Grаdiеnt HPLC Mеthоd fоr Simultаnеоus Dеtеrminаtiоn оf Еight Sаrtаn аnd Stаtin Drugs in Thеir Purе аnd Dоsаgе Fоrms
Abstract
:1. Introduction
2. Experimental
2.1. Apparatus
2.2. Materials and Reagents
2.3. Pharmaceutical Formulations
2.4. Procedures
2.4.1. Preparation of Standard Calibration Curves
2.4.2. Pharmaceutical Dosages Procedure
3. Results and Discussion
3.1. Optimization of Chromatographic Conditions
3.2. Method Validation
3.2.1. Linearity
3.2.2. Accuracy
3.2.3. Precision
3.2.4. Selectivity and Specificity
3.2.5. Limits of Detection and Limits of Quantification
3.2.6. Robustness
3.3. Analysis of Pharmaceutical Formulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gopalakrishnan, S.; Savitha, A.K.; Rama, R. Evaluation of inter-arm difference in blood pressure as predictor of vascular diseases among urban adults in Kancheepuram District of Tamil Nadu. J. Family. Med. Prim. Care 2018, 7, 142–146. [Google Scholar]
- Eswarudu, M.M.; Chary, T.N.; Junapud, S.; Sushma, M. RP-HPLC Method Development and Validation for Simultaneous Estimation of Irbesartan and Hydrochlorothiazide in Pharmaceutical Dosage Form. Asian J. Res. Chem. 2012, 5, 348–352. [Google Scholar]
- Hafez, H.M.; Elshanawane, A.A.; Abdelaziz, L.M.; Kamal, M.M. Quantitative Determination of three Angiotensin-II-receptor Antagonists in Presence of Hydrochlorothiazide by RP-HPLC in their Tablet Preparations. Iran J. Pharm. Res. 2013, 12, 635–643. [Google Scholar]
- Youssef, R.; Hbash, A.; San, A.H. Determination and Separation of Valsartan, Losartan and Irbesartan in Bulk and Pharmaceutical Formulation by RP-HPLC. Int. J. Pharm. Sci. Rev. Res. 2014, 27, 169–172. [Google Scholar]
- Ganduri, R.B.; Lanka, R.A.; Pamidi, S.; Peddareddigari, J.R.; Mohammed, M. New RP-HPLC Method for The Determination of Olmesartan Medoxomil in Tablet Dosage Form. Eurasian J. Anal. Chem. 2010, 5, 145–151. [Google Scholar]
- Moid, M.; Afzal, S.; Rahim, N.; Ali, T.; Iffat, W.; Bashir, L.; Naz, S. High performance liquid chromatographic method validation for determination of rosuvastatin calcium in tablet dosage forms. Pak. J. Pharm. Sci. 2018, 31, 1577–1582. [Google Scholar]
- Bhatia, N.M.; Gurav, S.B.; Jadhav, S.D.; Bhatia, M.S. RP-HPLC method for simultaneous estimation of atorvastatin calcium, losartan potassium, atenolol, and aspirin from tablet dosage form and plasma. J. Liq. Chromatogr. Rel. Technol. 2012, 35, 428–443. [Google Scholar] [CrossRef]
- Chaudhari, V.; Ubale, M. A Validated Stability-Indicating HPLC assay method for Lovastatin in bulk drug. RJPBCS 2012, 3, 261–270. [Google Scholar]
- Sultana, N.; Arayne, M.S.; Shafi, N.; Siddiqui, F.A.; Hussainc, A. Development of a RP-HPLC method for the simultaneous analysis of diltiazem and statin: Application in pharmaceuticals and human serum. Anal. Methods 2010, 2, 1571–1576. [Google Scholar] [CrossRef]
- Virani, P.; Sojitra, R.; Raj, H.; Jain, V. Chromatographic Method For Irbesartan And Its Combination with Other Drug. J. Crit. Rev. 2015, 2, 7–11. [Google Scholar]
- Kathiresan, K.; Gothandaraman, S.; Manickam, M.S.; Kumar, S.M.; Manavalan, R. Analytical Method Development And Validation Of Losartan Potassium Tablet By RP-HPLC. Rasayan J. Chem. 2008, 1, 521–525. [Google Scholar]
- Kublin, E.; Malanowicz, E.; Kaczmarska-Graczyk, B.; Czerwińska, K.; Wyszomirska, E.; Mazurek, A.P. Development Of Chromatographic Method For Determination Of Drugs Reducing Cholesterol Level. Acta Pol. Pharm. 2015, 72, 429–437. [Google Scholar]
- Nováková, L.; Satinsky, D.; Solich, P. HPLC methods for the determination of simvastatin and atorvastatin. TrAC Trends Anal. Chem. 2008, 27, 352–367. [Google Scholar]
- Vijayalakshmi, R.; Kalyani, P.; Sandya, P.; Dhanaraju, M.D. RP-HPLC method for the simultaneous estimation of atrovastatin and losartan in pure and tablet formulations. Int. J. Res. Pharm. Chem. 2012, 2, 885–888. [Google Scholar]
- Pal, R.; Padma, S.; Bhargav, Y.; Reddy, G. RP-HPLC Method Development and Validation of Valsartan in Bulk and its Tablet Dosage Form. J. Biomed. Pharm. Sci. 2019, 2, 122. [Google Scholar]
- Nisa, Z.; Ali, S.I.; Rizvi, M.; Khan, M.A.; Sultan, R.A.; Fatima, R.; Shaheen, N.; Zafar, F.; Kashif, S.S.; Khatian, N. Development and validation of reverse phas e HPLC method for determination of angiotensin receptor blocking agent irbesartan in plasma. Pak. J. Pharm. Sci. 2019, 32, 853–858. [Google Scholar]
- Shalan, S.; Nasr, J.J. Simultaneous evaluation of losartan and amlodipine besylate using second-derivative synchronous spectrofluorimetric technique and liquid chromatography with time-programmed fluorimetric detection. R. Soc. Open Sci. 2019, 6, 190310. [Google Scholar] [CrossRef] [Green Version]
- Bangaruthalli, J.; Harini, U.; Divya, M.; Sushma, P.; Eswar, N. Simultaneous estimation of telmisartan and atorvastatin calcium in API and tablet dosage form. J. Drug Del. Ther. 2019, 9, 175–179. [Google Scholar] [CrossRef] [Green Version]
- CDER Center for Drug Evaluation and Research; Reviewer Guidance. Validation of Chromatographic Methods. 1994. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm134409.pdf (accessed on 27 February 1994).
- International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. In ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Q2(R 1); ICH Secretariat: Geneva, Switzerland, 2005.
Parameters | Conditions |
---|---|
Column | Kinetex C18 100A column (2.60 μm, 4.60 mm × 100 mm). |
Mobile Phase | A: 0.05M potassium dihydrogen phosphate buffer (pH 3.50 by ortho-phosphoric acid) B: Acetonitrile Gradient system within 20 min Mobile phase A: 90 →10 Mobile phase B: 10 →90 at 0 min (A90:B10), at 5 min (A50:B50), at 10 min (A10:B90) |
UV Detection, nm | 280 |
Flow Rate, mL/min | 1 |
Injected Volume, µL | 10 |
Temperature | Ambient (25 ± 2) |
IRB | LOS | ROS | VAL | |||||||||||||
Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | |
11.67 | 11.46 | 98.29 | −1.70 | 11.82 | 11.61 | 98.15 | −1.85 | 10.38 | 10.20 | 98.12 | −1.88 | 11.48 | 11.23 | 97.79 | −2.20 | |
23.34 | 22.78 | 97.66 | −2.33 | 23.65 | 23.50 | 99.48 | −0.51 | 20.77 | 20.52 | 98.88 | −1.12 | 22.96 | 22.92 | 99.76 | −0.23 | |
46.67 | 47.98 | 102.80 | 2.80 | 47.29 | 48.09 | 101.69 | 1.69 | 41.53 | 42.26 | 101.78 | 1.78 | 45.92 | 46.38 | 101.09 | 1.09 | |
116.68 | 115.93 | 99.36 | −0.60 | 118.23 | 117.59 | 99.45 | −0.54 | 103.83 | 103.42 | 99.62 | −0.38 | 144.80 | 114.58 | 99.80 | −0.19 | |
233.36 | 233.52 | 100.07 | 0.07 | 236.46 | 236.69 | 100.08 | 0.08 | 207.67 | 207.75 | 100.04 | 0.04 | 229.61 | 229.84 | 100.01 | 0.014 | |
Mean | 99.64 | −0.35 | 99.77 | −0.23 | 99.69 | −0.31 | 99.69 | -0.30 | ||||||||
SD | 2.008 | 1.28 | 1.38 | 1.19 | ||||||||||||
CV (%) | 2.01 | 1.28 | 1.385 | 1.197 | ||||||||||||
SE | 0.89 | 0.57 | 0.62 | 0.53 | ||||||||||||
Variance | 4.03 | 1.64 | 1.90 | 1.42 | ||||||||||||
Slope | 6.90 | 1.75 | 1.57 | 7.72 | ||||||||||||
LOD (mM) | 2.01 | 1.32 | 1.10 | 0.76 | ||||||||||||
LOQ (mM) | 6.11 | 4.02 | 3.36 | 2.27 | ||||||||||||
ATR | LOV | OLM | SIM | |||||||||||||
Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | Conc. Taken (mM) | Conc. Found (mM) | Recovery | % Accuracy | |
8.95 | 9.06 | 101.23 | 1.23 | 12.36 | 12.36 | 100.03 | 0.03 | 8.95 | 9.00 | 100.72 | 0.72 | 11.95 | 11.99 | 100.55 | 0.55 | |
17.90 | 17.85 | 99.68 | −0.32 | 24.72 | 23.98 | 97.02 | −2.97 | 17.90 | 17.71 | 98.96 | −1.03 | 23.89 | 23.56 | 98.58 | −1.42 | |
35.80 | 35.68 | 99.69 | −0.31 | 49.44 | 49.74 | 100.60 | 0.61 | 35.80 | 36.00 | 100.55 | 0.55 | 47.78 | 47.99 | 100.45 | 0.45 | |
89.50 | 89.57 | 100.08 | 0.08 | 123.60 | 124.44 | 100.67 | 0.67 | 89.51 | 89.40 | 99.88 | −0.11 | 119.46 | 119.59 | 100.12 | 0.12 | |
179.01 | 178.99 | 99.99 | −0.01 | 247.19 | 246.80 | 99.84 | −0.16 | 179.02 | 179.04 | 100.01 | 0.01 | 238.91 | 238.82 | 99.96 | −0.03 | |
Mean | 100.13 | 0.13 | 99.63 | −0.36 | 100.03 | 0.03 | 99.93 | -0.07 | ||||||||
SD | 0.64 | 1.50 | 0.69 | 0.79 | ||||||||||||
CV (%) | 0.63 | 1.509 | 0.69 | 0.79 | ||||||||||||
SE | 0.28 | 0.67 | 0.31 | 0.35 | ||||||||||||
Variance | 0.40 | 2.26 | 0.47 | 0.63 | ||||||||||||
Slope | 3.94 | 1.21 | 3.14 | 2.37 | ||||||||||||
LOD (mM) | 0.21 | 1.50 | 0.38 | 0.55 | ||||||||||||
LOQ (mM) | 0.68 | 4.57 | 1.11 | 1.65 |
Conc. (mM) | Found Conc. (mM) | Mean ± SD | CV % | Accuracy % | |
---|---|---|---|---|---|
IRB (Irbesartan 150mg®) | 11.67 | 11.64 | 100.76 ± 1.04 | 0.46 | 0.76 |
(n = 3) | 23.24 | 23.45 | |||
116.68 | 118.89 | ||||
LOS (Losazide 50mg®) | 11.82 | 11.63 | 100.58 ± 1.90 | 0.86 | 0.58 |
(n = 3) | 23.65 | 24 | |||
118.23 | 120.36 | ||||
ROS (Estromap 20mg®) | 10.38 | 10.32 | 101.05 ± 1.41 | 0.63 | 1.05 |
(n = 3) | 20.77 | 21.04 | |||
103.83 | 106.22 | ||||
VAL (Tareg 80mg®) | 11.48 | 11.25 | 101.00 ± 2.68 | 1.2 | 1.003 |
(n = 3) | 22.96 | 23.37 | |||
144.8 | 118.41 | ||||
ATR (Ator 10mg ®) | 8.95 | 8.79 | 101.06 ± 2.49 | 1.11 | 1.06 |
(n = 3) | 17.9 | 18.35 | |||
89.5 | 91.74 | ||||
LOV (Lovastmed 40mg ®) | 12.36 | 12.16 | 100.23 ± 2.08 | 0.92 | 0.23 |
(n = 3) | 24.72 | 24.67 | |||
123.6 | 126.62 | ||||
OLM (Erastapex 40mg ®) | 8.95 | 8.84 | 101.04 ± 1.95 | 0.87 | 1.04 |
(n = 3) | 17.9 | 18.22 | |||
89.51 | 91.71 | ||||
SIM (Alkor 20mg ®) | 11.95 | 12.02 | 101.70 ± 1.31 | 0.59 | 1.71 |
(n = 3) | 23.89 | 24.23 | |||
119.46 | 123.16 |
Intra-Day Runs (n = 3) | Inter-Day Runs (n = 3) | ||||
---|---|---|---|---|---|
Drugs | Concentrations (mM) | Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) |
IRB | 11.67 | 99.10 ± 0.15 | 0.15 | 98.30 ± 0.60 | 0.61 |
23.24 | 100.32 ± 0.16 | 0.17 | 99.90 ± 0.51 | 0.52 | |
116.68 | 100.47 ± 0.18 | 0.19 | 99.79 ± 0.57 | 0.57 | |
LOS | 11.82 | 98.00 ± 0.78 | 0.79 | 98.10 ± 0.53 | 0.54 |
23.65 | 101.09 ± 0.63 | 0.62 | 101.71 ± 0.52 | 0.51 | |
118.23 | 101.17 ± 0.56 | 0.56 | 100.12 ± 0.52 | 0.51 | |
ROS | 10.38 | 99.39 ± 1.22 | 1.23 | 98.84 ± 0.38 | 0.39 |
20.77 | 100.80 ± 0.86 | 0.85 | 101.10 ± 0.56 | 0.55 | |
103.83 | 100.90 ± 0.71 | 0.71 | 100.40 ± 1.22 | 1.21 | |
VAL | 11.48 | 98.87 ± 0.65 | 0.66 | 97.70 ± 0.51 | 0.52 |
22.96 | 101.40 ± 0.45 | 0.44 | 101.20 ± 0.51 | 0.5 | |
144.8 | 101.50 ± 0.15 | 0.15 | 101.10 ± 0.53 | 0.52 | |
ATR | 8.95 | 100.60 ± 0.53 | 0.52 | 100.60 ± 0.53 | 0.53 |
17.9 | 101.40 ± 0.98 | 0.97 | 101.91 ± 0.53 | 0.52 | |
89.5 | 102.00 ± 0.41 | 0.41 | 101.91 ± 0.54 | 0.53 | |
LOV | 12.36 | 100.60 ± 0.36 | 0.35 | 100.00 ± 0.57 | 0.57 |
24.72 | 100.20 ± 0.29 | 0.3 | 99.29 ± 0.50 | 0.51 | |
123.6 | 101.40 ± 0.45 | 0.44 | 101.20 ± 0.53 | 0.52 | |
OLM | 8.95 | 99.64 ± 0.46 | 0.46 | 98.54 ± 0.52 | 0.53 |
17.9 | 101.40 ± 0.47 | 0.46 | 101.20 ± 0.53 | 0.52 | |
89.51 | 101.70 ± 0.21 | 0.2 | 101.20 ± 0.67 | 0.66 | |
SIM | 11.95 | 100.90 ± 0.44 | 0.44 | 99.96 ± 0.51 | 0.51 |
23.89 | 101.10 ± 0.31 | 0.3 | 100.90 ± 0.53 | 0.52 | |
119.46 | 101.40 ± 0.52 | 0.51 | 101.30 ± 0.52 | 0.51 |
Parameter | IRB | LOS | ROS | VAL | ||||
Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | |
Flow Rate 0.90 | 100.08 ± 2.90 | 2.90 | 100.35 ± 2.47 | 2.46 | 100.14 ± 2.30 | 2.31 | 100.26 ± 2.24 | 2.23 |
Flow Rate 1.10 | 100.02 ± 2.78 | 2.78 | 100.29 ± 2.35 | 2.34 | 100.20 ± 2.43 | 2.43 | 100.20 ± 2.12 | 2.12 |
Mobile Phase (92-8) | 99.97 ± 2.68 | 2.68 | 100.25 ± 2.55 | 2.55 | 100.16 ± 2.34 | 2.33 | 100.16 ± 2.03 | 2.03 |
Mobile Phase (88-12) | 99.86 ± 2.46 | 2.46 | 100.15 ± 2.03 | 2.03 | 100.05 ± 2.11 | 2.11 | 100.05 ± 1.82 | 1.82 |
Temp. 35 °C | 99.90 ± 2.55 | 2.56 | 100.19 ± 2.13 | 2.13 | 100.10 ± 2.22 | 2.21 | 100.10 ± 1.90 | 1.91 |
Temp. 30 °C | 99.84 ± 2.41 | 2.42 | 100.12 ± 1.99 | 1.98 | 100.03 ± 2.07 | 2.07 | 100.03 ± 1.78 | 1.78 |
Parameter | ATR | LOV | OLM | SIM | ||||
Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | Mean Recovery ± SD | CV (%) | |
Flow Rate 0.90 | 100.69 ± 1.16 | 1.15 | 100.20 ± 2.29 | 2.29 | 100.60 ± 1.70 | 1.69 | 100.49 ± 1.70 | 1.70 |
Flow Rate 1.10 | 100.60 ± 1.05 | 1.04 | 100.14 ± 2.18 | 2.18 | 100.55 ± 1.59 | 1.58 | 100.44 ± 1.60 | 1.60 |
Mobile Phase (92-8) | 100.59 ± 0.97 | 0.97 | 100.09 ± 2.11 | 2.11 | 100.50 ± 1.49 | 1.48 | 100.39 ± 1.50 | 1.50 |
Mobile Phase (88-12) | 100.48 ± 0.79 | 0.79 | 99.99 ± 1.90 | 1.93 | 100.39 ± 1.28 | 1.27 | 100.29 ± 1.30 | 1.30 |
Temp. 35 °C | 100.50 ± 0.87 | 0.86 | 100.04 ± 2.02 | 2.02 | 100.44 ± 1.37 | 1.37 | 100.08 ± 0.97 | 0.96 |
Temp. 30 °C | 100.47 ± 0.77 | 0.76 | 99.97 ± 1.90 | 1.90 | 100.37 ± 1.24 | 1.24 | 100.26 ± 1.27 | 1.27 |
Irbesartan® (IRB) | Losazide® (LOS) | Estromap® (ROS) | Tareg® (VAL) | |||||
Proposed Method | Reference Method [2] | Proposed Method | Reference Method [3] | Proposed Method | Reference Method [6] | Proposed Method | Reference Method [4] | |
N | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 3 |
Mean Recovery | 98.36 | 99.38 | 99.03 | 100.20 | 98.84 | 99.92 | 98.16 | 96.98 |
SE | 0.36 | 0.32 | 0.71 | 0.21 | 0.63 | 0.52 | 0.59 | 2.42 |
Variance | 0.39 | 0.31 | 1.51 | 0.18 | 1.18 | 0.83 | 1.05 | 17.67 |
Student-t | 2.08 (2.13) a | 1.77 (2.01) a | 1.31 (2.13) a | 0.47 (2.13) a | ||||
F-test | 1.25 (19.00) b | 8.18 (9.55) b | 1.42 (19.00) b | 16.08 (19.00) b | ||||
Ator® (ATR) | Lovastmed® (LOV) | Erastapex® (OLM) | Alkor® (SIM) | |||||
Proposed Method | Reference Method [7] | Proposed Method | Reference Method [8] | Proposed Method | Reference Method [5] | Proposed Method | Reference Method [9] | |
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Mean Recovery | 99.81 | 99.97 | 100.20 | 100.30 | 99.34 | 99.54 | 102.10 | 101.00 |
SE | 0.32 | 0.12 | 0.04 | 0.06 | 0.37 | 0.09 | 0.61 | 0.60 |
Variance | 0.31 | 0.05 | 0.01 | 0.01 | 0.43 | 0.02 | 1.10 | 1.08 |
Student-t | 0.46 (2.13) a | 1.11 (2.13) a | 0.05 (2.13) a | 1.36 (2.13) a | ||||
F-test | 6.61 (19.00) b | 2.39 (19.00) b | 15.67 (19.00) b | 1.02 (19.00) b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zаrеh, M.M.; Sааd, M.Z.; Hаssаn, W.S.; Еlhеnnаwу, M.Е.; Soltan, M.K.; Sеbаiу, M.M. Grаdiеnt HPLC Mеthоd fоr Simultаnеоus Dеtеrminаtiоn оf Еight Sаrtаn аnd Stаtin Drugs in Thеir Purе аnd Dоsаgе Fоrms. Pharmaceuticals 2020, 13, 32. https://doi.org/10.3390/ph13020032
Zаrеh MM, Sааd MZ, Hаssаn WS, Еlhеnnаwу MЕ, Soltan MK, Sеbаiу MM. Grаdiеnt HPLC Mеthоd fоr Simultаnеоus Dеtеrminаtiоn оf Еight Sаrtаn аnd Stаtin Drugs in Thеir Purе аnd Dоsаgе Fоrms. Pharmaceuticals. 2020; 13(2):32. https://doi.org/10.3390/ph13020032
Chicago/Turabian StyleZаrеh, Mоhsеn M., Mоnir Z. Sааd, Wаfаа S. Hаssаn, Mоstаfа Е. Еlhеnnаwу, Moustafa K. Soltan, and Mаhmоud M. Sеbаiу. 2020. "Grаdiеnt HPLC Mеthоd fоr Simultаnеоus Dеtеrminаtiоn оf Еight Sаrtаn аnd Stаtin Drugs in Thеir Purе аnd Dоsаgе Fоrms" Pharmaceuticals 13, no. 2: 32. https://doi.org/10.3390/ph13020032
APA StyleZаrеh, M. M., Sааd, M. Z., Hаssаn, W. S., Еlhеnnаwу, M. Е., Soltan, M. K., & Sеbаiу, M. M. (2020). Grаdiеnt HPLC Mеthоd fоr Simultаnеоus Dеtеrminаtiоn оf Еight Sаrtаn аnd Stаtin Drugs in Thеir Purе аnd Dоsаgе Fоrms. Pharmaceuticals, 13(2), 32. https://doi.org/10.3390/ph13020032