Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrument Design
2.2. Calibrations
2.3. Experiment Design
2.4. Estimation of qL
3. Results
3.1. Light Response Curve Measurements
3.2. Estimation of fPSII_760 and ChlFPSII_fPSII
3.3. qL Estimation Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Symbols | Definition | Unit |
Anet | Net photosynthesis | μmol m−2 s−1 |
gsw | Stomatal conductance | mol m−2 s−1 |
Rd | Dark respiration | μmol m−2 s−1 |
ChlFDOWN | Downward chlorophyll fluorescence | mW m−2 nm−1 sr−1 |
ChlFUP | Upward chlorophyll fluorescence | mW m−2 nm−1 sr−1 |
ChlFPS_λ | Chlorophyll fluorescence at the photosystem level at λ nm | mW m−2 nm−1 |
ChlFPSII | Broadband chlorophyll fluorescence emitted from PSII | μmol m−2 s−1 |
ChlFPSII_fPSII | ChlFPSII derived from passive chlorophyll fluorescence | μmol m−2 s−1 |
ChlFPSII_PAM | ChlFPSII derived from PAM parameters | μmol m−2 s−1 |
fC_λ | Conversion factor linking photosystem-level PSII chlorophyll fluorescence at λ nm to ChlFPSII | μmol nm mW−1 s−1 |
Fm | Maximum fluorescence in the dark-adapted state | \ |
Fm′ | Maximum fluorescence in the light-adapted state | \ |
Fo | Minimum fluorescence in the dark-adapted state | \ |
Fo′ | Minimum fluorescence in the light-adapted state | \ |
Fs | Steady-state fluorescence in the light-adapted state | \ |
fPSII_λ | Contribution of PSII to chlorophyll fluorescence at λ nm | \ |
GPP | Gross primary productivity | μmol m−2 s−1 |
m | Fitted parameter for estimating qL_MOD | \ |
mopt | Value of m at optimal leaf temperature | \ |
Ha | Fitted parameter for estimating m | J mol−1 |
Hd | Fitted parameter for estimating m | J mol−1 |
Topt | Optimal leaf temperature for qL | K |
R | Universal gas constant | J mol−1 K−1 |
NPQ | Non-photochemical quenching | \ |
qL | Fraction of open PSII reaction centers | \ |
qL_MOD | qL estimated from ChlFPSII | \ |
qL_PAM | qL derived from PAM | \ |
RadDOWN | Transmitted radiation | mW m−2 nm−1 sr−1 |
RadUP | Reflected radiation | mW m−2 nm−1 sr−1 |
SIF | Solar-induced chlorophyll fluorescence | mW m−2 nm−1 sr−1 |
Tleaf | Leaf temperature | °C |
Tleaf_K | Leaf temperature in Kelvin | K |
Vcmax | Maximum carboxylation rate | μmol m−2 s−1 |
Cal | Calibration factor | mW m−2 nm−1 sr−1 |
Rad | Radiance of light source | mW m−2 nm−1 sr−1 |
DNraw | Digital number recorded by spectrometer | \ |
DNdark | Dark current recorded by spectrometer | \ |
ρ | Leaf reflectance | \ |
τ | Leaf transmittance | \ |
References
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Castell, A.; Malenovský, Z.; Magney, T.; Van Wittenberghe, S.; Fernández-Marín, B.; Maignan, F.; Zhang, Y.; Maseyk, K.; Atherton, J.; Albert, L.P. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 2021, 7, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Briantais, J.-M.; Vernotte, C.; Krause, G.H.; Weis, E. Chlorophyll a Fluorescence of Higher Plants: Chloroplasts and Leaves; Academic Press: New York, NY, USA, 1986. [Google Scholar]
- Van Kooten, O.; Snel, J.F. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 1990, 25, 147–150. [Google Scholar] [CrossRef]
- Mohammed, G.; Binder, W.; Gillies, S. Chlorophyll fluorescence: A review of its practical forestry applications and instrumentation. Scand. J. For. Res. 1995, 10, 383–410. [Google Scholar] [CrossRef]
- Kitajima, M.; Butler, W. Excitation spectra for photosystem I and photosystem II in chloroplasts and the spectral characteristics of the distribution of quanta between the two photosystems. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 1975, 408, 297–305. [Google Scholar] [CrossRef]
- Schreiber, U. Detection of Rapid Induction Kinetics with a New Type of High-Frequency Modulated Chlorophyll Fluorometer. Current Topics in Photosynthesis: Dedicated to Professor LNM Duysens on the Occasion of His Retirement; Springer: Berlin/Heidelberg, Germany, 1986; pp. 259–270. [Google Scholar]
- Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 2004; pp. 279–319. [Google Scholar]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Wieneke, S.; Ahrends, H.; Damm, A.; Pinto, F.; Stadler, A.; Rossini, M.; Rascher, U. Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity. Remote Sens. Environ. 2016, 184, 654–667. [Google Scholar] [CrossRef]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38, L17706. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Colombo, R.; Middleton, E.M.; Rascher, U.; van der Tol, C.; Nedbal, L.; Goulas, Y.; Pérez-Priego, O.; Damm, A.; Meroni, M. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 2019, 231, 111177. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, J.; Gu, L.; Joiner, J.; Chang, C.Y.; van Der Tol, C.; Porcar-Castell, A.; Magney, T.; Wang, L.; Hu, L. From remotely-sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part II—Harnessing data. Glob. Chang. Biol. 2023, 29, 2893–2925. [Google Scholar] [CrossRef]
- He, L.; Magney, T.; Dutta, D.; Yin, Y.; Köhler, P.; Grossmann, K.; Stutz, J.; Dold, C.; Hatfield, J.; Guan, K. From the ground to space: Using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 2020, 47, e2020GL087474. [Google Scholar] [CrossRef]
- Sun, Y.; Gu, L.; Wen, J.; van Der Tol, C.; Porcar-Castell, A.; Joiner, J.; Chang, C.Y.; Magney, T.; Wang, L.; Hu, L. From remotely sensed solar-induced chlorophyll fluorescence to ecosystem structure, function, and service: Part I—Harnessing theory. Glob. Chang. Biol. 2023, 29, 2926–2952. [Google Scholar] [CrossRef]
- Gu, L.; Han, J.; Wood, J.D.; Chang, C.Y.Y.; Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 2019, 223, 1179–1191. [Google Scholar] [CrossRef]
- Han, J.; Chang, C.Y.Y.; Gu, L.; Zhang, Y.; Meeker, E.W.; Magney, T.S.; Walker, A.P.; Wen, J.; Kira, O.; McNaull, S. The physiological basis for estimating photosynthesis from Chl a fluorescence. New Phytol. 2022, 234, 1206–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, F.; Liu, X.; Yu, Q.; Wang, Y.; Peng, X.; Cai, H.; Lu, X. Direct estimation of photosynthetic CO2 assimilation from solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 2022, 271, 112893. [Google Scholar] [CrossRef]
- Guo, C.; Liu, Z.; Jin, X.; Lu, X. Improved estimation of gross primary productivity (GPP) using solar-induced chlorophyll fluorescence (SIF) from photosystem II. Agric. For. Meteorol. 2024, 354, 110090. [Google Scholar] [CrossRef]
- Han, J.; Gu, L.; Warren, J.M.; Guha, A.; Mclennan, D.A.; Zhang, W.; Zhang, Y. The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions. Tree Physiol. 2022, 42, 848–861. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, C.; Yu, Q.; Zhu, P.; Peng, X.; Dong, M.; Cai, H.; Lu, X. A SIF-based approach for quantifying canopy photosynthesis by simulating the fraction of open PSII reaction centers (qL). Remote Sens. Environ. 2024, 305, 114111. [Google Scholar] [CrossRef]
- Johnson, J.; Berry, J. The role of cytochrome b6f in the control of steady-state photosynthesis: A conceptual and quantitative model. Photosynth. Res. 2021, 148, 101–136. [Google Scholar] [CrossRef]
- Magney, T.S.; Frankenberg, C.; Fisher, J.B.; Sun, Y.; North, G.B.; Davis, T.S.; Kornfeld, A.; Siebke, K. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 2017, 215, 1594–1608. [Google Scholar] [CrossRef] [PubMed]
- Vilfan, N.; van Der Tol, C.; Verhoef, W. Estimating photosynthetic capacity from leaf reflectance and Chl fluorescence by coupling radiative transfer to a model for photosynthesis. New Phytol. 2019, 223, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Meeker, E.W.; Magney, T.S.; Bambach, N.; Momayyezi, M.; McElrone, A.J. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. AoB Plants 2021, 13, plaa066. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements. J. Plant Physiol. 1998, 152, 283–296. [Google Scholar] [CrossRef]
- Van Wittenberghe, S.; Sabater, N.; CENDRERO-MATEO, M.P.; Tenjo, C.; Moncholi, A.; Alonso, L.; Moreno, J. Towards the quantitative and physically-based interpretation of solar-induced vegetation fluorescence retrieved from global imaging. Photosynthetica 2021, 59, 438–457. [Google Scholar] [CrossRef]
- Yang, X.; Shi, H.; Stovall, A.; Guan, K.; Miao, G.; Zhang, Y.; Zhang, Y.; Xiao, X.; Ryu, Y.; Lee, J.-E. FluoSpec 2—An automated field spectroscopy system to monitor canopy solar-induced fluorescence. Sensors 2018, 18, 2063. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zeng, Y.; Su, Z.; Cai, H.; Zheng, Z. The effect of different evapotranspiration methods on portraying soil water dynamics and ET partitioning in a semi-arid environment in Northwest China. Hydrol. Earth Syst. Sci. 2016, 20, 975–990. [Google Scholar] [CrossRef]
- Liu, S.; Yan, Z.; Wang, Z.; Serbin, S.; Visser, M.; Zeng, Y.; Ryu, Y.; Su, Y.; Guo, Z.; Song, G. Mapping foliar photosynthetic capacity in sub-tropical and tropical forests with UAS-based imaging spectroscopy: Scaling from leaf to canopy. Remote Sens. Environ. 2023, 293, 113612. [Google Scholar] [CrossRef]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Guo, C.; Li, L.; Liu, Z.; Li, Y.; Lu, X. A practical approach for extracting the photosystem II (PSII) contribution to near-infrared solar-induced chlorophyll fluorescence. Sci. Total Environ. 2024, 950, 175203. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Assessing band sensitivity to atmospheric radiation transfer for space-based retrieval of solar-induced chlorophyll fluorescence. Remote Sens. 2014, 6, 10656–10675. [Google Scholar] [CrossRef]
- Zhu, X.G.; Ort, D.R.; Whitmarsh, J.; Long, S.P. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: A theoretical analysis. J. Exp. Bot. 2004, 55, 1167–1175. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.v.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Chen, J.M.; Wang, R.; Liu, Y.; He, L.; Croft, H.; Luo, X.; Wang, H.; Smith, N.G.; Keenan, T.F.; Prentice, I.C. Global datasets of leaf photosynthetic capacity for ecological and earth system research. Earth Syst. Sci. Data 2022, 14, 4077–4093. [Google Scholar] [CrossRef]
- Zhang, Y.; Guanter, L.; Berry, J.A.; Joiner, J.; van der Tol, C.; Huete, A.; Gitelson, A.; Voigt, M.; Köhler, P. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Glob. Chang. Biol. 2014, 20, 3727–3742. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Gu, L.; Wen, J.; Sun, Y. Inference of photosynthetic capacity parameters from chlorophyll a fluorescence is affected by redox state of PSII reaction centers. Plant Cell Environ. 2022, 45, 1298–1314. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.M.; He, L.; Wang, R.; Smith, N.G.; Keenan, T.F.; Rogers, C.; Li, W.; Leng, J. Global photosynthetic capacity of C3 biomes retrieved from solar-induced chlorophyll fluorescence and leaf chlorophyll content. Remote Sens. Environ. 2023, 287, 113457. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, C.; Bai, Y.; Zhang, N.; Yu, Q.; Zhao, F.; Lu, X. Far-red chlorophyll fluorescence radiance tracks photosynthetic carbon assimilation efficiency of dark reactions. Appl. Sci. 2021, 11, 10821. [Google Scholar] [CrossRef]
- Jia, Q.; Liu, Z.; Guo, C.; Wang, Y.; Yang, J.; Yu, Q.; Wang, J.; Zheng, F.; Lu, X. Relationship between Photosynthetic CO2 Assimilation and Chlorophyll Fluorescence for Winter Wheat under Water Stress. Plants 2023, 12, 3365. [Google Scholar] [CrossRef]
- Palombi, L.; Cecchi, G.; Lognoli, D.; Raimondi, V.; Toci, G.; Agati, G. A Retrieval Algorithm to Evaluate the Photosystem I and Photosystem Ii Spectral Contributions to Leaf Chlorophyll Fluorescence at Physiological Temperatures. Photosynth. Res. 2011, 108, 225–239. [Google Scholar] [CrossRef]
- Magney, T.S.; Frankenberg, C.; Köhler, P.; North, G.; Davis, T.S.; Dold, C.; Dutta, D.; Fisher, J.B.; Grossmann, K.; Harrington, A. Disentangling Changes in the Spectral Shape of Chlorophyll Fluorescence: Implications for Remote Sensing of Photosynthesis. J. Geophys. Res. Biogeosci. 2019, 124, 1491–1507. [Google Scholar] [CrossRef]
- Van der Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An Integrated Model of Soil-Canopy Spectral Radiances, Photosynthesis, Fluorescence, Temperature and Energy Balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar] [CrossRef]
- Van der Tol, C.; Berry, J.A.; Campbell, P.K.E.; Rascher, U. Models of Fluorescence and Photosynthesis for Interpreting Measurements of Solar-Induced Chlorophyll Fluorescence. J. Geophys. Res. Biogeosciences 2014, 119, 2312–2327. [Google Scholar] [CrossRef] [PubMed]
ENF | EBF | DNF | DBF | SHR | GRA | CRO | |
---|---|---|---|---|---|---|---|
fPSII_760 | 0.45 ± 0.15 | 0.71 ± 0.16 | 0.27 ± 0.18 | 0.52 ± 0.15 | 0.53 ± 0.15 | 0.64 ± 0.11 | 0.67 ± 0.14 |
R2 | 0.85 | 0.79 | 0.99 | 0.84 | 0.86 | 0.92 | 0.95 |
RMSE | 2.73 | 4.66 | 0.58 | 4.49 | 2.55 | 2.99 | 2.33 |
rRMSE | 11.64 | 18.96 | 2.03 | 18.39 | 12.28 | 12.64 | 16.51 |
ENF | EBF | DNF | DBF | SHR | GRA | CRO | |
---|---|---|---|---|---|---|---|
R2 | 0.93 | 0.92 | 0.86 | 0.90 | 0.85 | 0.95 | 0.96 |
RMSE | 0.08 | 0.1 | 0.1 | 0.09 | 0.11 | 0.09 | 0.1 |
rRMSE | 8.89 | 10.71 | 12.60 | 10.32 | 12.66 | 9.40 | 11.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Liu, Z.; Lu, X. Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model. Sensors 2025, 25, 1700. https://doi.org/10.3390/s25061700
Guo C, Liu Z, Lu X. Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model. Sensors. 2025; 25(6):1700. https://doi.org/10.3390/s25061700
Chicago/Turabian StyleGuo, Chenhui, Zhunqiao Liu, and Xiaoliang Lu. 2025. "Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model" Sensors 25, no. 6: 1700. https://doi.org/10.3390/s25061700
APA StyleGuo, C., Liu, Z., & Lu, X. (2025). Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model. Sensors, 25(6), 1700. https://doi.org/10.3390/s25061700