Invasive and Non-Invasive Remote Patient Monitoring Devices for Heart Failure: A Comparative Review of Technical Maturity and Clinical Readiness
Abstract
1. Introduction
- (i)
- Each device sub-group (Table 1) is presented in a dedicated section;
- (ii)
- Each section begins with an executive summary describing fundamental concepts, highlighting common trends, and listing the sampled devices;
- (iii)
- Detailed sub-sections provide technical and clinical/scientific descriptions of individual devices;
- (iv)
- A summary section (Section 9) synthesizes technical features and clinical evidence from reviewed devices;
- (v)
- Final sections (Section 10 and Section 11) introduce and employ evaluative domains based on objective metrics (i.e., the MDRL and the clinical adoption metrics).
2. Intracardiac Devices
2.1. HeartPOD® (Abbott, Illinois City, IL, USA)
2.2. V-LAP™ System (Vectorious Medical Technologies, Ltd., Tel Aviv, Israel)
2.3. Titan™ (Integrated Sensing Systems, Inc., Ypsilanti, MI, USA)
3. Intravascular Devices
3.1. CardioMEMS™ HF System (Abbott, Illinois City, IL, USA)
3.2. Cordella™ System (Edwards Lifesciences Corp., Irvine, CA, USA)
3.3. FIRE1 System, Now NORM™ System (Foundry Innovation & Research 1, Ltd., Dublin, Ireland)
4. Epicardial and Perivascular Devices
5. Subcutaneous Devices
5.1. Reveal LINQ™ ICM (Medtronic, Inc., Minneapolis, MN, USA)
5.2. LUX-Dx™ ICM (Boston Scientific Corp., Marlborough, MA, USA)
5.3. Future Cardia™ ICM System (Future Cardia, Inc., Houston, TX, USA)
6. Trans-Compartmental Devices
6.1. TriageHF™-Enabled CIEDs (Medtronic, Inc., Minneapolis, MN, USA)
6.2. HeartLogic™-Enabled CIEDs (Boston Scientific Corp., Marlborough, MA, USA)
7. Cutaneous and Superficial Devices
7.1. Zoll HFMS (Zoll Medical Corp., Chelmsford, MA, USA)
7.2. VitalPatch® (VitalConnect, Inc., San Jose, CA, USA)
7.3. CoVa™ Monitoring System (Baxter Healthcare Corp., Deerfield, IL, USA)
7.4. ReDS™ Wearable System (Sensible Medical Innovations, Ltd., Netanya, Israel)
7.5. Sensinel™ CPM (Analog Devices, Inc., Norwood, MA, USA)
7.6. Seerlinq® (Seerlinq, Ltd., Trnava, Slovakia)
7.7. Bodyport Cardiac Scale (Bodyport, Inc., San Francisco, CA, USA)
8. Proximal Devices
HearO™ (Cordio Medical, Ltd., Tel Aviv, Israel)
9. Comparative Synthesis of Technical Features and Clinical Evidence
10. Analysis of Medical Device Readiness
11. Proposing a Complementary Device Adoption Analysis
Improving process efficiency: |
|
Enhancing patient outcomes: |
|
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | Atrial fibrillation |
BP | Blood pressure |
CE | Conformité Européenne |
CIED | Cardiac implantable electronic device |
CO | Cardiac output |
CPM | Cardiopulmonary Management System |
ECG | Electrocardiogram |
EGM | Electrogram |
FDA | Food and Drug Administration |
HF | Heart failure |
HFmrEF | Heart failure with mildly reduced ejection fraction |
HFMS | Heart Failure Management System |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
HR | Heart rate |
IAP | Iliac artery pressure |
ICM | Insertable cardiac monitor |
IFP | Interstitial fluid pressure |
IVC | Inferior vena cava |
LAP | Left atrial pressure |
LVP | Left ventricular pressure |
MDRL | Medical Device Readiness Level |
NT-proBNP | N-terminal pro B-type natriuretic peptide |
PAP | Pulmonary artery pressure |
PCWP | Pulmonary capillary wedge pressure |
RAP | Right atrial pressure |
RPM | Remote patient monitoring |
SpO2 | Oxygen saturation |
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2022, 118, 3272–3287. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Albert, N.M.; Allen, L.A.; Bluemke, D.A.; Butler, J.; Fonarow, G.C.; Ikonomidis, J.S.; Khavjou, O.; Konstam, M.A.; Maddox, T.M.; et al. Forecasting the Impact of Heart Failure in the United States. Circ. Heart Fail. 2013, 6, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Osenenko, K.M.; Kuti, E.; Deighton, A.M.; Pimple, P.; Szabo, S.M. Burden of Hospitalization for Heart Failure in the United States: A Systematic Literature Review. J. Manag. Care Spec. Pharm. 2022, 28, 157–167. [Google Scholar] [CrossRef]
- Raffaello, W.M.; Henrina, J.; Huang, I.; Lim, M.A.; Suciadi, L.P.; Siswanto, B.B.; Pranata, R. Clinical Characteristics of De Novo Heart Failure and Acute Decompensated Chronic Heart Failure: Are They Distinctive Phenotypes That Contribute to Different Outcomes? Card. Fail. Rev. 2020, 7, e02. [Google Scholar] [CrossRef]
- Golla, M.S.G.; Hajouli, S.; Ludhwani, D. Heart Failure and Ejection Fraction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Adamson, P.B. Pathophysiology of the Transition from Chronic Compensated and Acute Decompensated Heart Failure: New Insights from Continuous Monitoring Devices. Curr. Heart Fail. Rep. 2009, 6, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, M.; Jessup, M.; Mullens, W.; Reza, N.; Shah, A.M.; Sliwa, K.; Mebazaa, A. Acute Heart Failure. Nat. Rev. Dis. Primers 2020, 6, 16. [Google Scholar] [CrossRef]
- Stevenson, L.W.; Ross, H.J.; Rathman, L.D.; Boehmer, J.P. Remote Monitoring for Heart Failure Management at Home. J. Am. Coll. Cardiol. 2023, 81, 2272–2291. [Google Scholar] [CrossRef] [PubMed]
- Ong, M.K.; Romano, P.S.; Edgington, S.; Aronow, H.U.; Auerbach, A.D.; Black, J.T.; De Marco, T.; Escarce, J.J.; Evangelista, L.S.; Hanna, B.; et al. Effectiveness of Remote Patient Monitoring After Discharge of Hospitalized Patients With Heart Failure: The Better Effectiveness After Transition—Heart Failure (BEAT-HF) Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 310–318. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) With the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Pagnesi, M.; Codina, P.; Abraham, W.T.; Amir, O.; de Boer, R.A.; Brugts, J.J.; Chioncel, O.; Gustafsson, F.; Lindenfeld, J.; et al. Remote Pulmonary Artery Pressure-Guided Management of Patients with Heart Failure: A Clinical Consensus Statement of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2025, 27, 1644–1657. [Google Scholar] [CrossRef]
- Seva, R.R.; Tan, A.L.S.; Tejero, L.M.S.; Salvacion, M.L.D.S. Multi-Dimensional Readiness Assessment of Medical Devices. Theor. Issues Ergon. Sci. 2023, 24, 189–205. [Google Scholar] [CrossRef]
- Ohlsson, Å.; Nordlander, R.; Bennett, T.; Bitkover, C.; Kjellström, B.; Lee, B.; Rydén, L. Continuous Ambulatory Haemodynamic Monitoring with an Implantable System: The Feasibility of a New Technique. Eur. Heart J. 1998, 19, 174–184. [Google Scholar] [CrossRef]
- Bourge, R.C.; Abraham, W.T.; Adamson, P.B.; Aaron, M.F.; Aranda, J.M.; Magalski, A.; Zile, M.R.; Smith, A.L.; Smart, F.W.; O’Shaughnessy, M.A.; et al. Randomized Controlled Trial of an Implantable Continuous Hemodynamic Monitor in Patients With Advanced Heart Failure: The COMPASS-HF Study. J. Am. Coll. Cardiol. 2008, 51, 1073–1079. [Google Scholar] [CrossRef]
- Ritzema, J.; Melton, I.C.; Richards, A.M.; Crozier, I.G.; Frampton, C.; Doughty, R.N.; Whiting, J.; Kar, S.; Eigler, N.; Krum, H.; et al. Direct Left Atrial Pressure Monitoring in Ambulatory Heart Failure Patients. Circulation 2007, 116, 2952–2959. [Google Scholar] [CrossRef]
- Maurer, M.S.; Adamson, P.B.; Costanzo, M.R.; Eigler, N.; Gilbert, J.; Gold, M.R.; Klapholz, M.; Saxon, L.A.; Singh, J.P.; Troughton, R.; et al. Rationale and Design of the Left Atrial Pressure Monitoring to Optimize Heart Failure Therapy Study (LAPTOP-HF). J. Card. Fail. 2015, 21, 479–488. [Google Scholar] [CrossRef]
- Troughton, R.W.; Ritzema, J.; Eigler, N.L.; Melton, I.C.; Krum, H.; Adamson, P.B.; Kar, S.; Shah, P.K.; Whiting, J.S.; Heywood, J.T.; et al. Direct Left Atrial Pressure Monitoring in Severe Heart Failure: Long-Term Sensor Performance. J. Cardiovasc. Trans. Res. 2011, 4, 3–13. [Google Scholar] [CrossRef]
- Ritzema, J.; Troughton, R.; Melton, I.; Crozier, I.; Doughty, R.; Krum, H.; Walton, A.; Adamson, P.; Kar, S.; Shah, P.K.; et al. Physician-Directed Patient Self-Management of Left Atrial Pressure in Advanced Chronic Heart Failure. Circulation 2010, 121, 1086–1095. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Costanzo, M.R.; Eigler, N.; Gold, M.; Klapholz, M.; Maurer, M.; Saxon, L.; Singh, J.; Troughton, R. Hemodynamic Monitoring in Advanced Heart Failure: Results from the LAPTOP-HF Trial. J. Card. Fail. 2016, 22, 940. [Google Scholar] [CrossRef]
- Lindenfeld, J.; Costanzo, M.R.; Zile, M.R.; Ducharme, A.; Troughton, R.; Maisel, A.; Mehra, M.R.; Paul, S.; Sears, S.F.; Smart, F.; et al. Implantable Hemodynamic Monitors Improve Survival in Patients With Heart Failure and Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2024, 83, 682–694. [Google Scholar] [CrossRef]
- Perl, L.; Soifer, E.; Bartunek, J.; Erdheim, D.; Köhler, F.; Abraham, W.T.; Meerkin, D. A Novel Wireless Left Atrial Pressure Monitoring System for Patients with Heart Failure, First Ex-Vivo and Animal Experience. J. Cardiovasc. Trans. Res. 2019, 12, 290–298. [Google Scholar] [CrossRef]
- Perl, L.; Meerkin, D.; D’amario, D.; Avraham, B.B.; Gal, T.B.; Weitsman, T.; Hasin, T.; Ince, H.; Feickert, S.; D’ancona, G.; et al. The V-LAP System for Remote Left Atrial Pressure Monitoring of Patients With Heart Failure: Remote Left Atrial Pressure Monitoring. J. Card. Fail. 2022, 28, 963–972. [Google Scholar] [CrossRef]
- D’Amario, D.; Meerkin, D.; Restivo, A.; Ince, H.; Sievert, H.; Wiese, A.; Schaefer, U.; Trani, C.; Bayes-Genis, A.; Leyva, F.; et al. Safety, Usability, and Performance of a Wireless Left Atrial Pressure Monitoring System in Patients with Heart Failure: The VECTOR-HF Trial. Eur. J. Heart Fail. 2023, 25, 902–911. [Google Scholar] [CrossRef]
- Meerkin, D.; Perl, L.; Hasin, T.; Petriashvili, S.; Kurashvili, L.; Metreveli, M.; Ince, H.; Feickert, S.; Habib, M.; Caspi, O.; et al. Physician-Directed Patient Self-Management in Heart Failure Using Left Atrial Pressure: Interim Insights from the VECTOR-HF I and IIa Studies. Eur. J. Heart Fail. 2024, 26, 1814–1823. [Google Scholar] [CrossRef]
- Hammond, R.L.; Hanna, K.; Morgan, C.; Perakis, P.; Najafi, N.; Long, G.W.; Shanley, C.J. A Wireless and Battery-Less Miniature Intracardiac Pressure Sensor: Early Implantation Studies. ASAIO J. 2012, 58, 83. [Google Scholar] [CrossRef]
- Ahn, H.C.; Delshad, B.; Baranowski, J. An Implantable Pressure Sensor for Long-Term Wireless Monitoring of Cardiac Function—First Study in Man. J. Cardiovasc. Dis. Diagn. 2016, 4, 252. [Google Scholar] [CrossRef]
- Najafi, N.; Ludomirsky, A. Initial Animal Studies of a Wireless, Batteryless, MEMS Implant for Cardiovascular Applications. Biomed. Microdevices 2004, 6, 61–65. [Google Scholar] [CrossRef]
- Hubbert, L.; Baranowski, J.; Delshad, B.; Ahn, H. Left Atrial Pressure Monitoring With an Implantable Wireless Pressure Sensor After Implantation of a Left Ventricular Assist Device. ASAIO J. 2017, 63, e60. [Google Scholar] [CrossRef]
- Herbert, R.; Lim, H.-R.; Rigo, B.; Yeo, W.-H. Fully Implantable Wireless Batteryless Vascular Electronics with Printed Soft Sensors for Multiplex Sensing of Hemodynamics. Sci. Adv. 2022, 8, eabm1175. [Google Scholar] [CrossRef]
- Verdejo, H.E.; Castro, P.F.; Concepción, R.; Ferrada, M.A.; Alfaro, M.A.; Alcaíno, M.E.; Deck, C.C.; Bourge, R.C. Comparison of a Radiofrequency-Based Wireless Pressure Sensor to Swan-Ganz Catheter and Echocardiography for Ambulatory Assessment of Pulmonary Artery Pressure in Heart Failure. J. Am. Coll. Cardiol. 2007, 50, 2375–2382. [Google Scholar] [CrossRef]
- Shavelle, D.; Jermyn, R. The CardioMEMS Heart Failure Sensor: A Procedural Guide for Implanting Physicians. J. Invasive Cardiol. 2016, 28, 273–279. [Google Scholar]
- Haynes, S.C.; Pallin, R.; Tong, K.; Henderson, S.; Romano, P.S. Understanding Adherence to the CardioMEMS Pulmonary Artery Pressure Monitoring System for Heart Failure: A Qualitative Study. Heart Lung 2020, 49, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.T.; Adamson, P.B.; Bourge, R.C.; Aaron, M.F.; Costanzo, M.R.; Stevenson, L.W.; Strickland, W.; Neelagaru, S.; Raval, N.; Krueger, S.; et al. Wireless Pulmonary Artery Haemodynamic Monitoring in Chronic Heart Failure: A Randomised Controlled Trial. Lancet 2011, 377, 658–666. [Google Scholar] [CrossRef]
- Shavelle, D.M.; Desai, A.S.; Abraham, W.T.; Bourge, R.C.; Raval, N.; Rathman, L.D.; Heywood, J.T.; Jermyn, R.A.; Pelzel, J.; Jonsson, O.T.; et al. Lower Rates of Heart Failure and All-Cause Hospitalizations During Pulmonary Artery Pressure-Guided Therapy for Ambulatory Heart Failure. Circ. Heart Fail. 2020, 13, e006863. [Google Scholar] [CrossRef]
- Lindenfeld, J.; Zile, M.R.; Desai, A.S.; Bhatt, K.; Ducharme, A.; Horstmanshof, D.; Krim, S.R.; Maisel, A.; Mehra, M.R.; Paul, S.; et al. Haemodynamic-Guided Management of Heart Failure (GUIDE-HF): A Randomised Controlled Trial. Lancet 2021, 398, 991–1001. [Google Scholar] [CrossRef]
- Zile, M.R.; Mehra, M.R.; Ducharme, A.; Sears, S.F.; Desai, A.S.; Maisel, A.; Paul, S.; Smart, F.; Grafton, G.; Kumar, S.; et al. Hemodynamically-Guided Management of Heart Failure Across the Ejection Fraction Spectrum. JACC Heart Fail. 2022, 10, 931–944. [Google Scholar] [CrossRef]
- Zile, M.R.; Desai, A.S.; Costanzo, M.R.; Ducharme, A.; Maisel, A.; Mehra, M.R.; Paul, S.; Sears, S.F.; Smart, F.; Chien, C.; et al. The GUIDE-HF Trial of Pulmonary Artery Pressure Monitoring in Heart Failure: Impact of the COVID-19 Pandemic. Eur. Heart J. 2022, 43, 2603–2618. [Google Scholar] [CrossRef] [PubMed]
- Angermann, C.E.; Assmus, B.; Anker, S.D.; Asselbergs, F.W.; Brachmann, J.; Brett, M.-E.; Brugts, J.J.; Ertl, G.; Ginn, G.; Hilker, L.; et al. Pulmonary Artery Pressure-Guided Therapy in Ambulatory Patients with Symptomatic Heart Failure: The CardioMEMS European Monitoring Study for Heart Failure (MEMS-HF). Eur. J. Heart Fail. 2020, 22, 1891–1901. [Google Scholar] [CrossRef]
- Brugts, J.J.; Radhoe, S.P.; Clephas, P.R.D.; Aydin, D.; van Gent, M.W.F.; Szymanski, M.K.; Rienstra, M.; van den Heuvel, M.H.; da Fonseca, C.A.; Linssen, G.C.M.; et al. Remote Haemodynamic Monitoring of Pulmonary Artery Pressures in Patients with Chronic Heart Failure (MONITOR-HF): A Randomised Clinical Trial. Lancet 2023, 401, 2113–2123. [Google Scholar] [CrossRef]
- Roubille, F.; Mckenzie, S.; Flett, A.; Folley, P.; Rossing, K.; Ciccarelli, M.; Pouleur, A.C.; Gazzola, C.; Park, E.; Adamson, P.B.; et al. Heart Failure Hospitalization Reduction and Long-Term Safety with Remote Pulmonary Artery Pressure Monitoring: Results of the CardioMEMS HF System OUS Post-Market Study. Eur. Heart J. 2024, 45, ehae666.1029. [Google Scholar] [CrossRef]
- Lin, A.L.; Hu, G.; Dhruva, S.S.; Kinard, M.; Redberg, R.F. Quantification of Device-Related Event Reports Associated With the CardioMEMS Heart Failure System. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e009116. [Google Scholar] [CrossRef] [PubMed]
- Wetterling, F.; Kittipibul, V.; Fudim, M. Measurement Inaccuracy Reported via the Manufacturer and User Facility Device Experience Database for an Implantable Pulmonary Artery Pressure Sensor: Recalibration Direction and Magnitude Results. Eur. Heart J. 2024, 45, ehae666.3536. [Google Scholar] [CrossRef]
- Störk, S.; Bernhardt, A.; Böhm, M.; Brachmann, J.; Dagres, N.; Frantz, S.; Hindricks, G.; Köhler, F.; Zeymer, U.; Rosenkranz, S.; et al. Pulmonary Artery Sensor System Pressure Monitoring to Improve Heart Failure Outcomes (PASSPORT-HF): Rationale and Design of the PASSPORT-HF Multicenter Randomized Clinical Trial. Clin. Res. Cardiol. 2022, 111, 1245–1255. [Google Scholar] [CrossRef]
- Jason, L.; Guichard, M.D.; Faisal Sharif, M.; Omid Forouzan, P.; Jerson Martina, P.; Liviu Klein, M. A Procedural Guide for Implanting the Cordella Pulmonary Artery Pressure Sensor. J. Invasive Cardiol. 2023, 35, E75–E83. [Google Scholar] [CrossRef]
- Mullens, W.; Sharif, F.; Dupont, M.; Rothman, A.M.K.; Wijns, W. Digital Health Care Solution for Proactive Heart Failure Management with the Cordella Heart Failure System: Results of the SIRONA First-in-Human Study. Eur. J. Heart Fail. 2020, 22, 1912–1919. [Google Scholar] [CrossRef]
- Sharif, F.; Rosenkranz, S.; Bartunek, J.; Kempf, T.; Assmus, B.; Mahon, N.G.; Mullens, W. Safety and Efficacy of a Wireless Pulmonary Artery Pressure Sensor: Primary Endpoint Results of the SIRONA 2 Clinical Trial. ESC Heart Fail. 2022, 9, 2862–2872. [Google Scholar] [CrossRef]
- Guichard, J.L.; Bonno, E.L.; Nassif, M.E.; Khumri, T.M.; Miranda, D.; Jonsson, O.; Shah, H.; Alexy, T.; Macaluso, G.P.; Sur, J.; et al. Seated Pulmonary Artery Pressure Monitoring in Patients With Heart Failure: Results of the PROACTIVE-HF Trial. JACC Heart Fail. 2024, 12, 1879–1893. [Google Scholar] [CrossRef]
- Hajduczok, A.G.; Donald, E.M.; Maning, J.; Youmans, Q.; Reza, N. Can’t Rain on Our Parade: Highlights from the Heart Failure Society of America (HFSA) Annual Scientific Meeting 2024. J. Card. Fail. 2025, 31, 574–578. [Google Scholar] [CrossRef]
- Mullens, W.; Rosenkranz, S.; Sharif, F.; Aßmus, B.; Mahon, N.G.; Kempf, T.; Stevenson, L.W.; Bartunek, J. Feasibility of Continuous Noninvasive Pulmonary Artery Pressure Monitoring via the Cordella Implantable Pulmonary Artery Sensor. JACC Heart Fail. 2024, 12, 785–788. [Google Scholar] [CrossRef]
- Meekers, E.; Petit, T.; Dauw, J.; Gruwez, H.; Dhont, S.; Luwel, E.; Nijst, P.; Dupont, M.; Bertrand, P.B.; Martens, P.; et al. Analysing the Accuracy of Pressure Measurements during Exercise with Pulmonary Artery Pressure Sensors—Insights from the ACTION-MEMS Study. Eur. J. Heart Fail. 2024, 26, 523–524. [Google Scholar] [CrossRef]
- Ivey-Miranda, J.B.; Wetterling, F.; Gaul, R.; Sheridan, S.; Asher, J.L.; Rao, V.S.; Maulion, C.; Mahoney, D.; Mebazaa, A.; Gray, A.P.; et al. Changes in Inferior Vena Cava Area Represent a More Sensitive Metric than Changes in Filling Pressures during Experimental Manipulation of Intravascular Volume and Tone. Eur. J. Heart Fail. 2022, 24, 455–462. [Google Scholar] [CrossRef]
- Sheridan, W.S.; Wetterling, F.; Testani, J.M.; Borlaug, B.A.; Fudim, M.; Damman, K.; Gray, A.; Gaines, P.; Poloczek, M.; Madden, S.; et al. Safety and Performance of a Novel Implantable Sensor in the Inferior Vena Cava under Acute and Chronic Intravascular Volume Modulation. Eur. J. Heart Fail. 2023, 25, 754–763. [Google Scholar] [CrossRef]
- Kalra, P.R.; Gogorishvili, I.; Khabeishvili, G.; Málek, F.; Toman, O.; Critoph, C.; Flett, A.S.; Cowburn, P.J.; Mehra, M.R.; Sheridan, W.S.; et al. First-in-Human Implantable Inferior Vena Cava Sensor for Remote Care in Heart Failure: FUTURE-HF. JACC Heart Fail. 2025, 13, 1000–1010. [Google Scholar] [CrossRef]
- Uriel, N.; Bhatt, K.; Kahwash, R.; Mcminn, T.R.; Patel, M.R.; Lilly, S.; Britton, J.R.; Corcoran, L.; Greene, B.R.; Kealy, R.M.; et al. Safety and Feasibility of an Implanted Inferior Vena Cava Sensor for Accurate Volume Assessment: FUTURE-HF2 Trial. J. Card. Fail. 2025, 31, 369–376. [Google Scholar] [CrossRef]
- Biegus, J.; Borlaug, B.A.; Testani, J.M. Congestion and Decongestion Assessment in Heart Failure: Pressure, Volume, or Both? JACC Heart Fail. 2023, 11, 1152–1156. [Google Scholar] [CrossRef]
- Takei, M.; Harada, K.; Shiraishi, Y.; Matsuda, J.; Iwasaki, Y.; Yamamoto, Y.; Matsushita, K.; Miyazaki, T.; Miyamoto, T.; Iida, K.; et al. Delay in Seeking Treatment before Emergent Heart Failure Readmission and Its Association with Clinical Phenotype. J. Intensive Care 2020, 8, 65. [Google Scholar] [CrossRef]
- Zinno, C.; Agnesi, F.; D’Alesio, G.; Dushpanova, A.; Brogi, L.; Camboni, D.; Bernini, F.; Terlizzi, D.; Casieri, V.; Gabisonia, K.; et al. Implementation of an Epicardial Implantable MEMS Sensor for Continuous and Real-Time Postoperative Assessment of Left Ventricular Activity in Adult Minipigs over a Short- and Long-Term Period. APL Bioeng. 2024, 8, 026102. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, J.; Zou, S.; Huang, K.; Li, W.; Elhousseini Hilal, M.; Zhu, M.; Fu, Y.; Khoo, B.L. Smart Vascular Grafts with Integrated Flow Biosensors for Hemodynamic Real-Time Monitoring and Vascular Healthcare. ACS Nano 2025, 19, 7661–7676. [Google Scholar] [CrossRef]
- Wetterling, F.; Fryc, B.; Facchi, I.; Okabe, T.; Heist, E.K.; Fudim, M. Subcutaneous Sensors for Monitoring Congestion and to Reduce Heart Failure Hospitalizations—A Viable Middle Ground between Deep Implantable Intravascular Monitoring Devices and Wearable Technologies? Heart Fail. Rev. 2025, 30, 1113–1122. [Google Scholar] [CrossRef]
- Rogers, J.D.; Sanders, P.; Piorkowski, C.; Sohail, M.R.; Anand, R.; Crossen, K.; Khairallah, F.S.; Kaplon, R.E.; Stromberg, K.; Kowal, R.C. In-Office Insertion of a Miniaturized Insertable Cardiac Monitor: Results from the Reveal LINQ In-Office 2 Randomized Study. Heart Rhythm. 2017, 14, 218–224. [Google Scholar] [CrossRef]
- Sanders, P.; Piorkowski, C.; Kragten, J.A.; Goode, G.K.; Raj, S.R.; Dinh, T.; Sohail, M.R.; Anand, R.; Moya-Mitjans, A.; Franco, N.; et al. Safety of In-Hospital Insertable Cardiac Monitor Procedures Performed Outside the Traditional Settings: Results from the Reveal LINQ in-Office 2 International Study. BMC Cardiovasc. Disord. 2019, 19, 132. [Google Scholar] [CrossRef]
- Tomson, T.T.; Passman, R. The Reveal LINQ Insertable Cardiac Monitor. Expert. Rev. Med. Devices 2015, 12, 7–18. [Google Scholar] [CrossRef]
- Sanders, P.; Pürerfellner, H.; Pokushalov, E.; Sarkar, S.; Di Bacco, M.; Maus, B.; Dekker, L.R.C. Performance of a New Atrial Fibrillation Detection Algorithm in a Miniaturized Insertable Cardiac Monitor: Results from the Reveal LINQ Usability Study. Heart Rhythm. 2016, 13, 1425–1430. [Google Scholar] [CrossRef]
- Reiffel, J.A.; Verma, A.; Kowey, P.R.; Halperin, J.L.; Gersh, B.J.; Wachter, R.; Pouliot, E.; Ziegler, P.D.; for the REVEAL AF Investigators. Incidence of Previously Undiagnosed Atrial Fibrillation Using Insertable Cardiac Monitors in a High-Risk Population: The REVEAL AF Study. JAMA Cardiol. 2017, 2, 1120–1127. [Google Scholar] [CrossRef]
- Zile, M.R.; Costanzo, M.R.R.; Ippolito, E.M.; Zhang, Y.; Stapleton, R.; Sadhu, A.; Jimenez, J.; Hobbs, J.; Sharma, V.; Warman, E.N.; et al. INTERVENE-HF: Feasibility Study of Individualized, Risk Stratification-Based, Medication Intervention in Patients with Heart Failure with Reduced Ejection Fraction. ESC Heart Fail. 2021, 8, 849–860. [Google Scholar] [CrossRef]
- Zile, M.R.; Kahwash, R.; Sarkar, S.; Koehler, J.; Zielinski, T.; Mehra, M.R.; Fonarow, G.C.; Gulati, S.; Butler, J. A Novel Heart Failure Diagnostic Risk Score Using a Minimally Invasive Subcutaneous Insertable Cardiac Monitor. JACC Heart Fail. 2024, 12, 182–196. [Google Scholar] [CrossRef]
- Kahwash, R.; Zile, M.R.; Chalasani, P.; Bertolet, B.; Gravelin, L.; Khan, M.S.; Wehking, J.; Van Dorn, B.; Sarkar, S.; Laager, V.; et al. Personalized Intervention Strategy Based on a Risk Score Generated From Subcutaneous Insertable Cardiac Monitor: Results From Phase 1 of ALLEVIATE-HF. J. Am. Heart Assoc. 2024, 13, e035501. [Google Scholar] [CrossRef]
- Butler, J.; Kahwash, R.; Khan, M.S.; Gerritse, B.; Laechelt, A.; Wehking, J.; Sarkar, S.; van Dorn, B.; Laager, V.; Patel, N.; et al. Continuous Risk Monitoring and Management of Heart Failure: Rationale and Design of the ALLEVIATE-HF Trial. Eur. J. Heart Fail. 2025, 27, 697–706. [Google Scholar] [CrossRef]
- Fareh, S.; Nardi, S.; Argenziano, L.; Diamante, A.; Scala, F.; Mandurino, C.; Magnocavallo, M.; Poggio, L.; Scarano, M.; Gianfrancesco, D.; et al. Implantation of a Novel Insertable Cardiac Monitor: Preliminary Multicenter Experience in Europe. J. Interv. Card. Electrophysiol. 2024, 67, 2117–2125. [Google Scholar] [CrossRef]
- Richards, M.; Mahajan, D.; Simon, T.; Kupfer, M.; Rajan, A.; Herrmann, K.; Rogers, J.D.; Garner, J.; Pokorney, S. Interim Evaluation of Insertable Cardiac Monitor Signal Quality in the LUX-Dx PERFORM Study. Europace 2023, 25, euad122.612. [Google Scholar] [CrossRef]
- Richards, M.; Stolen, C.; Simon, T.; Stoltz, T.; Manyam, H.; Dukes, J.W.; Bavikati, V.; Rosman, J.; Rogers, J.D.; Garner, J. Evaluation of Insertable Cardiac Monitor Placement and Safety in the LUX-Dx PERFORM Study. Europace 2023, 25, euad122.654. [Google Scholar] [CrossRef]
- Stolen, C.; Rosman, J.; Manyam, H.; Kwan, B.; Kelly, J.; Perschbacher, D.; Garner, J.; Richards, M. Preliminary Results from the LUX-Dx Insertable Cardiac Monitor Remote Programming and Performance (LUX-Dx PERFORM) Study. Clin. Cardiol. 2023, 46, 100–107. [Google Scholar] [CrossRef]
- Wan, E.Y.; Perschbacher, D.; Mahajan, D.; Li, Y.; Kupfer, M.; Herrmann, K.; Schwartz, T.; Solomon, S.D. Detection Of New Atrial Fibrillation In Patients With Heart Failure By An Insertable Cardiac Monitor: Preliminary Analysis Of The LUX-Dx TRENDS Study. Heart Rhythm. 2025, 22, S311–S312. [Google Scholar] [CrossRef]
- Bang, J. Subcutaneously Insertable Cardiac Monitor for Atrial Fibrillation and HF Using ECG and Phonocardiography as Biomarkers. JACC Basic. Transl. Sci. 2023, 8, 380–382. [Google Scholar] [CrossRef]
- Fryc, B.; Facchi, I.; Cikes, M.; Anic, A.; Neuzil, P.; Reddy, V.; Fudim, M.; Kridner, D.; Bang, J.; Wetterling, F. Visualizing Cardiac Motion Using Subcutaneously Measured Electrocardiography and Three-Axis Acceleration: Day-to-Day Comparability and Event-Related Changes in Congestive Heart Failure Patients; IEEE: Copenhaguen, Denmark, 2025. [Google Scholar]
- Burkhoff, D.; Bailey, G.; Gimbel, J.R. Characterization of Cardiac Acoustic Biomarkers in Patients with Heart Failure. Ann. Noninvasive Electrocardiol. 2020, 25, e12717. [Google Scholar] [CrossRef]
- Boehmer, J.P.; Hariharan, R.; Devecchi, F.G.; Smith, A.L.; Molon, G.; Capucci, A.; An, Q.; Averina, V.; Stolen, C.M.; Thakur, P.H.; et al. A Multisensor Algorithm Predicts Heart Failure Events in Patients With Implanted Devices. JACC Heart Fail. 2017, 5, 216–225. [Google Scholar] [CrossRef]
- Naraen, A.; Duvva, D.; Rao, A. Heart Failure and Cardiac Device Therapy: A Review of Current National Institute of Health and Care Excellence and European Society of Cardiology Guidelines. Arrhythm. Electrophysiol. Rev. 2023, 12, e21. [Google Scholar] [CrossRef]
- Ledesma Oloriz, D.; García Iglesias, D.; di Massa Pezzutti, R.A.; López Iglesias, F.; Rubín López, J.M. Comparative Diagnostic Efficacy of HeartLogic and TriageHF Algorithms in Remote Monitoring of Heart Failure: A Cohort Study. J. Cardiovasc. Dev. Dis. 2025, 12, 209. [Google Scholar] [CrossRef]
- Gula, L.J.; Wells, G.A.; Yee, R.; Koehler, J.; Sarkar, S.; Sharma, V.; Skanes, A.C.; Sapp, J.L.; Redfearn, D.P.; Manlucu, J.; et al. A Novel Algorithm to Assess Risk of Heart Failure Exacerbation Using ICD Diagnostics: Validation from RAFT. Heart Rhythm. 2014, 11, 1626–1631. [Google Scholar] [CrossRef]
- Conraads, V.M.; Tavazzi, L.; Santini, M.; Oliva, F.; Gerritse, B.; Yu, C.-M.; Cowie, M.R. Sensitivity and Positive Predictive Value of Implantable Intrathoracic Impedance Monitoring as a Predictor of Heart Failure Hospitalizations: The SENSE-HF Trial. Eur. Heart J. 2011, 32, 2266–2273. [Google Scholar] [CrossRef]
- Böhm, M.; Drexler, H.; Oswald, H.; Rybak, K.; Bosch, R.; Butter, C.; Klein, G.; Gerritse, B.; Monteiro, J.; Israel, C.; et al. Fluid Status Telemedicine Alerts for Heart Failure: A Randomized Controlled Trial. Eur. Heart J. 2016, 37, 3154–3163. [Google Scholar] [CrossRef]
- Cowie, M.R.; Sarkar, S.; Koehler, J.; Whellan, D.J.; Crossley, G.H.; Tang, W.H.W.; Abraham, W.T.; Sharma, V.; Santini, M. Development and Validation of an Integrated Diagnostic Algorithm Derived from Parameters Monitored in Implantable Devices for Identifying Patients at Risk for Heart Failure Hospitalization in an Ambulatory Setting. Eur. Heart J. 2013, 34, 2472–2480. [Google Scholar] [CrossRef]
- Virani, S.A.; Sharma, V.; McCann, M.; Koehler, J.; Tsang, B.; Zieroth, S. Prospective Evaluation of Integrated Device Diagnostics for Heart Failure Management: Results of the TRIAGE-HF Study. ESC Heart Fail. 2018, 5, 809–817. [Google Scholar] [CrossRef]
- Zile, M.R.; Koehler, J.; Sarkar, S.; Butler, J. Prediction of Worsening Heart Failure Events and All-Cause Mortality Using an Individualized Risk Stratification Strategy. ESC Heart Fail. 2020, 7, 4277–4289. [Google Scholar] [CrossRef]
- Ahmed, F.Z.; Sammut-Powell, C.; Martin, G.P.; Callan, P.; Cunnington, C.; Kahn, M.; Kale, M.; Weldon, T.; Harwood, R.; Fullwood, C.; et al. Association of a Device-Based Remote Management Heart Failure Pathway with Outcomes: TriageHF Plus Real-World Evaluation. ESC Heart Fail. 2024, 11, 2637–2647. [Google Scholar] [CrossRef]
- García Iglesias, D.; Oloriz, D.L.; Pérez Diez, D.; Calvo Cuervo, D.; Álvarez Velasco, R.; Junco-Vicente, A.; Rubín López, J.M. Triage-HF Validation in Heart Failure Clinical Practice: Importance of Episode Duration. Diagnostics 2025, 15, 1476. [Google Scholar] [CrossRef] [PubMed]
- Heggermont, W.A.; Van Bockstal, K. HeartlogicTM: Ready for Prime Time? Expert. Rev. Med. Devices 2022, 19, 107–111. [Google Scholar] [CrossRef]
- Gardner, R.S.; Singh, J.P.; Stancak, B.; Nair, D.G.; Cao, M.; Schulze, C.; Thakur, P.H.; An, Q.; Wehrenberg, S.; Hammill, E.F.; et al. HeartLogic Multisensor Algorithm Identifies Patients During Periods of Significantly Increased Risk of Heart Failure Events. Circ. Heart Fail. 2018, 11, e004669. [Google Scholar] [CrossRef]
- Hernandez, A.F.; Albert, N.M.; Allen, L.A.; Ahmed, R.; Averina, V.; Boehmer, J.P.; Cowie, M.R.; Chien, C.V.; Galvao, M.; Klein, L.; et al. Multiple cArdiac seNsors for mAnaGEment of Heart Failure (MANAGE-HF)—Phase I Evaluation of the Integration and Safety of the HeartLogic Multisensor Algorithm in Patients With Heart Failure. J. Card. Fail. 2022, 28, 1245–1254. [Google Scholar] [CrossRef]
- Singh, J.P.; Wariar, R.; Ruble, S.; Kwan, B.; Averina, V.; Stolen, C.M.; Boehmer, J. Prediction of Heart Failure Events With the HeartLogic Algorithm: Real-World Validation. J. Card. Fail. 2024, 30, 509–512. [Google Scholar] [CrossRef]
- Sauer, A.J.; Stolen, C.M.; Shute, J.B.; Kwan, B.; Wariar, R.; Ruble, S.B.; Gardner, R.S.; Boehmer, J.P. Results of the Precision Event Monitoring for Patients With Heart Failure Using HeartLogic Study (PREEMPT-HF). JACC Heart Fail. 2025, 13, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Gardner, R.S.; Hariharan, R.; Nair, D.G.; Schulze, C.; An, Q.; Thakur, P.H.; Kwan, B.; Zhang, Y.; Boehmer, J.P. Ambulatory Monitoring of Heart Sounds via an Implanted Device Is Superior to Auscultation for Prediction of Heart Failure Events. J. Card. Fail. 2020, 26, 151–159. [Google Scholar] [CrossRef]
- Connaire, J.J.; Sundermann, M.L.; Perumal, R.; Herzog, C.A. A Novel Radiofrequency Device to Monitor Changes in Pulmonary Fluid in Dialysis Patients. Med. Devices Evid. Res. 2020, 13, 377–383. [Google Scholar] [CrossRef]
- Wheatley-Guy, C.M.; Sajgalik, P.; Cierzan, B.S.; Wentz, R.J.; Johnson, B.D. Validation of Radiofrequency Determined Lung Fluid Using Thoracic CT: Findings in Acute Decompensated Heart Failure Patients. IJC Heart Vasc. 2020, 30, 100645. [Google Scholar] [CrossRef]
- Boehmer, J.P.; Cremer, S.; Abo-Auda, W.S.; Stokes, D.R.; Hadi, A.; McCann, P.J.; Burch, A.E.; Bonderman, D. Impact of a Novel Wearable Sensor on Heart Failure Rehospitalization. JACC Heart Fail. 2024, 12, 2011–2022. [Google Scholar] [CrossRef]
- Selvaraj, N.; Nallathambi, G.; Moghadam, R.; Aga, A. Fully Disposable Wireless Patch Sensor for Continuous Remote Patient Monitoring. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1632–1635. [Google Scholar]
- Rajbhandary, P.L.; Nallathambi, G. Feasibility of Continuous Monitoring of Core Body Temperature Using Chest-Worn Patch Sensor. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4652–4655. [Google Scholar]
- Stehlik, J.; Schmalfuss, C.; Bozkurt, B.; Nativi-Nicolau, J.; Wohlfahrt, P.; Wegerich, S.; Rose, K.; Ray, R.; Schofield, R.; Deswal, A.; et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization. Circ. Heart Fail. 2020, 13, e006513. [Google Scholar] [CrossRef]
- Khandwalla, R.M.; Birkeland, K.; Zimmer, R.; Banet, M.; Pede, S.; Kedan, I. Predicting Heart Failure Events with Home Monitoring: Use of a Novel, Wearable Necklace to Measure Stroke Volume, Cardiac Output and Thoracic Impedance. J. Am. Coll. Cardiol. 2016, 67, 1296. [Google Scholar] [CrossRef]
- Kohn, M.S.; Haggard, J.; Kreindler, J.; Birkeland, K.; Kedan, I.; Zimmer, R.; Khandwalla, R. Implementation of a Home Monitoring System for Heart Failure Patients: A Feasibility Study. JMIR Res. Protoc. 2017, 6, e5744. [Google Scholar] [CrossRef]
- Amir, O.; Rappaport, D.; Zafrir, B.; Abraham, W.T. A Novel Approach to Monitoring Pulmonary Congestion in Heart Failure: Initial Animal and Clinical Experiences Using Remote Dielectric Sensing Technology. Congest. Heart Fail. 2013, 19, 149–155. [Google Scholar] [CrossRef]
- Amir, O.; Azzam, Z.S.; Gaspar, T.; Faranesh-Abboud, S.; Andria, N.; Burkhoff, D.; Abbo, A.; Abraham, W.T. Validation of Remote Dielectric Sensing (ReDSTM) Technology for Quantification of Lung Fluid Status: Comparison to High Resolution Chest Computed Tomography in Patients with and without Acute Heart Failure. Int. J. Cardiol. 2016, 221, 841–846. [Google Scholar] [CrossRef]
- Uriel, N.; Sayer, G.; Imamura, T.; Rodgers, D.; Kim, G.; Raikhelkar, J.; Sarswat, N.; Kalantari, S.; Chung, B.; Nguyen, A.; et al. Relationship Between Noninvasive Assessment of Lung Fluid Volume and Invasively Measured Cardiac Hemodynamics. J. Am. Heart Assoc. 2018, 7, e009175. [Google Scholar] [CrossRef]
- Olesen, A.S.O.; Miger, K.; Fabricius-Bjerre, A.; Sandvang, K.D.; Kjesbu, I.E.; Sajadieh, A.; Høst, N.; Køber, N.; Wamberg, J.; Pedersen, L.; et al. Remote Dielectric Sensing to Detect Acute Heart Failure in Patients with Dyspnoea: A Prospective Observational Study in the Emergency Department. Eur. Heart J. Open 2022, 2, oeac073. [Google Scholar] [CrossRef]
- Abraham, W.T.; Anker, S.; Burkhoff, D.; Cleland, J.; Gorodeski, E.; Jaarsma, T.; Small, R.; Lindenfeld, J.; Miller, A.; Ogenstad, S.; et al. Primary Results of the Sensible Medical Innovations Lung Fluid Status Monitor Allows Reducing Readmission Rate of Heart Failure Patients (Smile) Trial. J. Card. Fail. 2019, 25, 938. [Google Scholar] [CrossRef]
- Alvarez-Garcia, J.; Lala, A.; Rivas-Lasarte, M.; De Rueda, C.; Brunjes, D.; Lozano-Jimenez, S.; Garcia-Sebastian, C.; Mitter, S.; Remior, P.; Jimenez-Blanco Bravo, M.; et al. Remote Dielectric Sensing Before and After Discharge in Patients With ADHF. JACC Heart Fail. 2024, 12, 695–706. [Google Scholar] [CrossRef]
- Curtain, J.P.; Talebi, A.; McIntosh, A.; McConnachie, A.; O’Donnell, J.; Welsh, P.; Osmanska, J.; Lee, M.M.Y.; Sonecki, P.; Akl, T.; et al. Measuring Congestion with a Non-Invasive Monitoring Device in Heart Failure and Haemodialysis: CONGEST-HF. Eur. J. Heart Fail. 2024, 26, 1383–1392. [Google Scholar] [CrossRef]
- Böhm, A.; Lucka, J.; Jajcay, N.; Segev, A.; Jankova, J.; Kollarova, M.; Holly, O.; Sebenova Jerigova, V.; Stevkova, J.; Spilak, M.; et al. A Noninvasive System for Remote Monitoring of Left Ventricular Filling Pressures. JACC Basic Transl. Sci. 2025, 10, 256–258. [Google Scholar] [CrossRef]
- Bohm, A.; Jajcay, N.; Segev, A.; Lucka, J.; Kollarova, M.; Jankova, J.; Holly, O.; Schwarz, S.; Sebenova Jerigova, V.; Toth, S.; et al. Point-of-Care Screening for Heart Failure with Reduced Ejection Fraction Using Simple Pulse Oximetry. Eur. Heart J. 2024, 45, ehae666.954. [Google Scholar] [CrossRef]
- Yazdi, D.; Sridaran, S.; Smith, S.; Centen, C.; Patel, S.; Wilson, E.; Gillon, L.; Kapur, S.; Tracy, J.A.; Lewine, K.; et al. Noninvasive Scale Measurement of Stroke Volume and Cardiac Output Compared With the Direct Fick Method: A Feasibility Study. J. Am. Heart Assoc. 2021, 10, e021893. [Google Scholar] [CrossRef]
- Yazdi, D.; Patel, S.; Ozonat, K.; Fudim, M.; Smith, S.; Centen, C. Feasibility of a Cardiac Scale in Measuring Blood Pressure. J. Cardiovasc. Trans. Res. 2022, 15, 1212–1214. [Google Scholar] [CrossRef]
- Yazdi, D.; Centen, C.; Ozonat, K.; Smith, S.; Obert, K.; Kendziorski, S.; Horgan, M.; Sciandra, J.; Murphy, K.; Mehra, V.C. A Cardiac Scale Based Digital Intervention Showed Improved Performance versus Usual Care for Detecting Worsening Heart Failure Events. Circulation 2022, 146, A9866. [Google Scholar] [CrossRef]
- Fudim, M.; Yazdi, D.; Egolum, U.; Haghighat, A.; Kottam, A.; Sauer, A.J.; Shah, H.; Kumar, P.; Rakita, V.; Centen, C.; et al. Use of a Cardiac Scale to Predict Heart Failure Events: Design of SCALE-HF 1. Circ. Heart Fail. 2023, 16, e010012. [Google Scholar] [CrossRef]
- Fudim, M.; Egolum, U.; Haghighat, A.; Kottam, A.; Sauer, A.J.; Shah, H.; Kumar, P.; Rakita, V.; Lopes, R.D.; Centen, C.; et al. Surveillance and Alert-Based Multiparameter Monitoring to Reduce Worsening Heart Failure Events: Results From SCALE-HF 1. J. Card. Fail. 2025, 31, 661–675. [Google Scholar] [CrossRef]
- Amir, O.; Abraham, W.T.; Azzam, Z.S.; Berger, G.; Anker, S.D.; Pinney, S.P.; Burkhoff, D.; Shallom, I.D.; Lotan, C.; Edelman, E.R. Remote Speech Analysis in the Evaluation of Hospitalized Patients With Acute Decompensated Heart Failure. JACC Heart Fail. 2022, 10, 41–49. [Google Scholar] [CrossRef]
- Amir, O.; Anker, S.D.; Gork, I.; Abraham, W.T.; Pinney, S.P.; Burkhoff, D.; Shallom, I.D.; Haviv, R.; Edelman, E.R.; Lotan, C. Feasibility of Remote Speech Analysis in Evaluation of Dynamic Fluid Overload in Heart Failure Patients Undergoing Haemodialysis Treatment. ESC Heart Fail. 2021, 8, 2467–2472. [Google Scholar] [CrossRef]
- Abraham, J.D.; Abraham, W.T. Remote Monitoring in Heart Failure: Artificial Intelligence and the Use of Remote Speech Analysis to Detect Worsening Heart Failure Events. Heart Fail. Rev. 2025, 30, 985–989. [Google Scholar] [CrossRef]
- Katz, G. Implementing Value-Based Health Care in Europe: Handbook for Pioneers; EIT Health: Munich, Germany, 2020. [Google Scholar]
- Mokri, H.; Clephas, P.R.D.; de Boer, R.A.; van Baal, P.; Brugts, J.J.; Mölken, M.P.M.H.R. Cost-Effectiveness of Remote Haemodynamic Monitoring by an Implantable Pulmonary Artery Pressure Monitoring Sensor (CardioMEMS-HF System) in Chronic Heart Failure in the Netherlands. Eur. J. Heart Fail. 2024, 26, 1189–1198. [Google Scholar] [CrossRef]
- Abraham, W.T.; Adamson, P.B.; Hasan, A.; Bourge, R.C.; Pamboukian, S.V.; Aaron, M.F.; Raval, N.Y. Safety and Accuracy of a Wireless Pulmonary Artery Pressure Monitoring System in Patients with Heart Failure. Am. Heart J. 2011, 161, 558–566. [Google Scholar] [CrossRef]
- Mondritzki, T.; Boehme, P.; White, J.; Park, J.W.; Hoffmann, J.; Vogel, J.; Kolkhof, P.; Walsh, S.; Sandner, P.; Bischoff, E.; et al. Remote Left Ventricular Hemodynamic Monitoring Using a Novel Intracardiac Sensor. Circ. Cardiovasc. Interv. 2018, 11, e006258. [Google Scholar] [CrossRef]
- Gurunathan, S.; Puri, R. Battery Powered and Minimally Invasive Bi-Atrial Pressure Monitoring System to Manage Heart Failure Patients. JACC Basic Transl. Sci. 2025, 10, 264–266. [Google Scholar] [CrossRef]
- Kight, A.; Pirozzi, I.; Liang, X.; McElhinney, D.B.; Han, A.K.; Dual, S.A.; Cutkosky, M. Decoupling Transmission and Transduction for Improved Durability of Highly Stretchable, Soft Strain Sensing: Applications in Human Health Monitoring. Sensors 2023, 23, 1955. [Google Scholar] [CrossRef]
- Kight, A.; Haidar, M.; Shibata, M.; Ono, Y.; Ikeda, G.; Sharir, A.; Semproni, F.; Palagani, Y.; Taheri, S.; Han, A.K.; et al. VITALS: An Implantable Sensor Network for Postoperative Cardiac Monitoring in Heart Failure Patients. npj Biomed. Innov. 2025, 2, 15. [Google Scholar] [CrossRef]
- Marwick, T.H.; Shah, S.J.; Thomas, J.D. Myocardial Strain in the Assessment of Patients With Heart Failure: A Review. JAMA Cardiol. 2019, 4, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.M.K.; Zafar, H.; Sandy, R.; Wright, C.; Mitra, S.; Ebah, L.; Ilyas, D.; Hanumapura, P.; Sebastien, S.; Khalifa, A.; et al. A Subcutaneous Multiparameter Sensor With Integrated Interstitial Fluid Pressure Measurement for Remote Heart Failure Monitoring. JACC Basic Transl. Sci. 2023, 8, 386–388. [Google Scholar] [CrossRef]
- Zafar, H.; Passman, J.; Sandy, R.; Wright, C.; Wright, F.; Evans, H.; Hanumapura, P.; Sebastian, S.; Ebah, L.; Khalifa, A.; et al. Development of a Minimally Invasive Technique to Measure the Interstitial Fluid Pressure for Remote Monitoring of Heart Failure. Eur. Heart J. 2024, 45, ehae666.3753. [Google Scholar] [CrossRef]
- Guyton, A.C.; Frank, M.; Abernathy, B. A Concept of Negative Interstitial Pressure Based on Pressures in Implanted Perforated Capsules. Circ. Res. 1963, 12, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, A.M. Continuous Molecular Monitoring for Precision Heart Failure Care. JACC Basic Transl. Sci. 2025, 10, 262–263. [Google Scholar] [CrossRef]
- Van den Eynde, J.; Verbrugge, F.H. Water and Electrolyte Homeostasis during Decongestion in Heart Failure. Eur. J. Heart Fail. 2025, Online ahead of print. [Google Scholar] [CrossRef]
- Biegus, J.; Pagnesi, M.; Davison, B.; Ponikowski, P.; Mebazaa, A.; Cotter, G. High-Intensity Care for GDMT Titration. Heart Fail. Rev. 2024, 29, 1065–1077. [Google Scholar] [CrossRef]
- Kessler, D. Monitoring Peripheral Edema for Heart Failure Management. Bodiguide Inc. Available online: https://bodiguide.com/continuous-monitoring-in-heart-failure-management/ (accessed on 15 October 2025).
- Fudim, M.; Kessler, D. Measuring What Really Matters: A Comparison Of Continuous Ankle Circumference Monitoring And Body Weight In The Management Of Worsening Heart Failure. J. Card. Fail. 2023, 29, 564. [Google Scholar] [CrossRef]
- Mace, M.I. A Novel Multisensor Device for Absolute Intracardiac Pressure Measurement, Detection, and Management of Heart Failure. JACC Basic Transl. Sci. 2023, 8, 377–379. [Google Scholar] [CrossRef]
- Alvis, B.D.; McCallister, R.; Polcz, M.; Lima, J.L.O.; Sobey, J.H.; Brophy, D.R.; Miles, M.; Brophy, C.; Hocking, K. Non-Invasive Venous Waveform Analysis (NIVA) for Monitoring Blood Loss in Human Blood Donors and Validation in a Porcine Hemorrhage Model. J. Clin. Anesth. 2020, 61, 109664. [Google Scholar] [CrossRef]
- Alvis, B.D.; Polcz, M.; Huston, J.H.; Hopper, T.S.; Leisy, P.; Mishra, K.; Eagle, S.S.; Brophy, C.M.; Lindenfeld, J.; Hocking, K.M. Observational Study of Noninvasive Venous Waveform Analysis to Assess Intracardiac Filling Pressures During Right Heart Catheterization. J. Card. Fail. 2020, 26, 136–141. [Google Scholar] [CrossRef]
- Alvis, B.; Huston, J.; Schmeckpeper, J.; Polcz, M.; Case, M.; Harder, R.; Whitfield, J.S.; Spears, K.G.; Breed, M.; Vaughn, L.; et al. Noninvasive Venous Waveform Analysis Correlates With Pulmonary Capillary Wedge Pressure and Predicts 30-Day Admission in Patients With Heart Failure Undergoing Right Heart Catheterization. J. Card. Fail. 2022, 28, 1692–1702. [Google Scholar] [CrossRef]
- Alvis, B.D.; Wervey, D.; Pein, R.; Wise, E.; Sobey, J.; Mede, A.; Vaughn, L.; Case, M.; Breed, M.; Priyanka, J.; et al. A Prospective, Observational Study of Non-Invasive Venous Waveform Analysis (NIVA) for the Detection of Acute Low Volume Blood Loss in Humans. J. Clin. Anesth. 2025, 105, 111902. [Google Scholar] [CrossRef]
- Shochat, M.; Charach, G.; Meyler, S.; Meisel, S.; Weintraub, M.; Mengeritsky, G.; Mosseri, M.; Rabinovich, P. Prediction of Cardiogenic Pulmonary Edema Onset by Monitoring Right Lung Impedance. Intensive Care Med. 2006, 32, 1214–1221. [Google Scholar] [CrossRef]
- Shochat, M.K.; Shotan, A.; Blondheim, D.S.; Kazatsker, M.; Dahan, I.; Asif, A.; Rozenman, Y.; Kleiner, I.; Weinstein, J.M.; Frimerman, A.; et al. Non-Invasive Lung IMPEDANCE-Guided Preemptive Treatment in Chronic Heart Failure Patients: A Randomized Controlled Trial (IMPEDANCE-HF Trial). J. Card. Fail. 2016, 22, 713–722. [Google Scholar] [CrossRef]
- Shochat, M.; Fudim, M.; Shotan, A.; Blondheim, D.S.; Kazatsker, M.; Dahan, I.; Asif, A.; Rozenman, Y.; Kleiner, I.; Weinstein, J.M.; et al. Prediction of Readmissions and Mortality in Patients with Heart Failure: Lessons from the IMPEDANCE-HF Extended Trial. ESC Heart Fail. 2018, 5, 788–799. [Google Scholar] [CrossRef]
- Aamodt, I.T.; Lycholip, E.; Celutkiene, J.; Lueder, T.v.; Atar, D.; Falk, R.S.; Hellesø, R.; Jaarsma, T.; Strömberg, A.; Lie, I. Self-Care Monitoring of Heart Failure Symptoms and Lung Impedance at Home Following Hospital Discharge: Longitudinal Study. J. Med. Internet Res. 2020, 22, e15445. [Google Scholar] [CrossRef]
- Shochat, M.; Shotan, A.; Blondheim, D.S.; Kazatsker, M.; Dahan, I.; Asif, A.; Shochat, I.; Frimerman, A.; Rozenman, Y.; Meisel, S.R. Derivation of Baseline Lung Impedance in Chronic Heart Failure Patients: Use for Monitoring Pulmonary Congestion and Predicting Admissions for Decompensation. J. Clin. Monit. Comput. 2015, 29, 341–349. [Google Scholar] [CrossRef]
- Erne, P. Beyond Auscultation - Acoustic Cardiography in the Diagnosis and Assessment of Cardiac Disease. Swiss Med. Wkly. 2008, 138, 439. [Google Scholar] [CrossRef]
- Chao, T.-F.; Sung, S.-H.; Cheng, H.-M.; Yu, W.-C.; Wang, K.-L.; Huang, C.-M.; Chen, C.-H. Electromechanical Activation Time in the Prediction of Discharge Outcomes in Patients Hospitalized with Acute Heart Failure Syndrome. Intern. Med. 2010, 49, 2031–2037. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Fang, F.; Shang, Q.; Sun, J.P.; Sanderson, J.E.; Yu, C.M. Prognostic Value of Acoustic Cardiography in Patients with Chronic Heart Failure. Int. J. Cardiol. 2016, 219, 121–126. [Google Scholar] [CrossRef]
- Sung, S.-H.; Huang, C.-J.; Cheng, H.-M.; Huang, W.-M.; Yu, W.-C.; Chen, C.-H. Effect of Acoustic Cardiography-Guided Management on 1-Year Outcomes in Patients With Acute Heart Failure. J. Card. Fail. 2020, 26, 142–150. [Google Scholar] [CrossRef]
- Fudim, M.; Mirro, M.; Cheng, H.-M. Audicor Remote Patient Monitoring: FDA Breakthrough Device and Technology for Heart Failure Management. JACC Basic Transl. Sci. 2022, 7, 313–315. [Google Scholar] [CrossRef]
- Chausiaux, O.; Williams, G.; Nieznański, M.; Bagdu, A.; Downer, P.; Keyser, M.; Husheer, S. Evaluation of the Accuracy of a Video and AI Solution to Measure Lower Leg and Foot Volume. Med. Devices Evid. Res. 2021, 14, 105–118. [Google Scholar] [CrossRef]
- Dewhurst, M.; Hann, K.; Matthew, I.; Gallagher, L.; McCafferty, G.; McKie, H.; Pick, S.; Hughes, D.; Clayton, L.; Nicolson, W.; et al. Assessing the Heartfelt Device’s Predictive Value in Heart Failure Management: Findings from the Multicenter FOOT Trial (UK). Heart Lung 2024, 68, 383–385. [Google Scholar] [CrossRef]
- Murugappan, T.; Raut, R. Enhancing Home Monitoring of Patients With Heart Failure: Primary Care Experience With an Autonomous Foot-Measuring Device. Home Health Care Manag. Pract. 2024, 36, 31–39. [Google Scholar] [CrossRef]
- Harrington, N.; Bui, Q.M.; Wei, Z.; Hernandez-Pacheco, B.; DeYoung, P.N.; Wassell, A.; Duwaik, B.; Desai, A.S.; Bhatt, D.L.; Agnihotri, P.; et al. Passive Longitudinal Weight and Cardiopulmonary Monitoring in the Home Bed. Sci. Rep. 2021, 11, 24376. [Google Scholar] [CrossRef]
- Harrington, N.; Barba, D.T.; Bui, Q.M.; Wassell, A.; Khurana, S.; Rubarth, R.B.; Sung, K.; Owens, R.L.; Agnihotri, P.; King, K.R. Nocturnal Respiratory Rate Dynamics Enable Early Recognition of Impending Hospitalizations. medRxiv 2022, Preprint. [Google Scholar] [CrossRef]
- Torres Barba, D.; Harrington, N.; Agnihotri, P.; King, K. Detection of an Acute Pulmonary Embolism in the Home Bed Using Adherence-Independent Home Monitoring. Circulation 2022, 146, A15880. [Google Scholar] [CrossRef]
Location of Sensing Element(s) | ||
---|---|---|
Invasive | Intracardiac | Inside cardiac chambers or walls. |
Intravascular | Inside blood vessels. | |
Epicardial | On the outer surface of the heart. | |
Perivascular | On the outer surface of blood vessels, outside lumen. | |
Subcutaneous | Beneath the skin, neither in vessels nor heart. | |
Trans-compartmental 1 | Spanning two or more anatomically distant compartments. | |
Non-invasive | Cutaneous | In contact with the skin. |
Superficial | On the body, but not in contact with tissues. | |
Proximal | Near the body, completely separated from tissues. |
Device | Sub-Group | Directly Measured Parameters | Derived Parameters |
---|---|---|---|
HeartPOD® (Abbott, Illinois City, IL, USA) | Intracardiac | LAP, temperature, intracardiac EGM | - |
LV-MEMS (Abbott, Illinois City, IL, USA) | Intracardiac | LVP | Contractility, HR, relaxation, time constant of relaxation |
PatHFinder (Synkopi, Inc., Palo Alto, CA, USA) | Intracardiac | LAP, RAP | HR, actimetry |
Titan™ (Integrated Sensing Systems, Inc., Ypsilanti, MI, USA) | Intracardiac | LAP or LVP | - |
V-LAP™ System (Vectorious Medical Technologies, Ltd., Tel Aviv, Israel) | Intracardiac | LAP | - |
CardioMEMS™ HF System (Abbott, Illinois City, IL, USA) | Intravascular | PAP | - |
Cordella™ System (Edwards Lifesciences Corp., Irvine, CA, USA) | Intravascular | PAP, [complemented with weight, BP, HR, and SpO2] | - |
FIRE1 System, now NORM™ System (Foundry Innovation & Research 1, Ltd., Dublin, Ireland) | Intravascular | IVC area | IVC collapsibility |
Smart stent (N/A) | Intravascular | IAP | Flow changes, HR |
Smart epicardial patch graft (N/A) | Epicardial | Uniaxial univentricular strain | HR, potentially LVP |
VITALS (N/A) | Epicardial, Perivascular | Multiaxial biventricular strain, aortic strain | Aortic pressure |
Smart vascular graft (N/A) | Perivascular | Carotid strain | HR, respiratory rate |
Future Cardia™ ICM System (Future Cardia, Inc., Houston, TX, USA) | Subcutaneous | Single-lead subcutaneous ECG, orientation, vibrations (mechanical, acoustic) | Contractility, heart/lung sounds, actimetry, HR, AF, respiratory rate |
IFPx System (NXT Biomedical, LLC., Irvine, CA, USA) | Subcutaneous | Single-lead subcutaneous ECG, IFP, temperature, orientation | Respiratory rate, AF, actimetry, HR |
LUX-Dx™ ICM (Boston Scientific Corp., Marlborough, MA, USA) | Subcutaneous | Single-lead subcutaneous ECG, additional parameters are investigational | AF |
Reveal LINQ™ ICM (Medtronic, Inc., Minneapolis, MN, USA) | Subcutaneous | Single-lead subcutaneous ECG, subcutaneous impedance, orientation | Respiratory rate, AF, actimetry, HR |
HF Monitor (Adaptyx Biosciences, Inc., Menlo Park, CA, USA) | Subcutaneous, Cutaneous | NT-proBNP, potassium, sodium, creatinine, urea | - |
HeartLogic™-enabled CIEDs (Boston Scientific Corp., Marlborough, MA, USA) | Trans-compartmental | Intracardiac EGM, intrathoracic impedance | Respiratory rate, HR, actimetry, heart sounds |
TriageHF™-enabled CIEDs (Medtronic, Inc., Minneapolis, MN, USA) | Trans-compartmental | Intracardiac EGM, intrathoracic impedance | Lung fluid content, actimetry, AF, HR |
Acorai Heart Monitor (Acorai AB, Helsingborg, Sweden) | Cutaneous | Single-lead ECG, vibrations (mechanical), peripheral arterial pulsations | Heart sounds, PAP |
Audicor® Remote Patient Monitoring (Inovise Medical, Inc., Beaverton, OR, USA) | Cutaneous | Single-lead ECG, vibrations (acoustic) | Electromechanical activation time, heart sounds |
BodiGuide Edema Monitor (BodiGuide, Inc., Bellevue, WA, USA) | Cutaneous | Ankle circumference, orientation | Lower-leg volume, actimetry |
Bodyport Cardiac Scale (Bodyport, Inc., San Francisco, CA, USA) | Cutaneous | Single-lead ECG, weight, impedance plethysmography, vibrations (mechanical) | HR, CO, stroke volume |
CoVa™ Monitoring System (Baxter Healthcare Corp., Deerfield, IL, USA) | Cutaneous | Single-lead ECG, thoracic impedance, temperature, orientation | HR, respiratory rate |
Edema Guard Monitor (CardioSet Medical, Ltd., Tel Aviv, Israel) | Cutaneous | Lung impedance | Lung fluid content |
NIVAHF (VoluMetrix, LLC., Nashville, TN, USA) | Cutaneous | Peripheral venous waveforms | PCWP |
Seerlinq® (Seerlinq, Ltd., Trnava, Slovakia) | Cutaneous | Peripheral arterial pulsations | Diastolic reserve index |
Sensinel™ Cardiopulmonary Management System (Analog Devices, Inc., Norwood, MA, USA) | Cutaneous | Thoracic impedance, single-lead ECG, orientation, temperature, vibrations (acoustic) | Tidal volume, heart sounds, respiratory rate, HR |
VitalPatch® (VitalConnect, Inc., San Jose, CA, USA) | Cutaneous | Single-lead ECG, thoracic impedance, temperature, orientation | Actimetry, HR, respiratory rate, AF |
Zoll Heart Failure Management System (Zoll Medical Corp., Chelmsford, MA, USA) | Cutaneous | Dielectric properties of thorax, single-lead ECG, orientation | HR, respiratory rate, actimetry, lung fluid content |
ReDS™ Wearable System (Sensible Medical Innovations, Ltd., Netanya, Israel) | Superficial | Dielectric properties of thorax | Lung fluid content |
BedScales (Nightingale Labs Corp., San Francisco, CA, USA) | Proximal | Weight shifts, vibrations (mechanical) | Respiratory rate, HR |
HearO™ (Cordio Medical, Ltd., Tel Aviv, Israel) | Proximal | Voice recordings | Speech measures (five in total, not disclosed) |
Heartfelt Device (Heartfelt Technologies, Ltd., Cambridge, UK) | Proximal | Lower-leg images | Lower-leg volume |
Device | Taxonomic Sub-Group | Core Idea(s) | Latest In-Human Research Outcome(s) | References |
---|---|---|---|---|
HeartPOD® (Abbott, Illinois City, IL, USA) | Intracardiac | LAP monitoring, complemented with signs | 41% hospitalization reduction (1 year); 44% mortality reduction (2 years) | [16,19,20] |
Titan™ (Integrated Sensing Systems, Inc., Ypsilanti, MI, USA) | Intracardiac | LVP or LAP monitoring | The device is safe and accurate | [26] |
V-LAP™ System (Vectorious Medical Technologies, Ltd., Tel Aviv, Israel) | Intracardiac | LAP monitoring | The device is safe and accurate; shows potential for patient self-management | [22,23,24] |
CardioMEMS™ HF System (Abbott, Illinois City, IL, USA) | Intravascular | PAP monitoring | 28–69% hospitalization reduction (depending on geography, 1 year); 1.8% of adverse event rate | [34,35,36,37,38,39,40,41] |
Cordella™ System (Edwards Lifesciences Corp., Irvine, CA, USA) | Intravascular | PAP monitoring, complemented with signs | 49% reduction in hospitalization and mortality rate (composite, 1 year) | [47,48] |
FIRE1 System, now NORM™ System (Foundry Innovation & Research 1, Ltd., Dublin, Ireland) | Intravascular | IVC monitoring | The device is safe and accurate | [53,54] |
Future Cardia™ ICM System (Future Cardia, Inc., Houston, TX, USA) | Subcutaneous | Multiparametric monitoring with focus on heart sounds | - | - |
LUX-Dx™ ICM (Boston Scientific Corp., Marlborough, MA, USA) | Subcutaneous | Multiparametric monitoring (details TBD) | - | - |
Reveal LINQ™ ICM (Medtronic, Inc., Minneapolis, MN, USA) | Subcutaneous | Multiparametric monitoring | 80% symptomatic resolution upon intervention (~1 year); no intervention-related adverse events; prediction of HF event with 68% sensitivity and a false positive rate of 1.5 per patient-year | [66,67] |
HeartLogic™-enabled CIEDs (Boston Scientific Corp., Marlborough, MA, USA) | Trans-compartmental | Multiparametric monitoring integrated in CIEDs (quantitative) | Prediction of HF event with 78.3% sensitivity and a false positive rate of 1.18 per patient-year | [92] |
TriageHF™-enabled CIEDs (Medtronic, Inc., Minneapolis, MN, USA) | Trans-compartmental | Multiparametric monitoring integrated in CIEDs (qualitative) | 58% re-hospitalization reduction, with 47% sensitivity, and a false positive rate of 0.48 per patient-year | [85] |
Bodyport Cardiac Scale (Bodyport, Inc., San Francisco, CA, USA) | Cutaneous | Multiparametric monitoring with a focus on weight | Prediction of ~70% HF events and a false positive rate of 2.58 per patient-year | [114,115] |
CoVa™ Monitoring System (Baxter Healthcare Corp., Deerfield, IL, USA) | Cutaneous | Multiparametric monitoring with a focus on thoracic impedance | - | - |
Seerlinq® (Seerlinq, Ltd., Trnava, Slovakia) | Cutaneous | Monitoring of PAP surrogate after hemodynamic challenge | Normal and elevated LVP predicted with 93% sensitivity and 100% specificity | Data presented at HF2025 |
Sensinel™ Cardiopulmonary Management System (Analog Devices, Inc., Norwood, MA, USA) | Cutaneous | Multiparametric monitoring with a focus on heart sounds | Thoracic impedance and heart sounds correlate with weight; thoracic impedance correlates with ultrasound findings | [108] |
VitalPatch® (VitalConnect, Inc., San Jose, CA, USA) | Cutaneous | Multiparametric monitoring with a focus on thoracic impedance | Detection of HF hospitalizations with a 76% sensitivity and 85% specificity, 10 days before event | [99] |
Zoll Heart Failure Management System (Zoll Medical Corp., Chelmsford, MA, USA) | Cutaneous | Monitoring of thoracic dielectric properties | 38% re-hospitalization reduction (3 months post-discharge) | [96] |
Remote Dielectric Sensing (ReDS™) Wearable System (Sensible Medical Innovations, Ltd., Netanya, Israel) | Superficial | Monitoring of thoracic dielectric properties | 48% re-hospitalization reduction (3 months post-discharge); no significant mortality reduction; useful for in-hospital management | [106,107] |
HearO™ (Cordio Medical, Ltd., Tel Aviv, Israel) | Proximal | Monitoring of phonation patterns | Detection of HF hospitalizations with ~80% sensitivity, ~3 weeks before event (preliminary) | Data presented at HFSA 2023 |
Device | Taxonomic Sub-Group | MDRL | Approval for Commercialization | FDA Indication (Abbreviated) |
---|---|---|---|---|
HeartPOD® (Abbott, Illinois City, IL, USA) | Intracardiac | 6 | - | - |
LV-MEMS (Abbott, Illinois City, IL, USA) | Intracardiac | 4 | - | - |
PatHFinder (Synkopi, Inc., Palo Alto, CA, USA) | Intracardiac | 4 | - | - |
Titan™ (Integrated Sensing Systems, Inc., Ypsilanti, MI, USA) | Intracardiac | 5 | - | - |
V-LAP™ System (Vectorious Medical Technologies, Ltd., Tel Aviv, Israel) | Intracardiac | 6 | - | - |
CardioMEMS™ HF System (Abbott, Illinois City, IL, USA) | Intravascular | 9 (C) | FDA-approved, CE-marked | Monitoring and management of HF |
Cordella™ System (Edwards Lifesciences Corp., Irvine, CA, USA) | Intravascular | 8 (C) | FDA-approved | Monitoring and management of HF |
FIRE1 System, now NORM™ System (Foundry Innovation & Research 1, Ltd., Dublin, Ireland) | Intravascular | 6 | - | - |
Smart stent (N/A) | Intravascular | 4 | - | - |
Smart epicardial patch graft (N/A) | Epicardial | 4 | - | - |
VITALS (N/A) | Epicardial, Perivascular | 3 | - | - |
Smart vascular graft (N/A) | Perivascular | 3 | - | - |
Future Cardia™ ICM System (Future Cardia, Inc., Houston, TX, USA) | Subcutaneous | 5 | - | - |
IFPx System (NXT Biomedical, LLC., Irvine, CA, USA) | Subcutaneous | 4 | - | - |
LUX-Dx™ ICM (Boston Scientific Corp., Marlborough, MA, USA) | Subcutaneous | 6 | - | - |
Reveal LINQ™ ICM (Medtronic, Inc., Minneapolis, MN, USA) | Subcutaneous | 7 | - | - |
HF Monitor (Adaptyx Biosciences, Inc., Menlo Park, CA, USA) | Subcutaneous, Cutaneous | 3 | - | - |
HeartLogic™-enabled CIEDs (Boston Scientific Corp., Marlborough, MA, USA) | Trans-compartmental | 9 (C) | FDA-approved, CE-marked | Monitoring of HF |
TriageHF™-enabled CIEDs (Medtronic, Inc., Minneapolis, MN, USA) | Trans-compartmental | 8 (C) | FDA-approved, CE-marked | Monitoring of HF |
Acorai Heart Monitor (Acorai AB, Helsingborg, Sweden) | Cutaneous | 6 | - | - |
Audicor® Remote Patient Monitoring (Inovise Medical, Inc., Beaverton, OR, USA) | Cutaneous | 7 | - | - |
BodiGuide Edema Monitor (BodiGuide, Inc., Bellevue, WA, USA) | Cutaneous | 5 | - | - |
Bodyport Cardiac Scale (Bodyport, Inc., San Francisco, CA, USA) | Cutaneous | 8 (C) | FDA-cleared | Monitoring and management of fluid-related disorders |
CoVa™ Monitoring System (Baxter Healthcare Corp., Deerfield, IL, USA) | Cutaneous | 8 (C) | FDA-cleared | Monitoring and management of fluid-related disorders |
Edema Guard Monitor (CardioSet Medical, Ltd., Tel Aviv, Israel) | Cutaneous | 7 | - | - |
NIVAHF (VoluMetrix, LLC., Nashville, TN, USA) | Cutaneous | 6 | - | - |
Seerlinq® (Seerlinq, Ltd., Trnava, Slovakia) | Cutaneous | 8 (C) | CE-marked | - |
Sensinel™ Cardiopulmonary Management System (Analog Devices, Inc., Norwood, MA, USA) | Cutaneous | 8 (C) | FDA-cleared | Monitoring and management of cardiopulmonary conditions |
VitalPatch® (VitalConnect, Inc., San Jose, CA, USA) | Cutaneous | 8 (C) | FDA-cleared, CE-marked | Monitoring and management in general care patients |
Zoll Heart Failure Management System (Zoll Medical Corp., Chelmsford, MA, USA) | Cutaneous | 8 (C) | FDA-cleared | Monitoring and management of arrhythmias and fluid-related disorders |
Remote Dielectric Sensing (ReDS™) Wearable System (Sensible Medical Innovations, Ltd., Netanya, Israel) | Superficial | 8 (C) | FDA-cleared, CE-marked | Monitoring and management of fluid-related disorders |
BedScales (Nightingale Labs Corp., San Francisco, CA, USA) | Proximal | 6 | - | - |
HearO™ (Cordio Medical, Ltd., Tel Aviv, Israel) | Proximal | 8 (C) | CE-marked | - |
Heartfelt Device (Heartfelt Technologies, Ltd., Cambridge, UK) | Proximal | 6 (C) | FDA-exempt, CE-marked | - |
Device Name | Improving Process Efficiency | Enhancing Patient Outcomes | ||||
---|---|---|---|---|---|---|
Metric | Cost | Comment(s) | Metric | Score | Comment(s) | |
CardioMEMS™ HF System | Device cost | ~EUR 10,000.00 | Manufacturer prizing (The Netherlands, 2024) | Measurement accuracy | 3 | Correlation with catheter of |r| = 0.95 (p < 0.0001) [121]; Low: |r| ∈ [0.0, 0.33); Medium: |r| ∈ [0.33, 0.66); High: |r| ∈ [0.66, 1.00] |
Implementation cost | ~EUR 2397.00 | Including the cost of implantation and potential implantation complications | Parameter relevance | 3 | According to the work by PB. Adamson [6] regarding pulmonary and filling pressures (~25 days preceding decompensation); Low: preceding decompensation by <10 days; Medium: preceding decompensation by ≥10 days but <20 days; High: preceding decompensation by ≥20 days | |
Follow-up cost | ~EUR 631.14 | Total costs for 5.72 life years, including the cost of data uploads, software updates, external unit, and possible cardiologist support | Enhanced follow-up | 2 | Re-hospitalization reduction of 44% [39]; Low: 0–33.3%; Medium: 33.3–66.6%; High: 66.6–100% | |
Medium-term care cost | ~EUR 62,059.86 | Total associated costs for 5.72 life years, including the cost of medication (i.e., drugs and drug changes), telephone consultations, outpatient visits… | Patient engagement | 3 | Compliance (i.e., readings received vs. expected) of 84.3% [39]; Low: 0–33.3%; Medium: 33.3–66.6%; High: 66.6–100% | |
Total cost: ~EUR 75,088.00 | Total score: 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luque, I.; Gadea, M.; Comas, A.; Becerra-Fajardo, L.; Colás, J.; Ivorra, A. Invasive and Non-Invasive Remote Patient Monitoring Devices for Heart Failure: A Comparative Review of Technical Maturity and Clinical Readiness. Sensors 2025, 25, 6453. https://doi.org/10.3390/s25206453
Luque I, Gadea M, Comas A, Becerra-Fajardo L, Colás J, Ivorra A. Invasive and Non-Invasive Remote Patient Monitoring Devices for Heart Failure: A Comparative Review of Technical Maturity and Clinical Readiness. Sensors. 2025; 25(20):6453. https://doi.org/10.3390/s25206453
Chicago/Turabian StyleLuque, Ivan, Mar Gadea, Anna Comas, Laura Becerra-Fajardo, Javier Colás, and Antoni Ivorra. 2025. "Invasive and Non-Invasive Remote Patient Monitoring Devices for Heart Failure: A Comparative Review of Technical Maturity and Clinical Readiness" Sensors 25, no. 20: 6453. https://doi.org/10.3390/s25206453
APA StyleLuque, I., Gadea, M., Comas, A., Becerra-Fajardo, L., Colás, J., & Ivorra, A. (2025). Invasive and Non-Invasive Remote Patient Monitoring Devices for Heart Failure: A Comparative Review of Technical Maturity and Clinical Readiness. Sensors, 25(20), 6453. https://doi.org/10.3390/s25206453