Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA
Abstract
:Introduction
Experimental
Reagents and materials
Preparation of DNA sensors
Apparatus and measurements
Results and Discussion
Interaction between Fc+ and yeast ssDNA or dsDNA
Adsorption constants of Fc+ at ssDNA and dsDNA modified gold electrodes
Supermolecular interaction model of Fc+ with yeast DNA
Double-layer capacitance at electrode interface
Electrochemical response of the DNA sensor
Conclusions
Acknowledgments
References
- Caruso, F.; Rodda, E.; Furlong, D.N. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal. Chem. 1997, 69, 2043. [Google Scholar]
- Wang, J.; Fermandes, J.R.; Kubota, L.T. Polishable and renewable DNA hybridization biosensors. Anal. Chem. 1998, 70, 3699. [Google Scholar]
- Berggren, C.; Stalhandske, P.; Brundell, J.; Johansson, G. A feasibility study of a capacitive biosensor for direct detection of DNA hybridization. Electroanal. 1999, 11, 156. [Google Scholar]
- Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E.; Stricker, S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanal. 2000, 12, 317. [Google Scholar]
- Wang, J.; Rivas, G.; Cai, X.; Palecek, E.; Nielsen, P.; Shiraishi, H.; Dontha, N.; Luo, D.; Parrado, C.; Chicharro, M.; Farias, P.A.M.; Valera, F.S.; Grant, D.H.; Ozsoz, M.; Flair, M.N. DNA electrochemical biosensors for environmental monitoring. A review. Anal. Chim. Acta 1997, 341, 1. [Google Scholar]
- Hashimoto, K.; Ito, K.; Ishimori, Y. Novel DNA sensor for electrochemical gene detection. Anal. Chim. Acta 1994, 286, 219. [Google Scholar]
- Girotti, S.; Ferri, E.; Ghini, S. Direct quantitative chemiluminescent assays for the detection of viral DNA. Anal. Chim. Acta 1991, 255, 387. [Google Scholar]
- Balakin, K.V.; Korshun, V.A.; Mikhalev, I.I.; Maleev, G.V.; Malakhov, A.D.; Prokhorenko, I.A.; Berlin, Y.A. Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosensors & Bioelectronics 1998, 13, 771. [Google Scholar]
- Zhang, G.J.; Zhou, Y.K.; Yuan, J.W.; Ren, S. A chemiluminescence fiber-optic biosensor for detection of DNA hybridization. Anal. Lett. 1999, 32, 2725. [Google Scholar]
- Wang, J.; Rivas, G.; Cai, X.H.; Chicharro, M.; Parrado, C.; Dontha, N.; Begleiter, A.; Mowat, M.; Palecek, E.; Nielsen, P.E. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal. Chim. Acta 1997, 344, 111. [Google Scholar]
- Zhao, Y.D.; Pang, D.W.; Shen, H.; Wang, Z.L.; Cheng, J.K.; Dai, H.P. DNA-modified electrodes; Part 4: Optimization of covalent immobilization of DNA on self-assembled monolayer. Talanta 1999, 49, 751. [Google Scholar]
- Hashimoto, K.; Ito, K.; Ishimori, Y. Novel DNA sensor for electrochemical gene detection. Anal. Chim. Acta 1994, 286, 219. [Google Scholar]
- Zhao, Y.D.; Pang, D.W.; Wang, Z.L.; Cheng, J.K.; Qi, Y.P. DNA-modified electrodes. Part 2. Electrochemical characterization of gold electrodes modified with DNA. J. Electroanal. Chem. 1997, 431, 203. [Google Scholar]
- Liu, X.J.; Farmerie, W.; Schuster, S.; Tan, W.H. Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Anal. Biochem. 2000, 283, 56. [Google Scholar]
- Xu, C.; Cai, H.; Xu, Q.; He, P.G.; Fang, Y.Z. Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection. Fresen. J Anal. Chem. 2001, 369, 428. [Google Scholar]
- Steel, A.B.; Herne, T.M.; Tarlov, M.J. Electrostatic interactions of redox cations with surface-immobilized and solution DNA. Bioconjug. Chem. 1999, 10, 419. [Google Scholar]
- Sun, X.Y.; He, P.G.; Liu, S.H.; Ye, J.N.; Fang, Y.Z. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talata 1998, 47, 487. [Google Scholar]
- Berney, H.; West, J.; Haefele, E.; Alderman, J.; Lane, W.; Collins, J.K. A DNA diagnostic biosensor: development, characterization and performance. Sensors and Actuators B 2000, 68, 100. [Google Scholar]
- Hagenstrom, H.; Esplandiu, M.J.; Kolb, D.M. Functionalized self-assembled alkanethiol monolayers on Au(III) electrodes: 2. Silver electrodeposition. Langmuir 2001, 17, 839. [Google Scholar]
- Millan, K.M.; Mikkelsen, S.R. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal. Chem. 1993, 65, 2317. [Google Scholar]
- Hashimoto, K.; Ito, K.; Ishimori, Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and electrochemically sensor. Anal. Chem. 1994, 66, 3830. [Google Scholar]
- Mishima, Y.; Motonaka, J.; Ikeda, S. Utilization of an osmium complex as a sequence recognizing material for DNA-immobilized electrochemical sensor. Anal. Chim. Acta 1997, 345, 45. [Google Scholar]
- Ontko, A.C.; Armistead, P.M.; Kircus, S.R.; Thorp, H.H. Electrochemical detection of single-stranded DNA using polymer-modified electrodes. Inorg. Chem. 1999, 38, 1842. [Google Scholar]
- Erdem, A.; Kerman, K.; Meric, B.; Akarca, Y.S.; Ozsoz, M. DNA electrochemical biosensor for the detection of short DNA sequences related to the hepatitis B virus. Electroanal. 1999, 11, 586. [Google Scholar]
- Fan, C.H.; Li, G.X.; Gu, Q.R.; Zhu, J.Q.; Zhu, D.X. Electrochemical detection of cecropin CM4 gene by single stranded probe and cysteine modified god electrode. Anal. Lett. 2000, 33, 1479. [Google Scholar]
- Takenaka, S.; Ihara, T.; Takagi, M. Bis-9-acridinyl derivative containing a viologen linker chain: Electrochemically active intercalator for reversible labeling of DNA. J. Chem. Soc., Chem. Commun. 1990, 1485. [Google Scholar]
- Kerman, K.; Ozkan, D.; Kara, P.; Meric, B.; Gooding, J.J.; Ozsoz, M. Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta 2002, 462, 39. [Google Scholar]
- Cai, H.; Xu, C.; He, P.G.; Fang, Y.Z. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J. Electroanal. Chem. 2001, 510, 78. [Google Scholar]
- Xu, C.; Cai, H.; He, P.G.; Fang, Y.Z. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst 2001, 126, 62. [Google Scholar]
- Oesch, U.; Janata, J. Electrochemical study of gold electrodes with anodic oxide films—I. Formation and reduction behavior of anodic oxides on gold. Electrochim. Acta 1983, 28, 1237. [Google Scholar]
- Carter, M.T.; Rodriguez, M.; Bard, A.J. Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and ion(II) with 1,10-phenanthroline and 2,2'-bipyridine. J. Am. Chem. Soc. 1989, 111, 8901. [Google Scholar]
- Carter, M.T.; Bard, A.J. Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA. J. Am. Chem. Soc. 1987, 109, 7528. [Google Scholar]
- Rodriguez, M.; Bard, A.J. Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2'-bipyridine)osmium(II) with DNA. Anal. Chem. 1990, 62, 2658. [Google Scholar]
Solution | ipc / μA | Decrease of ipc |
---|---|---|
FcPF6 | 0.19±0.02 | |
FcPF6 + ssDNA | 0.16±0.01 | 15.8% |
FcPF6 + dsDNA | 0.11±0.01 | 42.1% |
Electrodes | ipc / μA | Epc /mV | Increase of ipc to prior step | Epc change to SAM/Au /mV |
---|---|---|---|---|
Au | 0.19 ±0.02 | +164 | ||
SAM/Au | 0.14±0.01 | +148 | ||
ssDNA/SAM/Au | 0.17±0.02 | +83 | 21.4% | -65 mV |
dsDNA/SAM/Au | 0.33±0.02 | +60 | 94.1% | -86 mV |
© 2004 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Ju, H.; Ye, B.; Gu, J. Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA. Sensors 2004, 4, 71-83. https://doi.org/10.3390/s40500071
Ju H, Ye B, Gu J. Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA. Sensors. 2004; 4(5):71-83. https://doi.org/10.3390/s40500071
Chicago/Turabian StyleJu, Huangxian, Baofen Ye, and Jiayin Gu. 2004. "Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA" Sensors 4, no. 5: 71-83. https://doi.org/10.3390/s40500071
APA StyleJu, H., Ye, B., & Gu, J. (2004). Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA. Sensors, 4(5), 71-83. https://doi.org/10.3390/s40500071