Comparison of Students’ Physical Activity at Different Times and Establishment of a Regression Model for Smart Fitness Trackers
Abstract
1. Introduction
2. Research Object and Method
2.1. Research Object
2.2. Materials and Method
2.2.1. Materials
2.2.2. Method
2.3. Mathematical Statistics
3. Results
3.1. Comparison Analysis of Measurement Results for PA and Sedentary Behavior
3.2. Comparison Analysis of PA and Sedentary Behavior Measurement Results on School Days and Weekends
3.3. Validity and Prediction Equation Establishment of Step Count Measurement in Healthy Adults Under Free-Living Conditions Using Smart Fitness Trackers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, W.; Tian, X. Health Education and Health Promotion for Chronic Diseases; People’s Medical Publishing House: Beijing, China, 2023. [Google Scholar]
- Zaccardi, F.; Rowlands, A.V.; Dempsey, P.C.; Razieh, C.; Henson, J.; Goldney, J.; Maylor, B.D.; Bhattacharjee, A.; Chudasama, Y.; Edwardson, C.; et al. Interplay between physical activity volume and intensity with modeled life expectancy in women and men: A prospective cohort analysis. J. Sport Health Sci. 2025, 14, 100970. [Google Scholar] [CrossRef]
- Dikmen, Y.; Akduran, F.; Keser, N.; Cinar, N. Examination of the effect of the gender factor on university students’ physical activity level. Bangladesh J. Med. Sci. 2020, 19, 625–631. [Google Scholar] [CrossRef]
- Skovdahl, P.; Kjellberg Olofsson, C.; Arvidsson, D. Physical activity in children and adolescents with CHD: Review from a measurement methodological perspective. Cardiol. Young 2021, 31, 518–531. [Google Scholar] [CrossRef]
- Barkley, J.E.; Lepp, A.; Glickman, E.; Farnell, G.; Beiting, J.; Wiet, R.; Dowdell, B. The Acute Effects of the COVID-19 Pandemic on Physical Activity and Sedentary Behavior in University Students and Employees. Int. J. Exerc. Sci. 2020, 13, 1326–1339. [Google Scholar] [PubMed]
- Cillekens, B.; Coenen, P.; Huysmans, M.A.; Holtermann, A.; Troiano, R.P.; Mork, P.J.; Krokstad, S.; Clays, E.; De Bacquer, D.; Aadahl, M.; et al. Should workers be physically active after work? Associations of leisure-time physical activity with cardiovascular and all-cause mortality across occupational physical activity levels-An individual participant data meta-analysis. J. Sport Health Sci. 2025, 14, 100987. [Google Scholar] [CrossRef]
- Ramer, J.D.; DuBois, D.L.; Duncan, R.J.; Bustamante, A.S.; Vandell, D.L.; Marquez, D.X.; Bustamante, E.E. Childhood predictors of high school sport participation and effects of participation on young adult activity and mental health. Ann. Med. 2025, 57, 2447905. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.M.; Macdonald, H.V.; Higginbotham, J.C.; Richardson, M.T.; Lerma, N.L.; Fedewa, M.V. Reallocating Sedentary Time to Sleep or Physical Activity: Associations with BMI in College Students. Transl. J. Am. Coll. Sports Med. 2025, 10, e000286. [Google Scholar] [CrossRef]
- Yu, S. Research on comprehensive and precise intervention of students’ physical health under the background of integration of physical education curriculum. Res. Sports Sci. 2020, 34, 1–6. [Google Scholar]
- Aracely Erniquez-Del Castillo, L.; Cervantes Hernandez, N.; Candia Lujan, R.; Flores Olivares, L.A. Physical capacities and their relationship with physical activity and body composition in adults. Retos-Nuevas Tend. Educ. Fis. Deporte Recreacion 2021, 41, 674–683. [Google Scholar]
- Sun, J.; Liu, Y.; Ren, B.; Li, B. Comparison and selection of objective measurement methods for physical activity. Sports Sci. Res. 2021, 42, 69–76. [Google Scholar]
- Xu, L. Research on the Model for Predicting Energy Consumption at Different Walking Speeds Based on Accelerometers Worn on the Wrist. Master’s Thesis, Capital University of Physical Education and Sports, Beijing, China, 2023. [Google Scholar]
- Zhang, L. Research on Energy Consumption and Prediction Model of Male Badminton Players Based on Artificial Neural Network. Master’s Thesis, Shandong Sport University, Jinan, China, 2023. [Google Scholar]
- Ruan, H.; Wu, H.; Hao, Y.; He, R. Review and progress of research on physical activity load measurement methods for preschool children abroad. Chin. Sch. Health 2022, 43, 156–160. [Google Scholar]
- Cheng, X.; Tang, Z.; Liu, J.; Wang, Y. Comparison and selection of three major physical activity measurement methods at home and abroad. Hubei Sports Sci. Technol. 2022, 41, 714–720+735. [Google Scholar]
- Liu, J.; Wang, Y.; Hou, X.; Cheng, X. A review of measurement, evaluation and intervention methods for physical activity of college students. In Proceedings of the 31st and 32nd China University Track and Field Scientific Research Paper Report Meeting, Changchun, China, 8 April 2023; p. 3. [Google Scholar]
- Garcia-Ceja, E.; Brena, R.F.; Carrasco-Jimenez, J.C.; Garrido, L. Long-Term Activity Recognition from Wristwatch Accelerometer Data. Sensors 2014, 14, 22500–22524. [Google Scholar] [CrossRef] [PubMed]
- Penarrubia-Lozano, C.; Romero-Roso, L.; Oloriz-Nivela, M.; Lizalde-Gil, M. Challenge as a strategy to promote physical activity in university students. Retos-Nuevas Tend. Educ. Fis. Deporte Recreacion 2021, 39, 58–64. [Google Scholar]
- Deutsch, J.; Waldera, R.; Linker, J.; Schnabel, E. Impact of Physical Best Warm-Up Activities on Elementary Students’ Physical Activity Levels and Knowledge. Phys. Educ. 2022, 79, 424–440. [Google Scholar] [CrossRef]
- Staudenmayer, J.; He, S.; Hickey, A.; Sasaki, J.; Freedson, P. Methods to estimate aspects of physical activity and sedentary behavior from high-frequency wrist accelerometer measurements. J. Appl. Physiol. 2015, 119, 396–403. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, X.; Zhang, Y.; Li, Z.; Fang, L.; He, W.; Tang, Q. Development of a Chinese body composition measurement instrument. In Proceedings of the 2006 National Sports Equipment and Sports System Simulation Academic Report Conference, Hangzhou, China, 12 April 2006; p. 5. [Google Scholar]
- Yin, X.; Du, J.; Ji, L.; Xiong, J.; Ji, C. Research on the changing trend of physical health of Chinese college students. J. Beijing Sport Univ. 2012, 35, 79–84. [Google Scholar]
- Han, Z. Longitudinal analysis of data from the 1985–2014 Chinese College Student Physical Fitness and Health Survey. Sichuan Sports Sci. 2018, 37, 29–33. [Google Scholar]
- Tan, Q. Research on the Overall Situation and Influencing Factors of Physical Activity Among College Students in Hunan Province. Master’s Thesis, Zhejiang Normal University, Jinhua, China, 2023. [Google Scholar]
- Bian, M. Research on the Relationship between 24-Hour Activity Behavior and Physical Fitness of College Students. Master’s Thesis, Shandong Sport University, Jinan, China, 2024. [Google Scholar]
- Wang, J.; Yang, Y.; Wu, J.; Xie, T.; Guo, X.; Yuan, X.; Li, T.; Zhang, Y.; Zhao, H.; Zhuang, J. Association between moderate-to-vigorous physical activity trajectories and academic achievement in Chinese primary school children: A 3-year longitudinal study. BMC Public Health 2025, 25, 341. [Google Scholar]
- Chu, A.; Ng, S.; Paknezhad, M.; Gauterin, A.; Koh, D.; Brown, M.S.; Müller-Riemenschneider, F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS ONE 2017, 12, e0172535. [Google Scholar] [CrossRef]
- Biró, A.; Szilágyi, S.M.; Szilágyi, L.; Martín-Martín, J.; Cuesta-Vargas, A.I. Machine Learning on Prediction of Relative Physical Activity Intensity Using Medical Radar Sensor and 3D Accelerometer. Sensors 2023, 23, 3595. [Google Scholar] [CrossRef] [PubMed]
- Ma, X. Analysis of Human Exercise Health Monitoring Data of Smart Bracelet Based on Machine Learning. Comput. Intell. Neurosci. 2022, 2022, 7971904. [Google Scholar] [CrossRef] [PubMed]
- Semenikhina, O.V.; Yurchenko, A.O.; Rybalko, P.F.; Shukatka, O.V.; Kozlov, D.O.; Drushlyak, M.G. Preparation of Future Specialists in Physical Culture and Sports for the Use of Digital Health Means in Professional Activity. Inf. Technol. Learn. Tools 2022, 89, 33–47. [Google Scholar]
Number | Age (Years) | Height (cm) | Weight (kg) | Body Fat | |
---|---|---|---|---|---|
Male | 147 | 21.40 ± 3.90 | 175.89 ± 5.02 | 70.16 ± 11.04 | 20.60 ± 5.37 |
Female | 114 | 21.78 ± 3.29 | 164.35 ± 5.66 | 55.54 ± 8.90 | 27.29 ± 3.73 |
Total | 261 | 20.99 ± 3.70 | 171.04 ± 7.78 | 63.88 ± 12.48 | 23.45 ± 5.78 |
Total | Male | Female | p-Value | |
---|---|---|---|---|
Low-intensity PA time | 244.66 ± 54.61 | 243.94 ± 59.60 | 245.62 ± 47.51 | 0.829 |
Moderate-to-high-intensity PA time | 108.33 ± 33.72 | 100.32 ± 28.99 | 118.97 ± 36.68 | 0.000 ** |
Energy expenditure | 361.68 ± 192.38 | 421.96 ± 173.11 | 281.56 ± 188.32 | 0.000 ** |
Metabolic equivalent | 1.25 ± 0.10 | 1.28 ± 0.09 | 1.22 ± 0.11 | 0.000 ** |
Activity count | 7704.11 ± 2190.1 | 7350.66 ± 2040.51 | 8173.95 ± 2303.94 | 0.011 * |
Sedentary behavior | 885.50 ± 134.03 | 893.40 ± 150.29 | 875.00 ± 108.76 | 0.328 |
School Days | Weekends | p-Value | |
---|---|---|---|
Low-intensity PA time | 247.00 ± 70.42 | 240.93 ± 66.78 | 0.153 |
Moderate-to-high-intensity PA time | 107.42 ± 42.52 | 110.62 ± 46.68 | 0.252 |
Energy expenditure | 359.77 ± 218.30 | 365.32 ± 218.84 | 0.679 |
Metabolic equivalent | 1.25 ± 0.13 | 1.25 ± 0.12 | 0.574 |
Activity count | 7683.36 ± 2886.27 | 7767.12 ± 3183.46 | 0.659 |
Sedentary behavior | 878.63 ± 215.88 | 907.77 ± 193.46 | 0.017 * |
Male | Female | |||||
---|---|---|---|---|---|---|
School Days | Weekends | p-Value | School Days | Weekends | p-Value | |
Low-intensity PA time | 246.94 ± 73.60 | 239.41 ± 71.47 | 0.206 | 247.09 ± 66.25 | 242.93 ± 60.20 | 0.489 |
Moderate-to-high-intensity PA time | 101.33 ± 38.14 | 99.95 ± 39.68 | 0.662 | 115.21 ± 46.42 | 124.70 ± 51.39 | 0.034 * |
Energy expenditure | 426.58 ± 203.14 | 423.70 ± 216.25 | 0.865 | 274.49 ± 207.20 | 288.31 ± 197.95 | 0.468 |
Metabolic equivalents | 1.28 ± 0.12 | 1.28 ± 0.12 | 0.673 | 1.22 ± 0.12 | 1.21 ± 0.11 | 0.604 |
Activity count | 7434.24 ± 2692.15 | 2866.34 ± 193.69 | 0.462 | 8001.40 ± 3091.13 | 8429.01 ± 3457.71 | 0.153 |
Sedentary behavior | 897.47 ± 215.78 | 896.96 ± 209.27 | 0.993 | 854.58 ± 213.89 | 922.02 ± 169.95 | 0.000 ** |
School Days | Weekends | |||||
---|---|---|---|---|---|---|
Male | Female | p-Value | Male | Female | p-Value | |
Low-intensity PA time | 246.94 ± 73.60 | 247.09 ± 66.25 | 0.976 | 239.41 ± 71.47 | 242.93 ± 60.20 | 0.601 |
Moderate-to-high-intensity PA time | 101.33 ± 38.14 | 115.21 ± 46.42 | 0.000 ** | 99.95 ± 39.68 | 124.70 ± 51.39 | 0.000 ** |
Energy expenditure | 426.58 ± 203.14 | 274.49 ± 207.20 | 0.000 ** | 423.70 ± 216.25 | 288.31 ± 197.95 | 0.000 ** |
Metabolic equivalents | 1.28 ± 0.12 | 1.22 ± 0.12 | 0.000 ** | 1.28 ± 0.12 | 1.21 ± 0.11 | 0.000 ** |
Activity count | 7434.24 ± 2692.15 | 8001.40 ± 3091.13 | 0.005 ** | 2866.34 ± 193.69 | 8429.01 ± 3457.71 | 0.001 ** |
Sedentary behavior | 897.47 ± 215.78 | 854.58 ± 213.89 | 0.004 ** | 896.96 ± 209.27 | 922.02 ± 169.95 | 0.196 |
Worn Device | Minimum Value | Maximum Value | Mean Value | Standard Deviation | η2 | 95% CI | MAPE (%) | r | p-Value |
---|---|---|---|---|---|---|---|---|---|
Accelerometer | 1856 | 18,287 | 7276 | 2761 | 0.75 | (6639, 7101) | 0.727 | 0.000 ** | |
Fitness Band | 377 | 24,122 | 5929 | 3595 | (4796, 5531) | 55.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Liu, J.; Wang, Y.; Wang, Y.; Tang, Z.; Wang, H. Comparison of Students’ Physical Activity at Different Times and Establishment of a Regression Model for Smart Fitness Trackers. Sensors 2025, 25, 1726. https://doi.org/10.3390/s25061726
Cheng X, Liu J, Wang Y, Wang Y, Tang Z, Wang H. Comparison of Students’ Physical Activity at Different Times and Establishment of a Regression Model for Smart Fitness Trackers. Sensors. 2025; 25(6):1726. https://doi.org/10.3390/s25061726
Chicago/Turabian StyleCheng, Xiangrong, Jingmin Liu, Ye Wang, Yue Wang, Zhengyan Tang, and Hao Wang. 2025. "Comparison of Students’ Physical Activity at Different Times and Establishment of a Regression Model for Smart Fitness Trackers" Sensors 25, no. 6: 1726. https://doi.org/10.3390/s25061726
APA StyleCheng, X., Liu, J., Wang, Y., Wang, Y., Tang, Z., & Wang, H. (2025). Comparison of Students’ Physical Activity at Different Times and Establishment of a Regression Model for Smart Fitness Trackers. Sensors, 25(6), 1726. https://doi.org/10.3390/s25061726