The Innovative XClinic Tool: A Pilot Study Validating Its Precision in Measuring Range of Motion in Healthy Individuals
Abstract
:1. Introduction
Motivation
2. Materials and Methods
2.1. Participants
2.2. Data Collection
- -
- Shoulder: flexion, extension, abduction, internal rotation, external rotation.
- -
- Hip: flexion (with flexed knee), extension, abduction, adduction, internal rotation, external rotation.
- -
- Knee: flexion, extension.
- -
- Ankle: plantar flexion, dorsiflexion, inversion, eversion.
2.3. Evaluation Using Sensors
- -
- Unpacking and Initial Setup: sensors and related equipment were carefully unpacked and a check for any user manuals or quick start guides included in the package was performed.
- -
- Powering the Sensors: before each evaluation, the operators ensured that the sensors were charged or connected to a power source.
- -
- Connecting to a Network: specifically, to a local Wi-Fi network. The manufacturer’s instructions for connecting to the network were followed.
- -
- Sensor Placement: sensors were placed in the locations to be monitored, precisely in correspondence with the upper and lower segment of the considered joint, to register the angle of movement. The operators ensured that the placement followed the guidelines provided by Ferrox. For each joint, the sensors were placed as follows: on the thorax and wrist for the shoulder (Figure 1), on the thorax and thigh for the hip (Figure 2), on the thigh and lower leg for the knee (Figure 3) and on the lower leg and foot for the ankle (Figure 4). This placement allowed the sensors to capture the relative motion between the segments, ensuring an accurate assessment of joint angles. Participants wore the Xclinic sensors during all movements.
- -
- Configuration and Calibration: the software was used to configure and calibrate the sensors. The calibration process began by instructing the participant to remain immobile in a neutral anatomical position, allowing the software to establish baseline sensor offsets; a standardized setup and calibration process was followed.
2.4. Statistical Analyses
3. Results
3.1. Characteristics of the Sample
3.2. Reliability
Item-by-Item Analyses
3.3. Construct Validity (Goniometric Evaluation)
3.4. Construct Validity (SF-36)
4. Discussion
5. Medico-Legal Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakob, I.; Kollreider, A.; Germanotta, M.; Benetti, F.; Cruciani, A.; Padua, L.; Aprile, I. Robotic and Sensor Technology for Upper Limb Rehabilitation. PM&R 2018, 10, S189–S197. [Google Scholar]
- Payedimarri, A.B.; Ratti, M.; Rescinito, R.; Vanhaecht, K.; Panella, M. Effectiveness of Platform-Based Robot-Assisted Rehabilitation for Musculoskeletal or Neurologic Injuries: A Systematic Review. Bioengineering 2022, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.M.S.D.; Bonfati, L.V.; Freitas, M.L.B.; Mendes Junior, J.J.A.; Siqueira, H.V.; Stevan, S.L. Sensors and Systems for Physical Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [Google Scholar] [CrossRef] [PubMed]
- Tormene, P.; Bartolo, M.; De Nunzio, A.M.; Fecchio, F.; Quaglini, S.; Tassorelli, C.; Sandrini, G. Estimation of human trunk movements by wearable strain sensors and improvement of sensor’s placement on intelligent biomedical clothes. Biomed. Eng. OnLine 2012, 11, 95. [Google Scholar] [CrossRef]
- Mohajan, H. Two Criteria for Good Measurements in Research: Validity and Reliability. Ann. Spiru Haret Univ. Econ. Ser. 2017, 17, 59–82. [Google Scholar] [CrossRef]
- Htay, M.; Kamath, G.; Anand, K.M.; Sugathan, S.; Luyee, E.; Sahoo, S. Overview of Reliability and Validity of Assessments in Medical Education. Int. J. Transform. Health Prof. Educ. 2023, 1, 14–18. [Google Scholar]
- Villa, S.; Casillas-Perez, D.; Jiménez Martín, A.; García, J. Inertial Sensors for Human Motion Analysis: A Comprehensive Review. IEEE Trans. Instrum. Meas. 2023, 72, 4006439. [Google Scholar] [CrossRef]
- Yusuf, K.M.S.T.; Ahmad Nazri, A.; Mustapha, G.; Mahmud, J. Analysis of static and dynamic motion accuracy for kinect-virtual Sensei system. ARPN J. Eng. Appl. Sci. 2015, 10, 7328–7335. [Google Scholar]
- Keri, M.I.; Shehata, A.W.; Marasco, P.D.; Hebert, J.S.; Vette, A.H. A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users. Sensors 2021, 21, 1844. [Google Scholar] [CrossRef]
- Seçkin, A.Ç.; Ateş, B.; Seçkin, M. Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. Appl. Sci. 2023, 13, 10399. [Google Scholar] [CrossRef]
- Lind, C.; Diaz-Olivares, J.; Lindecrantz, K.; Eklund, J. A Wearable Sensor System for Physical Ergonomics Interventions Using Haptic Feedback. Sensors 2020, 20, 6010. [Google Scholar] [CrossRef] [PubMed]
- Cossich, V.R.A.; Carlgren, D.; Holash, R.J.; Katz, L. Technological Breakthroughs in Sport: Current Practice and Future Potential of Artificial Intelligence, Virtual Reality, Augmented Reality, and Modern Data Visualization in Performance Analysis. Appl. Sci. 2023, 13, 12965. [Google Scholar] [CrossRef]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.M. Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 2011, 11, 1489–1525. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.C. Quantification, Reduction and Management of Kinematic Variability in Clinical Gait Analysis. Ph.D. Thesis, Université Claude Bernard-Lyon, Lyon, France, 2022. [Google Scholar]
- Everett, T.; Kell, C. Human Movement: An Introductory Text; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010; p. 281. [Google Scholar]
- Khanna, N.N.; Maindarkar, M.A.; Viswanathan, V.; Fernandes, J.F.; Paul, S.; Bhagawati, M.; Ahluwalia, P.; Ruzsa, Z.; Sharma, A.; Kolluri, R.; et al. Economics of Artificial Intelligence in Healthcare: Diagnosis vs. Treatment. Healthcare 2022, 10, 2493. [Google Scholar] [CrossRef]
- Muñoz-Tomás, M.T.; Burillo-Lafuente, M.; Vicente-Parra, A.; Sanz-Rubio, M.C.; Suarez-Serrano, C.; Marcén-Román, Y.; Franco-Sierra, M.Á. Telerehabilitation as a Therapeutic Exercise Tool versus Face-to-Face Physiotherapy: A Systematic Review. Int. J. Environ. Res. Public. Health 2023, 20, 4358. [Google Scholar] [CrossRef]
- Riabilitazione Digitale per Centri di Fisioterapia—Ferrox [Internet]. Available online: https://www.ferrox.it/riabilitazione-digitale/?_gl=1*1ayh52k*_up*MQ..&gclid=Cj0KCQjwkdO0BhDxARIsANkNcrcITSK3e1XeEHWd2hdDUaanHuuLtJxUtyHBZOSUrGqgQ7k6SXMzjq4aAtUcEALw_wcB (accessed on 15 July 2024).
- Sellitto, G.; Ruotolo, I.; Ianniello, A.; Felicetti, F.; D’Ambrosi, G.; Berardi, A.; Galeoto, G.; Conte, A.; Pozzilli, C. Clinical variables influencing the perception of fatigue in people with multiple sclerosis: A cross-sectional study using FSIQ-RMS. BMC Neurol. 2024, 24, 138. [Google Scholar] [CrossRef]
- Ruotolo, I.; Sellitto, G.; Berardi, A.; Simeon, R.; Panuccio, F.; Amadio, E.; Ugolini, A.; Fabbrini, G.; Galeoto, G. Psychometric properties of the Parkinson’s disease Questionnaire-39 and its short form Parkinson’s disease Questionnaire-8: A systematic review and meta-analysis. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas 2024, 123, 100–117. [Google Scholar] [CrossRef]
- Ruotolo, I.; Sellitto, G.; Berardi, A.; Panuccio, F.; Simeon, R.; D’Agostino, F.; Galeoto, G. Validation of the Work-Related Quality of Life Scale in Rehabilitation Health Workers: A Cross-Sectional Study. Med. Lav. 2024, 115, e2024025. [Google Scholar]
- Galeoto, G.; Mollica, R.; Astorino, O.; Cecchi, R. Il consenso informato in fisioterapia: Proposta di una modulistica. G. Ital. Med. Lav. Ergon. 2015, 37, 245–254. [Google Scholar]
- Galeoto, G.; De Santis, R.; Marcolini, A.; Cinelli, A.; Cecchi, R. II consenso informato in Terapia Occupazionale: Proposta di una modulistica. G. Ital. Med. Lav. Ergon. 2016, 38, 107–115. [Google Scholar] [PubMed]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, H.M. Musculoskeletal Assessment: Joint Motion and Muscle Testing; Wolters Kluwer/Lippincott Williams & Wilkins Health: Waltham, MA, USA, 2013; p. 532. [Google Scholar]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; De Vet, H.C. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: An international Delphi study. Qual. Life Res. 2010, 19, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Kaszyński, J.; Baka, C.; Białecka, M.; Lubiatowski, P. Shoulder Range of Motion Measurement Using Inertial Measurement Unit–Concurrent Validity and Reliability. Sensors 2023, 23, 7499. [Google Scholar] [CrossRef]
- Marshall, C.J.; El-Ansary, D.; Pranata, A.; Ganderton, C.; O’Donnell, J.; Takla, A.; Tran, P.; Wickramasinghe, N.; Tirosh, O. Validity and Reliability of a Novel Smartphone Tele-Assessment Solution for Quantifying Hip Range of Motion. Sensors 2022, 22, 8154. [Google Scholar] [CrossRef]
- Chapleau, J.; Canet, F.; Petit, Y.; Laflamme, G.Y.; Rouleau, D.M. Validity of Goniometric Elbow Measurements: Comparative Study with a Radiographic Method. Clin. Orthop. 2011, 469, 3134–3140. [Google Scholar] [CrossRef]
Average ± SD | N | |
---|---|---|
Age | 28.2 ± 10.8 | 50 |
(N%) | ||
Age Ranges | 20–24 | 22 (44) |
25–29 | 18 (36) | |
30–64 | 10 (20) | |
Gender | Female | 29 (58) |
Sport | 26 (52) | |
Workers | 27 (54) | |
Students | 38 (76) |
Flexion | Extension | Abduction | Intrarotation | Extrarotation | |
---|---|---|---|---|---|
Flexion | 1 | −0.405 ** | 0.169 | −0.021 | 0.301 * |
Extension | −0.405 ** | 1 | −0.209 | −0.194 | −0.255 |
Abduction | 0.169 | −0.209 | 1 | 0.237 | 0.226 |
Intrarotation | −0.021 | −0.194 | 0.237 | 1 | 0.299 * |
Extrarotation | 0.301 * | −0.255 | 0.226 | 0.299 * | 1 |
Flexion | Extension | Abduction | Intrarotation | Extrarotation | |
---|---|---|---|---|---|
Flexion | 1 | −0.292 * | 0.182 | 0.186 | 0.175 |
Extension | −0.292 * | 1 | 0.073 | −0.300 * | −0.109 |
Abduction | 0.182 | 0.073 | 1 | −0.064 | 0.151 |
Intrarotation | 0.186 | −0.300 * | −0.064 | 1 | 0.418 ** |
Extrarotation | 0.175 | −0.109 | 0.151 | 0.418 ** | 1 |
Extrarotation | Intrarotation | Adduction | Abduction | Flexion | Extension | |
---|---|---|---|---|---|---|
Extrarotation | 1 | 0.238 | 0.035 | −0.019 | −0.080 | −0.335 * |
Intrarotation | 0.238 | 1 | 0.054 | −0.246 | 0.184 | −0.037 |
Adduction | 0.035 | 0.054 | 1 | −0.290 * | 0.045 | −0.016 |
Abduction | −0.019 | −0.246 | −0.290 * | 1 | 0.183 | 0.244 |
Flexion | −0.080 | 0.184 | 0.045 | 0.183 | 1 | 0.266 |
Extension | −0.335 * | −0.037 | −0.016 | 0.244 | 0.266 | 1 |
Extrarotation | Intrarotation | Adduction | Abduction | Flexion | Extension | |
---|---|---|---|---|---|---|
Extrarotation | 1 | 0.663 ** | 0.349 * | 0.042 | 0.055 | −0.386 ** |
Intrarotation | 0.663 ** | 1 | 0.024 | 0.048 | 0.191 | −0.254 |
Adduction | 0.349 * | 0.024 | 1 | −0.262 | 0.295 * | −0.117 |
Abduction | 0.042 | 0.048 | −0.262 | 1 | −0.145 | −0.087 |
Flexion | 0.055 | 0.191 | 0.295 * | −0.145 | 1 | 0.286 * |
Extension | −0.386 ** | −0.254 | −0.117 | −0.087 | 0.286 * | 1 |
Flexion | Extension | |
---|---|---|
Flexion | 1 | 0.152 |
Extension | 0.152 | 1 |
Flexion | Extension | |
---|---|---|
Flexion | 1 | 0.821 ** |
Extension | 0.821 ** | 1 |
Plantar Flexion | Dorsal Flexion | Eversion | Inversion | |
---|---|---|---|---|
Plantar flexion | 1 | −0.469 ** | −0.028 | 0.371 ** |
Dorsal flexion | −0.469 ** | 1 | 0.542 ** | 0.171 |
Eversion | −0.028 | 0.542 ** | 1 | 0.328 * |
Inversion | 0.371 ** | 0.171 | 0.328 * | 1 |
Plantar Flexion | Dorsal Flexion | Eversion | Inversion | |
---|---|---|---|---|
Plantar flexion | 1 | −0.526 ** | −0.001 | 0.105 |
Dorsal flexion | −0.526 ** | 1 | 0.406 ** | 0.353 * |
Eversion | −0.001 | 0.406 ** | 1 | 0.194 |
Inversion | 0.105 | 0.353 * | 0.194 | 1 |
Physical Functioning | Role Limitations Due to Physical Health | Role Limitations Due to Emotional Problems | Energy/ Fatigue | Emotional Well-Being | Social Functioning | Pain | General Health | ||
---|---|---|---|---|---|---|---|---|---|
Left | Flexion | 0.181 | −0.112 | 0.058 | 0.062 | 0.204 | 0.037 | 0.038 | 0.382 ** |
Extension | 0.015 | −0.068 | −0.061 | 0.384 ** | 0.181 | 0.037 | −0.112 | −0.058 | |
Abduction | 0.084 | 0.472 ** | 0.505 ** | −0.037 | 0.149 | 0.361 * | 0.359 * | 0.072 | |
Intrarotation | −0.146 | 0.025 | 0.094 | −0.176 | −0.080 | −0.003 | −0.079 | −0.062 | |
Extrarotation | 0.154 | 0.179 | 0.280 * | 0.172 | 0.284 * | 0.323 * | 0.217 | 0.234 | |
Right | Flexion | 0.021 | 0.017 | 0.086 | −0.111 | 0.034 | 0.019 | 0.026 | −0.080 |
Extension | −0.193 | −0.175 | −0.256 | 0.211 | 0.116 | −0.042 | −0.277 | −0.030 | |
Abduction | 0.032 | −0.011 | 0.004 | −0.048 | −0.023 | 0.066 | 0.011 | 0.033 | |
Intrarotation | −0.054 | 0.211 | 0.186 | −0.174 | 0.067 | 0.157 | 0.090 | −0.079 | |
Extrarotation | 0.027 | 0.084 | 0.279 | 0.055 | 0.145 | 0.269 | 0.073 | −0.027 |
Goniometric Evaluation | ||||||
---|---|---|---|---|---|---|
Flexion | Extension | Abduction | Intrarotation | Extrarotation | ||
Xclinic evaluation | Flexion | 0.532 ** | −0.382 ** | −0.115 | 0.044 | 0.338 * |
Extension | 0.045 | 0.554 ** | 0.083 | 0.163 | −0.132 | |
Abduction | 0.061 | −0.103 | 0.075 | −0.105 | 0.162 | |
Intrarotation | −0.291 * | −0.036 | −0.154 | 0.244 | −0.007 | |
Extrarotation | 0.002 | −0.083 | 0.097 | 0.292 * | 0.589 ** |
Goniometric Evaluation | ||||||
---|---|---|---|---|---|---|
Flexion | Extension | Abduction | Intrarotation | Extrarotation | ||
Xclinic evaluation | Flexion | 0.575 ** | −0.339 * | 0.004 | 0.088 | 0.204 |
Extension | −0.284 * | 0.559 ** | −0.240 | 0.065 | −0.078 | |
Abduction | −0.055 | −0.299 * | 0.015 | −0.157 | 0.218 | |
Intrarotation | 0.133 | −0.060 | −0.220 | 0.477 ** | 0.241 | |
Extrarotation | −0.011 | −0.030 | −0.193 | 0.221 | 0.612 ** |
Goniometric Evaluation | |||||||
---|---|---|---|---|---|---|---|
Extrarotation | Intrarotation | Adduction | Abduction | Flexion | Extension | ||
Xclinic evaluation | Extrarotation | 0.559 ** | 0.441 ** | 0.200 | −0.096 | 0.129 | −0.220 |
Intrarotation | 0.393 ** | 0.744 ** | 0.096 | −0.087 | 0.291 * | −0.098 | |
Adduction | 0.200 | 0.065 | 0.537 ** | −0.003 | 0.215 | −0.132 | |
Abduction | 0.078 | 0.113 | 0.206 | 0.170 | −0.130 | −0.026 | |
Flexion | 0.185 | 0.397 ** | 0.303 * | 0.164 | 0.771 ** | 0.015 | |
Extension | 0.130 | 0.137 | −0.152 | 0.440 ** | −0.015 | 0.393 ** |
Goniometric Evaluation | |||||||
---|---|---|---|---|---|---|---|
Extrarotation | Intrarotation | Adduction | Abduction | Flexion | Extension | ||
Xclinic evaluation | Extrarotation | 0.344 * | 0.028 | 0.223 | −0.166 | 0.151 | 0.167 |
Intrarotation | 0.284 * | 0.763 ** | 0.151 | −0.116 | 0.258 | −0.025 | |
Adduction | 0.203 | 0.055 | 0.292 * | −0.115 | 0.010 | −0.085 | |
Abduction | 0.153 | −0.016 | 0.154 | 0.530 ** | 0.075 | 0.135 | |
Flexion | 0.300 * | 0.298 * | 0.120 | 0.295 * | 0.677 ** | 0.168 | |
Extension | 0.239 | 0.154 | −0.171 | 0.385 ** | −0.052 | 0.265 |
Goniometric Evaluation | |||
---|---|---|---|
Flexion | Extension | ||
Xclinic evaluation | Flexion | 0.702 ** | 0.027 |
Extension | 0.136 | 0.213 |
Goniometric Evaluation | |||
---|---|---|---|
Flexion | Extension | ||
Xclinic evaluation | Flexion | 0.724 ** | −0.001 |
Extension | 0.054 | 0.265 |
Goniometric Evaluation | |||||
---|---|---|---|---|---|
Plantar Flexion | Dorsal Flexion | Eversion | Inversion | ||
Xclinic evaluation | Plantar flexion | 0.653 ** | −0.395 ** | 0.114 | 0.283 * |
Dorsal flexion | −0.179 | 0.604 ** | 0.300 * | 0.190 | |
Eversion | 0.104 | 0.126 | 0.535 ** | 0.179 | |
Inversion | 0.293 * | −0.020 | 0.208 | 0.722 ** |
Goniometric Evaluation | |||||
---|---|---|---|---|---|
Plantar Flexion | Dorsal Flexion | Eversion | Inversion | ||
Xclinic evaluation | Plantar flexion | 0.741 ** | −0.537 ** | −0.077 | 0.364 ** |
Dorsal flexion | −0.323 * | 0.558 ** | 0.417 ** | 0.041 | |
Eversion | −0.072 | 0.368 ** | 0.778 ** | 0.372 ** | |
Inversion | 0.285 * | −0.017 | 0.186 | 0.693 ** |
Physical Functioning | Role Limitations Due to Physical Health | Role Limitations Due to Emotional Problems | Energy/ Fatigue | Emotional Well-Being | Social Functioning | Pain | General Health | ||
---|---|---|---|---|---|---|---|---|---|
Left | Flexion | 0.181 | −0.112 | 0.058 | 0.062 | 0.204 | 0.037 | 0.038 | 0.382 ** |
Extension | 0.015 | −0.068 | −0.061 | 0.384 ** | 0.181 | 0.037 | −0.112 | −0.058 | |
Abduction | 0.084 | 0.472 ** | 0.505 ** | −0.037 | 0.149 | 0.361 * | 0.359 * | 0.072 | |
Intrarotation | −0.146 | 0.025 | 0.094 | −0.176 | −0.080 | −0.003 | −0.079 | −0.062 | |
Extrarotation | 0.154 | 0.179 | 0.280 * | 0.172 | 0.284 * | 0.323 * | 0.217 | 0.234 | |
Right | Flexion | 0.021 | 0.017 | 0.086 | −0.111 | 0.034 | 0.019 | 0.026 | −0.080 |
Extension | −0.193 | −0.175 | −0.256 | 0.211 | 0.116 | −0.042 | −0.277 | −0.030 | |
Abduction | 0.032 | −0.011 | 0.004 | −0.048 | −0.023 | 0.066 | 0.011 | 0.033 | |
Intrarotation | −0.054 | 0.211 | 0.186 | −0.174 | 0.067 | 0.157 | 0.090 | −0.079 | |
Extrarotation | 0.027 | 0.084 | 0.279 | 0.055 | 0.145 | 0.269 | 0.073 | −0.027 |
Physical Functioning | Role Limitations Due to Physical Health | Role Limitations Due to Emotional Problems | Energy/ Fatigue | Emotional Well-Being | Social Functioning | Pain | General Health | ||
---|---|---|---|---|---|---|---|---|---|
Left | Extrarotation | −0.357 * | 0.019 | 0.086 | −0.129 | −0.130 | 0.028 | −0.195 | −0.272 |
Intrarotation | −0.099 | −0.045 | −0.013 | 0.006 | 0.034 | −0.004 | 0.071 | 0.077 | |
Adduction | −0.093 | −0.027 | 0.041 | 0.056 | 0.213 | 0.085 | −0.028 | 0.156 | |
Abduction | 0.011 | −0.059 | −0.119 | 0.151 | 0.062 | 0.030 | −0.071 | −0.005 | |
Flexion | 0.025 | 0.029 | −0.044 | 0.303 * | 0.372 ** | 0.135 | 0.176 | 0.306 * | |
Extension | 0.214 | 0.019 | 0.161 | 0.208 | 0.198 | 0.165 | 0.170 | 0.009 | |
Right | Extrarotation | −0.240 | 0.090 | 0.060 | 0.027 | −0.007 | 0.055 | −0.039 | −0.161 |
Intrarotation | −0.124 | −0.005 | 0.023 | 0.148 | 0.049 | −0.007 | 0.034 | 0.013 | |
Adduction | −0.073 | −0.128 | −0.290 * | −0.032 | 0.130 | −0.073 | −0.139 | 0.060 | |
Abduction | 0.029 | 0.136 | 0.124 | 0.200 | 0.214 | 0.181 | 0.161 | 0.335 * | |
Flexion | 0.079 | 0.007 | −0.009 | 0.228 | 0.298 * | 0.095 | 0.116 | 0.301 * | |
Extension | 0.291 * | 0.101 | 0.185 | 0.057 | 0.199 | 0.193 | 0.216 | 0.017 |
Physical Functioning | Role Limitations Due to Physical Health | Role Limitations Due to Emotional Problems | Energy/ Fatigue | Emotional Well-Being | Social Functioning | Pain | General Health | ||
---|---|---|---|---|---|---|---|---|---|
Left | Flexion | 0.189 | 0.052 | 0.123 | 0.056 | 0.189 | 0.123 | 0.228 | 0.130 |
Extension | 0.082 | 0.214 | 0.287 * | 0.239 | 0.351 * | 0.357 * | 0.206 | 0.218 | |
Right | Flexion | 0.187 | −0.007 | −0.019 | −0.004 | 0.168 | 0.041 | 0.054 | 0.156 |
Extension | 0.171 | 0.037 | 0.102 | 0.076 | 0.213 | 0.157 | 0.188 | 0.191 |
Physical Functioning | Role Limitations Due to Physical Health | Role Limitations Due to Emotional Problems | Energy/ Fatigue | Emotional Well-Being | Social Functioning | Pain | General Health | Lefs-I | ||
---|---|---|---|---|---|---|---|---|---|---|
Left | Plantar flexion | −0.009 | 0.046 | −0.113 | −0.092 | 0.005 | −0.039 | 0.076 | 0.161 | 0.000 |
Dorsal flexion | 0.122 | 0.025 | −0.021 | 0.079 | 0.055 | 0.007 | 0.026 | −0.119 | 0.222 | |
Eversion | 0.023 | −0.097 | −0.190 | −0.053 | 0.018 | −0.195 | −0.057 | −0.084 | 0.233 | |
Inversion | 0.201 | 0.091 | 0.013 | −0.175 | 0.015 | 0.002 | 0.166 | −0.085 | 0.226 | |
Right | Plantar flexion | 0.033 | −0.021 | −0.191 | −0.272 | −0.211 | −0.255 | 0.057 | −0.227 | 0.197 |
Dorsal flexion | 0.017 | −0.014 | 0.077 | 0.218 | 0.147 | 0.081 | −0.006 | 0.062 | 0.103 | |
Eversion | −0.239 | −0.033 | −0.125 | −0.202 | −0.091 | −0.153 | −0.142 | −0.192 | 0.038 | |
Inversion | 0.225 | 0.033 | 0.133 | 0.007 | 0.217 | 0.094 | 0.129 | 0.133 | 0.332 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galeoto, G.; Ruotolo, I.; Sellitto, G.; Amadio, E.; Di Sipio, E.; La Russa, R.; Volonnino, G.; Frati, P. The Innovative XClinic Tool: A Pilot Study Validating Its Precision in Measuring Range of Motion in Healthy Individuals. Sensors 2025, 25, 1331. https://doi.org/10.3390/s25051331
Galeoto G, Ruotolo I, Sellitto G, Amadio E, Di Sipio E, La Russa R, Volonnino G, Frati P. The Innovative XClinic Tool: A Pilot Study Validating Its Precision in Measuring Range of Motion in Healthy Individuals. Sensors. 2025; 25(5):1331. https://doi.org/10.3390/s25051331
Chicago/Turabian StyleGaleoto, Giovanni, Ilaria Ruotolo, Giovanni Sellitto, Emanuele Amadio, Enrica Di Sipio, Raffaele La Russa, Gianpietro Volonnino, and Paola Frati. 2025. "The Innovative XClinic Tool: A Pilot Study Validating Its Precision in Measuring Range of Motion in Healthy Individuals" Sensors 25, no. 5: 1331. https://doi.org/10.3390/s25051331
APA StyleGaleoto, G., Ruotolo, I., Sellitto, G., Amadio, E., Di Sipio, E., La Russa, R., Volonnino, G., & Frati, P. (2025). The Innovative XClinic Tool: A Pilot Study Validating Its Precision in Measuring Range of Motion in Healthy Individuals. Sensors, 25(5), 1331. https://doi.org/10.3390/s25051331