Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = fraction of open PSII reaction centers (qL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2218 KiB  
Article
Application of Simultaneous Active and Passive Fluorescence Observations: Extending a Fluorescence-Based qL Estimation Model
by Chenhui Guo, Zhunqiao Liu and Xiaoliang Lu
Sensors 2025, 25(6), 1700; https://doi.org/10.3390/s25061700 - 9 Mar 2025
Viewed by 863
Abstract
The fraction of open Photosystem II (PSII) reaction centers (qL) is critical for connecting broadband PSII fluorescence (ChlFPSII) with the actual electron transport from PSII to Photosystem I. Accurately estimating qL is fundamental for determining ChlFPSII [...] Read more.
The fraction of open Photosystem II (PSII) reaction centers (qL) is critical for connecting broadband PSII fluorescence (ChlFPSII) with the actual electron transport from PSII to Photosystem I. Accurately estimating qL is fundamental for determining ChlFPSII, which, in turn, is vital for mechanistically estimating the actual electron transport rate and photosynthetic CO2 assimilation. Chlorophyll fluorescence provides direct physiological insights, offering a robust foundation for qL estimation. However, uncertainties in the ChlFPSIIqL relationship across different plant functional types (PFTs) limit its broader application at large spatial scales. To address this issue, we developed a leaf-level instrument capable of simultaneously measuring actively and passively induced chlorophyll fluorescence. Using this system, we measured light response, CO2 response, and temperature response curves across 52 species representing seven PFTs. Our findings reveal the following: (1) a strong linear correlation between ChlFPSII derived from passively induced fluorescence and that from actively induced fluorescence (R2 = 0.85), and (2) while the parameters of the ChlFPSIIqL relationship varied among PFTs, ChlFPSII reliably modeled qL within each PFT, with the R2 ranging from 0.85 to 0.96. This study establishes quantitative ChlFPSIIqL relationships for various PFTs by utilizing passively induced fluorescence to calculate ChlFPSII. The results demonstrate the potential for remotely sensed chlorophyll fluorescence data to estimate qL and strengthen the use of fluorescence-based approaches for mechanistic GPP estimation at large spatial scales. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

Back to TopTop