210 | y = 8.783x − 145.3 | 0.998 | 125–1000 | 0.562 | 1.874 | ||
Sabinene | 3.45 | 220 | y = 18.14x − 1004 | 0.998 | 125–1000 | 0.094 | 0.314 | ||
ƴ-terpinene | 3.28 | 235 | y = 0.4886x − 23.02 | 0.999 | 125–1000 | 15.577 | 58.590 | ||
Terpinolene | 4.83 | 220 | y = 26.52x + 876.8 | 0.999 | 125–1000 | 0.241 | 0.804 | ||
D | Organic acids | Citric acid | 5.30 | 214 | y = 1.0603x − 22.092 | 1.000 | 167–1000 | 18.805 | 62.682 |
Malic acid | 4.03 | 214 | y = 1.415x − 80.254 | 0.996 | 167–1000 | 15.721 | 52.404 | ||
Oxalic acid | 7.85 | 214 | y = 6.4502x + 6.1503 | 0.998 | 167–1000 | 0.550 | 1.835 | ||
Quinic acid | 3.21 | 214 | y = 0.8087x − 38.021 | 0.998 | 167–1000 | 26.106 | 87.021 | ||
Succinic acid | 3.46 | 214 | y = 0.9236x + 8.0823 | 0.995 | 167–1000 | 7.135 | 23.783 | ||
Tartaric acid | 5.69 | 214 | y = 1.8427x − 15.796 | 1.000 | 167–1000 | 8.520 | 28.401 | ||
E | Vitamins | Ascorbic acid | 4.14 | 261 | y = 42.71x + 27.969 | 0.999 | 100–1000 | 0.836 | 2.786 |
Dehydroascorbic acid | 3.41 | 348 | y = 4.1628x + 140.01 | 0.999 | 30–300 | 1.095 | 3.649 | ||
F | Carotenoids | α-carotene | 12.34 | 450 | y = 0.5323x + 4.2783 | 0.994 | 25–100 | 1.546 | 5.154 |
β-carotene | 10.58 | 450 | y = 1.5762x + 1.8981 | 0.992 | 25–250 | 3.976 | 13.254 | ||
β-cryptoxanthin | 4.35 | 450 | y = 13.272x − 5.3181 | 0.999 | 25–200 | 0.305 | 1.016 | ||
Lutein | 2.33 | 450 | y = 84.448x − 318.78 | 1.000 | 25–200 | 0.073 | 0.244 | ||
Lycopene | 3.16 | 450 | y = 0.8543x + 19.263 | 0.979 | 62.5–500 | 14.933 | 49.775 | ||
Zeaxanthin | 2.43 | 450 | y = 188.23x − 56.64 | 1.000 | 25–200 | 0.042 | 0.141 |
Method | Compound of Interest | Stationary Phase | Mobile Phase | Flow (mL/min) | Time of Analysis (mn) | Gradient b | Wavelength (nm) |
---|---|---|---|---|---|---|---|
A | Cinnamic acids, flavonols | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A: 10 mM KH2PO4/H3PO4, pH = 2.8 B: CH3CN | 1.5 | 20 + 2(CT) a | Yes | 330 |
B | Benzoic acids, catechins | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A:H2O/CH3OH/HCOOH (5:95:0.1 v/v/v), pH = 2.5 B: CH3OH/HCOOH (100:0.1 v/v) | 0.6 | 23 + 2(CT) a | Yes | 280 |
C | Monoterpenes | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A: H2O B: CH3CN | 1.0 | 17 + 3(CT) a | Yes | 210,220,235,250 |
D | Organic acids | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A: 10 mM KH2PO4/H3PO4, pH = 2.8 B: CH3CN | 0.6 | 13 + 2(CT) a | No | 214 |
E | Vitamins | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A: 5 mM C16H33N(CH3)3Br/50 mM KH2PO4, pH = 2.5 B: CH3OH | 0.9 | 10 + 5(CT) a | No | 261,348 |
F | Carotenoids | KINETEX-C18 column (4.6 × 150 mm, 5 μm) | A: ACN B: MeOH C: CH2Cl2 | 1.0 | 20 + 5(CT) a | No | 450 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razafindrakoto, Z.R.; Donno, D.; Tombozara, N.; Andriamaniraka, H.; Andrianjara, C.; Ramanitrahasimbola, D.; Beccaro, G.L. Antioxidant, Anti-Inflammatory, and Antidiabetic Activities of Leaves and Stems of Uapaca bojeri Bail. (EUPHORBIACEAE), an Endemic Plant of Madagascar. Pharmaceuticals 2020, 13, 71. https://doi.org/10.3390/ph13040071
Razafindrakoto ZR, Donno D, Tombozara N, Andriamaniraka H, Andrianjara C, Ramanitrahasimbola D, Beccaro GL. Antioxidant, Anti-Inflammatory, and Antidiabetic Activities of Leaves and Stems of Uapaca bojeri Bail. (EUPHORBIACEAE), an Endemic Plant of Madagascar. Pharmaceuticals. 2020; 13(4):71. https://doi.org/10.3390/ph13040071
Chicago/Turabian StyleRazafindrakoto, Zoarilala Rinah, Dario Donno, Nantenaina Tombozara, Harilala Andriamaniraka, Charles Andrianjara, David Ramanitrahasimbola, and Gabriele Loris Beccaro. 2020. "Antioxidant, Anti-Inflammatory, and Antidiabetic Activities of Leaves and Stems of Uapaca bojeri Bail. (EUPHORBIACEAE), an Endemic Plant of Madagascar" Pharmaceuticals 13, no. 4: 71. https://doi.org/10.3390/ph13040071
APA StyleRazafindrakoto, Z. R., Donno, D., Tombozara, N., Andriamaniraka, H., Andrianjara, C., Ramanitrahasimbola, D., & Beccaro, G. L. (2020). Antioxidant, Anti-Inflammatory, and Antidiabetic Activities of Leaves and Stems of Uapaca bojeri Bail. (EUPHORBIACEAE), an Endemic Plant of Madagascar. Pharmaceuticals, 13(4), 71. https://doi.org/10.3390/ph13040071