You are currently viewing a new version of our website. To view the old version click .
Sensors
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

3 December 2025

Lightweight Attention-Augmented YOLOv5s for Accurate and Real-Time Fall Detection in Elderly Care Environments

,
and
Department of Information Science, Faculty of Humanities and Social Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
*
Author to whom correspondence should be addressed.
Sensors2025, 25(23), 7365;https://doi.org/10.3390/s25237365 
(registering DOI)
This article belongs to the Section Physical Sensors

Abstract

Falls among the elderly represent a leading cause of injury and mortality worldwide, necessitating reliable and real-time monitoring solutions. This study aims to develop a lightweight, accurate, and efficient fall detection framework based on an improved YOLOv5s model. The proposed architecture incorporates a Convolutional Block Attention Module (CBAM) to enhance salient feature extraction, optimizes multi-scale feature fusion in the Neck for better small-object detection, and re-clusters anchor boxes tailored to the horizontal morphology of elderly falls. A multi-scene dataset comprising 11,314 images was constructed to evaluate performance under diverse lighting, occlusion, and spatial conditions. Experimental results demonstrate that the improved YOLOv5s achieves a mean average precision (mAP@0.5) of 94.2%, a recall of 92.5%, and a false alarm rate of 4.2%, outperforming baseline YOLOv5s and YOLOv4 models while maintaining real-time detection speed at 32 FPS. These findings confirm that integrating attention mechanisms, adaptive fusion, and anchor optimization significantly enhances robustness and generalization. Although performance slightly declines under extreme lighting or heavy occlusion, this limitation highlights future opportunities for multimodal fusion and illumination-invariant modeling. Overall, the study contributes a scalable and deployable AI framework that bridges the gap between algorithmic innovation and real-world elderly care applications, advancing intelligent and non-intrusive safety monitoring in aging societies.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.