A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges
Abstract
1. Introduction
2. Fundamentals of RS
3. Integration of AI, ML, and DL in RS
3.1. AI in RS: Illustrative Case Studies
3.1.1. Case Study 1: AI-Driven Flood Mapping for Disaster Response
3.1.2. AI-Powered Wildfire Detection
3.1.3. AI in Regenerative Agriculture
3.1.4. AI-Assisted Wildlife Monitoring
3.2. ML Algorithms in RS
3.2.1. Support Vector Machines (SVM)
3.2.2. Random Forests (RF)
3.2.3. K-Nearest Neighbors (KNN)
3.2.4. Clustering Algorithms (e.g., K-Means, DBSCAN)
3.2.5. Gradient Boosting Machines (GBMs) and XGBoost
3.3. DL Algorithms in RS
3.3.1. Convolutional Neural Networks (CNNs)
3.3.2. Recurrent Neural Networks (RNNs)
3.3.3. Generative Adversarial Networks (GANs)
3.3.4. Autoencoders
3.3.5. Transformer Models
Model | Characteristics | Advantages | Disadvantages |
---|---|---|---|
CNNs | Specialized for grid-like data (e.g., images); uses convolutional layers to extract spatial features [138]. | Excellent for spatial feature extraction; High accuracy for image classification and object detection tasks; Handles large image datasets well [139]. | Requires large labeled datasets; Computationally intensive for high-resolution RS data; Limited capability in capturing temporal dependencies [140]. |
RNNs | Designed for sequential data; uses feedback loops for temporal relationships [141]. | Ideal for processing time-series data (e.g., vegetation growth or land cover changes); Captures temporal dependencies [142]. | Prone to vanishing/exploding gradient issues; Struggles with long-term dependencies in large datasets; Inefficient for spatial data analysis [143]. |
GANs | Comprises a generator and discriminator network; used for generating synthetic data [144]. | Effective in generating realistic synthetic RS images; Useful for data augmentation in underrepresented areas [145]. | Training is unstable and requires careful tuning; Can remove noise; High computational cost; Vulnerable to mode collapse, where the generator produces limited variety [146]. |
Autoencoders | NN trained to encode input data into a compressed representation and decode it back [147]. | Effective for dimensionality reduction and feature extraction; Suitable for anomaly detection in RS (e.g., wildfire monitoring) [148]. | Struggles with generating high-quality reconstructions for complex data; Requires labeled data for specific tasks; Limited ability to capture temporal features [129]. |
Transformer Models | Utilizes self-attention mechanisms; excels at capturing long-range dependencies in data [149]. | Exceptional performance for processing multi-modal RS data (e.g., combining spatial and temporal data); Handles large-scale datasets [150]. | Computationally intensive, especially for high-resolution imagery; Requires significant memory resources; Needs extensive training data [151]. |
4. Challenges and Prospects of AI in RS
4.1. Challenges
4.1.1. Data Quality and Diversity
4.1.2. Computational Requirements
4.1.3. Model Interpretability and Explainability
4.1.4. Transferability and Domain Adaptation
4.2. Prospects
4.2.1. Advances in Data Fusion and Multimodal Learning
4.2.2. Improved Model Efficiency
4.2.3. Development of Explainable AI (XAI)
4.2.4. Incorporation of Unsupervised and Semi-Supervised Learning
4.2.5. Collaborative Frameworks and Open Data Initiatives
4.2.6. Application-Driven Prospect: Climate and Environmental Monitoring
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | Adaptive-weight subsampling |
AI | Artificial intelligence |
AID | Aerial image dataset |
APEI | Antecedent precipitation evaporation index |
BP | Back propagation |
BPN | Backpropagation neural networks |
CART | Classification and regression tree |
CCF | Class-correlated feature |
CNN | Convolutional neural network |
CvT | Convolutional vision transformer |
DB | Davies–Bouldin |
DBSCAN | Density-based spatial clustering of applications with noise |
DL | Deep learning |
DNN | Deep neural networks |
DRRNN | Deep relearning recurrent neural network |
EMA | Efficient multi-scale attention |
ESA | European space agency |
FCN | Fully convolutional network |
FPS | Frames per second |
GAN | Generative adversarial networks |
GBM | Gradient boosting machine |
GDPR | General data protection regulation |
GF-1 | Gaofen-1 |
GIS | Geospatial information systems |
GSSM | Global surface soil moisture |
HIS | Hyperspectral imaging |
HPC | High-performance computing |
HRRSD | High-resolution remote sensing dataset |
HyA-GAN | Hybrid attention generative adversarial network |
IoT | Internet of things |
ISMN | International soil moisture network |
JM | Jeffries–Matusita |
KNN | K-nearest neighbors |
LiDAR | Light detection and ranging |
LSTM | Long short-term memory |
LULC | Land-use and land cover |
ML | Machine learning |
MUNIT | Multi-modal unsupervised image-to-image translation |
NDVI | Normalized difference vegetation index |
NLP | Natural language processing |
NN | Neural network |
OGC | Open geospatial consortium |
OOB | Out-of-bag |
PCA | Principal component analysis |
PSNR | Peak signal-to-noise ratio |
PSP Net | Pyramid scene parsing network |
RBF | Radial basis function |
RF | Random forest |
RFR | Random forest regression |
RL | Reinforcement learning |
RNN | Recurrent neural network |
RS | Remote sensing |
RS-CCP | Remote sensing cloud computing platform |
SDAE | Stacked denoising autoencoder |
SGAE | Self-guided autoencoders |
SOTA | State-of-the-art |
SVM | Support vector machine |
SWAT | Soil and water assessment tool |
ViT | Vision transformer |
WIK | What I know |
XAI | Explainable artificial intelligence |
References
- Bauer, M.E. Remote Sensing of Environment: History, Philosophy, Approach and Contributions, 1969–2019. Remote Sens. Environ. 2020, 237, 111522. [Google Scholar] [CrossRef]
- Shi, J.; Wu, T.; Kai Qin, A.; Lei, Y.; Jeon, G. Self-Guided Autoencoders for Unsupervised Change Detection in Heterogeneous Remote Sensing Images. IEEE Trans. Artif. Intell. 2024, 5, 2458–2471. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.K. Remote Sensing in Field Crop Monitoring: A Comprehensive Review of Sensor Systems, Data Analyses and Recent Advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Salvo, C.; Vitale, A. Remote Sensing Method to Assess the Future Multi-Hazard Exposure of Urban Areas. Remote Sens. 2023, 15, 4288. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Z.; Gao, M.; Zhu, W.; Zhang, S.; Ma, J.; Ta, L.; Yang, G. Revealing the Eco-Environmental Quality of the Yellow River Basin: Trends and Drivers. Remote Sens. 2024, 16, 2018. [Google Scholar] [CrossRef]
- Duan, P.; Wang, Y.; Yin, P. Remote Sensing Applications in Monitoring of Protected Areas: A Bibliometric Analysis. Remote Sens. 2024, 12, 772. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.P.; Sun, Z.; Cristea, N. A Review of Practical AI for Remote Sensing in Earth Sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Efimov, A.R.; Nikonorov, A.V.; Oseledets, I.V.; Skidanov, R.V.; Butt, M.A. A Perspective on the Artificial Intelligence’s Transformative Role in Advancing Diffractive Optics. iScience 2024, 27, 110270. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction Neural Networks in Remote Sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Cherian, A.K.; Poovammal, E. Classification of Remote Sensing Images Using CNN. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1130, 012084. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Oseledets, I.V.; Nikonorov, A.V.; Butt, M.A. Revolutionary Integration of Artificial Intelligence with Meta-Optics-Focus on Metalenses for Imaging. Technologies 2024, 12, 143. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Oseledets, I.V.; Nikonorov, A.V.; Butt, M.A. Synergy between Artificial Intelligence and Hyperspectral Imagining—A Review. Technologies 2024, 12, 163. [Google Scholar] [CrossRef]
- Chamasemani, F.F.; Singh, Y.P. Multi-Class Support Vector Machine (SVM) Classifiers—An Application in Hypothyroid Detection and Classification. In Proceedings of the 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications, Penang, Malaysia, 27–29 September 2011; pp. 351–356. [Google Scholar] [CrossRef]
- Islam, K.I.; Elias, E.; Carroll, K.C.; Brown, C. Exploring Random Forest Machine Learning and Remote Sensing Data for Streamflow Prediction: An Alternative Approach to a Process-Based Hydrologic Modeling in a Snowmelt-Driven Watershed. Remote Sens. 2023, 15, 39999. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Li, M.X.; Xu, C.J. Convolutional Neural Network-Based Low Light Image Enhancement Method. Comput. Opt. 2025, 49, 334–343. Available online: https://computeroptics.ru/KO/PDF/KO49-2/490219.pdf (accessed on 24 June 2025). [CrossRef]
- Wu, L.; Noels, L. Recurrent Neural Networks (RNNs) with Dimensionality Reduction and Break down in Computational Mechanics; Application to Multi-Scale Localization Step. Comput. Methods Appl. Mech. Eng. 2022, 390, 114476. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primer. 2022, 2, 100. [Google Scholar] [CrossRef]
- Kanagala, H.K.; Jaya Rama Krishnaiah, V.V. Comparative Study of K-Means, DBSCAN and OPTICS. In Proceedings of the 2016 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 7–9 January 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial Intelligence for Remote Sensing Data Analysis: A Review of Challenges and Opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Fabbri, A.G.; Fung, K.B.; Yatabe, S.M. The Usage of Artificial Intelligence in Remote Sensing: A Review of Applications and Current Research. Quantitative Analysis of Mineral and Energy Resources. In Quantitative Analysis of Mineral and Energy Resources; Chung, C.F., Fabbri, A.G., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 223, pp. 489–512. [Google Scholar] [CrossRef]
- Sharifi, A.; Mahdipour, H. Utilizing Geospatial Artificial Intelligence for Remote Sensing Applications. Environ. Earth Sci. 2024, 183, 274. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, S.; Ouyang, C.; Chen, M.; Liu, C.; Zhang, J.; Yu, L.; Wang, F.; Xie, Y.; Li, J. Artificial Intelligence for Geoscience: Progress, Challenges, and Perspectives. The Innovation 2024, 5, 100691. [Google Scholar] [CrossRef]
- Abdelmajeed, A.Y.A.; Juszczak, R. Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sens. 2024, 16, 591. [Google Scholar] [CrossRef]
- Aragoneses, E.; García, M.; Ruiz-Benito, P.; Chuvieco, E. Mapping Forest Canopy Fuel Parameters at European Scale Using Spaceborne LiDAR and Satellite Data. Remote Sens. Environ. 2024, 303, 114005. [Google Scholar] [CrossRef]
- Cremons, D.R. The Future of Lidar in Planetary Science. Front. Remote Sens. 2022, 3, 1042460. [Google Scholar] [CrossRef]
- Debnath, S.; Paul, M.; Debnath, T. Applications of LiDAR in Agriculture and Future Research Directions. J. Imaging. 2023, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Disney, M. Terrestrial LiDAR: A Three-Dimensional Revolution in How We Look at Trees. New Phytol. 2019, 222, 1736–1741. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abell’an, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards. 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Zhao, Q.; Qu, Y. The Retrieval of Ground NDVI (Normalized Difference Vegetation Index) Data Consistent with Remote-Sensing Observations. Remote Sens. 2024, 16, 1212. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current Remote Sensing Approaches to Monitoring Forest Degradation in Support of Countries Measurement, Reporting and Verification (MRV) Systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef]
- Chen, Y.; Morton, D.C.; Randerson, J.T. Remote Sensing for Wildfire Monitoring: Insights into Burned Area, Emissions, and Fire Dynamics. One Earth 2025, 7, 1022–1028. [Google Scholar] [CrossRef]
- Pandey, P.; Ramanathan, A.; Venkataraman, G. Remote Sensing of Mountain Glaciers and Related Hazards. In Environmental Applications of Remote Sensing; Marghany, M., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef]
- Garg, S.; Dasgupta, A.; Motagh, M.; Martinis, S.; Selvakumaran, S. Unlocking the Full Potential of Sentinel-1 for Flood Detection in Arid Regions. Remote Sens. Environ. 2025, 315, 114417. [Google Scholar] [CrossRef]
- Nguyen-Kim, S.; Nguyen-The, V.; Nguyen, D.-B. A Systematic Review of Artificial Intelligence in Geographic Information Systems. In Advances in Information and Communication Technology. ICTA 2023. Lecture Notes in Networks and Systems; Nghia, P.T., Thai, V.D., Thuy, N.T., Son, L.H., Huynh, V.N., Eds.; Springer: Cham, Switzerland, 2023; Volume 847, pp. 20–31. [Google Scholar] [CrossRef]
- Anjana, N.S.; Amarnath, A.; Harindranathan Nair, M.V. Toxic Hazards of Ammonia Release and Population Vulnerability Assessment Using Geographical Information System. J. Environ. Manage. 2018, 210, 201209. [Google Scholar] [CrossRef]
- Xia, N.; Cheng, L.; Li, M. Mapping Urban Areas Using a Combination of Remote Sensing and Geolocation Data. Remote Sens. 2019, 11, 1470. [Google Scholar] [CrossRef]
- Furberg, D.; Ban, Y.; Mortberg, U. Monitoring Urban Green Infrastructure Changes and Impact on Habitat Connectivity Using High-Resolution Satellite Data. Remote Sens. 2020, 12, 3072. [Google Scholar] [CrossRef]
- Akhyar, A.; Asyraf Zulkifley, M.; Lee, J.; Song, T.; Han, J.; Cho, C.; Hyun, S.; Son, Y.; Hong, B.-W. Deep Artificial Intelligence Applications for Natural Disaster Management Systems: A Methodological Review. Ecol. Indic. 2024, 163, 112067. [Google Scholar] [CrossRef]
- Gu, Z.; Zeng, M. The Use of Artificial Intelligence and Satellite Remote Sensing in Land Cover Change Detection: Review and Perspectives. Sustainability 2024, 16, 274. [Google Scholar] [CrossRef]
- Xuan, X.; Jianbo, L.; Jin, Y. Research on the Natural Language Querying for Remote Sensing Databases. In Proceedings of the 2012 International Conference on Computer Science and Service System, Nanjing, China, 11–13 August 2012; pp. 228–231. [Google Scholar] [CrossRef]
- Bashmal, L.; Bazi, Y.; Melgani, F.; Al Rahhal, M.M.; Al Zuair, M.A. Language Integration in Remote Sensing: Tasks, Datasets, and Future Directions. IEEE Geosci. Remote Sens. Mag. 2023, 11, 63–93. [Google Scholar] [CrossRef]
- Tounsi, A.; Temimi, M. A Systematic Review of Natural Language Processing Applications for Hydrometeorological Hazards Assessment. Nat. Hazards 2023, 116, 2819–2870. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Chanussot, J. Convolutional Neural Networks for Multimodal Remote Sensing Data Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5517010. [Google Scholar] [CrossRef]
- Qiang, W.; Zhongli, Z. Reinforcement Learning Model, Algorithms and Its Application. In Proceedings of the 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011; pp. 1143–1146. [Google Scholar] [CrossRef]
- Song, Y.; Kalacska, M.; Gasparovic, M.; Yao, J.; Najibi, N. Advances in Geocomputation and Geospatial Artificial Intelligence (GeoAI) for Mapping. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103300. [Google Scholar] [CrossRef]
- Ghosh, B.; Garg, S.; Motagh, M. Automatic Flood Detection From Sentinel-1 Data Using Deep Learning Architectures. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, V-3–2022, 201–208. [Google Scholar] [CrossRef]
- WIRED. Available online: https://www.wired.com/story/early-detection-cant-stop-every-wildfire/ (accessed on 24 June 2025).
- Reuters. Available online: https://www.reuters.com/sustainability/land-use-biodiversity/field-cloud-how-ai-is-helping-regenerative-agriculture-grow-2024-09-18/ (accessed on 24 June 2025).
- The Associated Press. Available online: https://apnews.com/article/artificial-intelligence-spider-monkey-tracking-9e863fa6c873ecbf8441b33272ccfed2 (accessed on 24 June 2025).
- Shmilovici, A. Support Vector Machines. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, MA, USA, 2009; pp. 231–247. [Google Scholar] [CrossRef]
- Jun, Z. The Development and Application of Support Vector Machine. J. Phys. Conf. Ser. 2021, 1748, 052006. [Google Scholar] [CrossRef]
- Guido, R.; Ferrisi, S.; Lofaro, D.; Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information 2024, 15, 235. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, A.; Swetapadma, A. A Study on Support Vector Machine Based Linear and Non-Linear Pattern Classification. In Proceedings of the 2019 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 21–22 February 2019; pp. 24–28. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Gaye, B.; Zhang, D.; Wulamu, A. Improvement of Support Vector Machine Algorithm in Big Data Background. Math. Probl. Eng. 2021, 2021, 5594899. [Google Scholar] [CrossRef]
- Amaya-Tejera, N.; Gamarra, M.; Velez, J.I.; Zurek, E. A Distance-Based Kernel for Classification via Support Vector Machines. Front. Artif. Intell. 2024, 7, 1287875. [Google Scholar] [CrossRef]
- Evgeniou, T.; Pontil, M. Support Vector Machines: Theory and Applications. In Machine Learning and Its Applications: Advanced Lectures; Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2049, pp. 249–257. [Google Scholar] [CrossRef]
- Yang, Q. Research on SVM Remote Sensing Image Classification Based on Parallelization. J. Phys. Conf. Ser. 2021, 1852, 032009. [Google Scholar] [CrossRef]
- Salleh, S.A.; Khalid, N.; Danny, N.; Zaki, N.A.M.; Ustuner, M.; Latif, Z.A.; Foromda, V. Support Vector Machine (SVM) and Object Based Classification in Earth Linear Features Extraction: A Comparison. Rev. Int. Geomat. 2024, 33, 183–199. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Information Computing and Applications; Liu, B., Ma, M., Chang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7473, pp. 246–252. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, G.; Li, P.; Wang, H.; Zhang, M.; Liang, X. An Improved Random Forest Based on the Classification Accuracy and Correlation Measurement of Decision Trees. Expert Syst. Appl. 2024, 237, 121549. [Google Scholar] [CrossRef]
- Sipper, M.; Moore, J.H. Conservation Machine Learning: A Case Study of Random Forests. Sci. Rep. 2021, 11, 3629. [Google Scholar] [CrossRef]
- Tang, J.; Henderson, A.; Gardner, P. Exploring AdaBoost and Random Forests Machine Learning Approaches for Infrared Pathology on Unbalanced Data Sets. Analyst. 2021, 146, 5880–5891. [Google Scholar] [CrossRef] [PubMed]
- Vergni, L.; Todisco, F. A Random Forest Machine Learning Approach for the Identification and Quantification of Erosive Events. Water 2023, 15, 2225. [Google Scholar] [CrossRef]
- Joelsson, S.R.; Benediktsson, J.A.; Sveinsson, J.R. Random Forest Classification of Remote Sensing Data. In Signal and Image Processing for Remote Sensing; Chen, C.H., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 327–344. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forest classification of multisource remote sensing and geographic data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 1049–1052. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Niang Gadiaga, A.; Linard, C.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Kalogirou, S. Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2019, 36, 121–136. [Google Scholar] [CrossRef]
- Aziz, G.; Minallah, N.; Saeed, A.; Frnda, J.; Khan, W. Remote sensing based forest cover classification using machine learning. Sci Rep. 2024, 14, 69. [Google Scholar] [CrossRef]
- Gao, S.P.; Xia, M.; Zhang, S.J. Automatic Mosaic Method of Remote Sensing Images Based on Machine Vision. Comput. Opt. 2024, 48, 705–713. [Google Scholar] [CrossRef]
- Borisov, A.N.; Myasnikov, V.V.; Sergeev, V.V. Method of automatic coregistration of digital remote sensing images from different sources. Comput. Opt. 2024, 48, 932–943. [Google Scholar] [CrossRef]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative Performance Analysis of K-Nearest Neighbour (KNN) Algorithm and Its Different Variants for Disease Prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar] [CrossRef]
- Halder, R.K.; Uddin, M.N.; Uddin, M.d.A.; Aryal, S.; Khraisat, A. Enhancing K-Nearest Neighbor Algorithm: A Comprehensive Review and Performance Analysis of Modifications. J. Big Data 2024, 11, 113. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Razavi, S.; Choi, S.-M. Enhancing Flood-Prone Area Mapping: Fine-Tuning the K-Nearest Neighbors (KNN) Algorithm for Spatial Modelling. Int. J. Digit. Earth 2024, 17, 2311325. [Google Scholar] [CrossRef]
- Ozturk Kiyak, E.; Ghasemkhani, B.; Birant, D. High-Level K-Nearest Neighbors (HLKNN): A Supervised Machine Learning Model for Classification Analysis. Electronics 2023, 12, 3828. [Google Scholar] [CrossRef]
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 1255–1260. [Google Scholar] [CrossRef]
- Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of K-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2023, 622, 178210. [Google Scholar] [CrossRef]
- Deng, D. DBSCAN Clustering Algorithm Based on Density. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 949–953. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Bindra, K.; Mishra, A. A Detailed Study of Clustering Algorithms. In Proceedings of the 2017 6th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 20–22 September 2017; pp. 371–376. [Google Scholar] [CrossRef]
- Farahnakian, F.; Nicolas, F.; Farahnakian, F.; Nevalainen, P.; Sheikh, J.; Heikkonen, J.; Raduly-Baka, C. A Comprehensive Study of Clustering-Based Techniques for Detecting Abnormal Vessel Behavior. Remote Sens. 2023, 15, 1477. [Google Scholar] [CrossRef]
- Na, S.; Xumin, L.; Yong, G. Research on K-Means Clustering Algorithm: An Improved k-Means Clustering Algorithm. In Proceedings of the Third International Symposium on Intelligent Information Technology and Security Informatics, Jian, China, 2–4 April 2010; pp. 63–67. [Google Scholar] [CrossRef]
- Shah, G. An Improved DBSCAN, a Density Based Clustering Algorithm with Parameter Selection for High Dimensional Data Sets. In Proceedings of the 2012 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, 6–8 December 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, B.; Yang, C.; Li, A.; Chi, Y.; Chen, L. A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters. Procedia Comput. Sci. 2023, 221, 113–120. [Google Scholar] [CrossRef]
- Tran, T.N.; Drab, K.; Daszykowski, M. Revised DBSCAN Algorithm to Cluster Data with Dense Adjacent Clusters. Chemom. Intell. Lab. Syst. 2013, 120, 92–96. [Google Scholar] [CrossRef]
- Hajihosseinlou, M.; Maghsoudi, A.; Ghezelbash, R. Intelligent Mapping of Geochemical Anomalies: Adaptation of DBSCAN and Mean-Shift Clustering Approaches. J. Geochem. Explor. 2024, 258, 107393. [Google Scholar] [CrossRef]
- Wan, S.; Wang, Y.-P. The Comparison of Density-Based Clustering Approach among Different Machine Learning Models on Paddy Rice Image Classification of Multispectral and Hyperspectral Image Data. Agriculture 2020, 10, 465. [Google Scholar] [CrossRef]
- Zheng, R.; Jia, Y.; Ullagaddi, C.; Allen, C.; Rausch, K.; Singh, V.; Schnable, J.C.; Kamruzzaman, M. Optimizing Feature Selection with Gradient Boosting Machines in PLS Regression for Predicting Moisture and Protein in Multi-Country Corn Kernels via NIR Spectroscopy. Food Chem. 2024, 456, 140062. [Google Scholar] [CrossRef]
- Bhagwat, R.U.; Uma Shankar, B. A Novel Multilabel Classification of Remote Sensing Images Using XGBoost. In Proceedings of the IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Militino, A.F.; Goyena, H.; Perez-Goya, U.; Ugarte, M.D. Logistic Regression versus XGBoost for Detecting Burned Areas Using Satellite Images. Environ. Ecol. Stat. 2024, 31, 57–77. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.; Wu, Z.; Zhou, S. Application of Gradient Boosting Machine in Satellite-Derived Bathymetry Using Sentinel-2 Data for Accurate Water Depth Estimation in Coastal Environments. J. Sea Res. 2024, 201, 102538. [Google Scholar] [CrossRef]
- McCarty, D.A.; Kim, H.W.; Lee, H.K. Evaluation of Light Gradient Boosted Machine Learning Technique in Large Scale Land Use and Land Cover Classification. Environments 2020, 7, 84. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Chou, T.-Y.; Hoang, T.-V.; Fang, Y.-M.; Mu, C.-Y.; Huang, P.-H.; Pham, V.-D.; Nguyen, Q.-H.; Anh, D.T.N.; Pham, V.M.; et al. Gradient Boosting Machine and ObjectBased CNN for Land Cover Classification. Remote Sens. 2021, 13, 2709. [Google Scholar] [CrossRef]
- Shao, Z.; Ahmad, M.N.; Javed, A. Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface. Remote Sens. 2024, 16, 665. [Google Scholar] [CrossRef]
- Kumar, D.G.; Chaudhari, S. AUXG: Deep Feature Extraction and Classification of Remote Sensing Image Scene Using Attention Unet and XGBoost. J. Indian Soc. Remote Sens. 2024, 52, 1687–1698. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, G.; He, B.; Li, Q.; Dong, H.; Wang, S.; Wang, Z. XGBoost-Based Method for Flash Flood Risk Assessment. J. Hydrol. 2021, 598, 126382. [Google Scholar] [CrossRef]
- Kouziokas, G.N. A New W-SVM Kernel Combining PSO-Neural Network Transformed Vector and Bayesian Optimized SVM in GDP Forecasting. J. Hydrol. 2020, 92, 103650. [Google Scholar] [CrossRef]
- Waske, B.; Benediktsson, J.A.; Sveinsson, J.R. Classifying Remote Sensing Data with Support Vector Machines and Imbalanced Training Data. In Multiple Classifier Systems. MCS 2009. Lecture Notes in Computer Science; Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5519, pp. 375–384. [Google Scholar] [CrossRef]
- Zhu, W.; Song, Y.; Xiao, Y. Robust Support Vector Machine Classifier with Truncated Loss Function by Gradient Algorithm. Comput. Ind. Eng. 2020, 172, 108630. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Hernes, M. Financial Decisions Support Using the Supervised Learning Method Based on Random Forests. Procedia Comput. Sci. 2020, 176, 2802–2811. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Hassine, K.; Erbad, A.; Hamila, R. Important Complexity Reduction of Random Forest in Multi-Classification Problem. In Proceedings of the 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 226–231. [Google Scholar] [CrossRef]
- Lee, W.-M. Supervised Learning—Classification Using KNearest Neighbors (KNN). In Python® Machine Learning; Lee, W.-M., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 205–220. [Google Scholar] [CrossRef]
- Zaky, D.; Gunawan, P.H. Computational Parallel of K-Nearest Neighbor on Page Blocks Classification Dataset. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ray, S. An Analysis of Computational Complexity and Accuracy of Two Supervised Machine Learning Algorithms—K-Nearest Neighbor and Support Vector Machine. In Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing; Sharma, N., Chakrabarti, A., Balas, V., Martinovic, J., Eds.; Springer: Singapore, 2020; Volume 1174, pp. 335–347. [Google Scholar] [CrossRef]
- Rodriguez, M.Z.; Comin, C.H.; Casanova, D.; Bruno, O.M.; Amancio, D.R.; Costa, L.d.F.; Rodrigues, F.A. Clustering algorithms: A comparative approach. PLoS ONE 2019, 14, e0210236. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Li, T.; Gan, R. A Novel Density-Based Clustering Algorithm Using Nearest Neighbor Graph. Pattern Recognit. 2020, 102, 107206. [Google Scholar] [CrossRef]
- Ahmed Soomro, A.; Akmar Mokhtar, A.; Hussin, H.B.; Lashari, N.; Lekan Oladosu, T.; Muslim Jameel, S.; Inayat, M. Analysis of Machine Learning Models and Data Sources to Forecast Burst Pressure of Petroleum Corroded Pipelines: A Comprehensive Review. Eng. Fail. Anal. 2024, 155, 107747. [Google Scholar] [CrossRef]
- Sahin, E.K. Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Sibindi, R.; Mwangi, R.W.; Waititu, A.G. A boosting ensemble learning based hybrid light gradient boosting machine and extreme gradient boosting model for predicting house prices. Eng. Rep. 2023, 5, e12599. [Google Scholar] [CrossRef]
- Hazeena, M.F.; Maha, L.; Padma, P.; Anitha; Kalaiselvi. Convolutional neural network for remote sensing classification. AIP Conf. Proc. 2023, 2831, 020002. [Google Scholar] [CrossRef]
- Kattenborn, T.; Eichel, J.; Fassnacht, F.E. Convolutional Neural Networks Enable Efficient, Accurate and Fine-Grained Segmentation of Plant Species and Communities from High-Resolution UAV Imagery. Sci. Rep. 2019, 9, 17656. [Google Scholar] [CrossRef]
- Alam, M.; Wang, J.-F.; Guangpei, C.; Yunrong, L.; Chen, Y. Convolutional Neural Network for the Semantic Segmentation of Remote Sensing Images. Mob. Netw. Appl. 2021, 26, 200–215. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Fully Convolutional Neural Networks for Remote Sensing Image Classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5071–5074. [Google Scholar] [CrossRef]
- Chen, F.; Tsou, J.Y. Assessing the Effects of Convolutional Neural Network Architectural Factors on Model Performance for Remote Sensing Image Classification: An in-Depth Investigation. Appl. Earth Obs. Geoinf. 2022, 112, 102865. [Google Scholar] [CrossRef]
- Wang, M.; She, A.; Chang, H.; Cheng, F.; Yang, H. A Deep Inverse Convolutional Neural Network-Based Semantic Classification Method for Land Cover Remote Sensing Images. Sci. Rep. 2024, 14, 7313. [Google Scholar] [CrossRef]
- Lindemann, B.; Muller, T.; Vietz, H.; Jazdi, N.; Weyrich, M. A Survey on Long Short-Term Memory Networks for Time Series Prediction. Procedia CIRP 2021, 99, 650–655. [Google Scholar] [CrossRef]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification Using Multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, F.; Wang, B.; Wu, D.; Jing, L.; Sun, Z. A Deep Relearning Method Based on the Recurrent Neural Network for Land Cover Classification. GIScience Remote Sens. 2022, 59, 1344–1366. [Google Scholar] [CrossRef]
- Perez-Suay, A.; Adsuara, J.E.; Piles, M.; Martinez-Ferrer, L.; Diaz, E.; Moreno-Martinez, A.; Camps-Valls, G. Interpretability of Recurrent Neural Networks in Remote Sensing. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3991–3994. [Google Scholar] [CrossRef]
- Fan, X.; Chen, L.; Xu, X.; Yan, C.; Fan, J.; Li, X. Land Cover Classification of Remote Sensing Images Based on Hierarchical Convolutional Recurrent Neural Network. Forests 2023, 14, 1881. [Google Scholar] [CrossRef]
- Lakhal, M.I.; Cevikalp, H.; Escalera, S.; Ofli, F. Recurrent Neural Networks for Remote Sensing Image Classification. IET Comput. Vis. 2018, 12, 1040–1045. [Google Scholar] [CrossRef]
- Jozdani, S.; Chen, D.; Pouliot, D.; Alan Johnson, B. A Review and Meta-Analysis of Generative Adversarial Networks and Their Applications in Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102734. [Google Scholar] [CrossRef]
- Jin, M.; Wang, P.; Li, Y. HyA-GAN: Remote Sensing Image Cloud Removal Based on Hybrid Attention Generation Adversarial Network. Int. J. Remote Sens. 2024, 45, 1755–1773. [Google Scholar] [CrossRef]
- Rui, X.; Cao, Y.; Yuan, X.; Kang, Y.; Song, W. DisasterGAN: Generative Adversarial Networks for Remote Sensing Disaster Image Generation. Remote Sens. 2021, 13, 4284. [Google Scholar] [CrossRef]
- Chen, S.; Guo, W. Auto-Encoders in Deep Learning—A Review with New Perspectives. Mathematics 2023, 11, 1777. [Google Scholar] [CrossRef]
- Li, P.; Pei, Y.; Li, J. A Comprehensive Survey on Design and Application of Autoencoder in Deep Learning. Appl. Soft Comput. 2023, 138, 110176. [Google Scholar] [CrossRef]
- Berahmand, K.; Daneshfar, F.; Salehi, E.S.; Li, Y.; Xu, Y. Autoencoders and Their Applications in Machine Learning: A Survey. Artif. Intell. Rev. 2024, 57, 28. [Google Scholar] [CrossRef]
- Nagar, S.; Farahbakhsh, E.; Awange, J.; Chandra, R. Remote Sensing Framework for Geological Mapping via Stacked Autoencoders and Clustering. Adv. Space Res. 2024, 74, 4502–4516. [Google Scholar] [CrossRef]
- Hu, F.; Dai, Y.; Wu, L. Triplet Network with Autoencoder for Remote Sensing Image Scene Recognition and Classification. In Proceedings of the International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024), Guangzhou, China, 1–3 March 2024. [Google Scholar] [CrossRef]
- Liang, P.; Shi, W.; Zhang, X. Remote Sensing Image Classification Based on Stacked Denoising Autoencoder. Remote Sens. 2018, 10, 16. [Google Scholar] [CrossRef]
- Lotfy, R.M.; Khalifa, M.; Salem, M.A.-M. Autoencoder Models Optimization for Remote Sensing Image Semantic Segmentation. In Proceedings of the 2022 International Conference on Microelectronics (ICM), Casablanca, Morocco, 4–7 December 2022; pp. 241–245. [Google Scholar] [CrossRef]
- Wang, R.; Ma, L.; He, G.; Johnson, B.A.; Yan, Z.; Chang, M.; Liang, Y. Transformers for Remote Sensing: A Systematic Review and Analysis. Sensors 2024, 24, 3495. [Google Scholar] [CrossRef] [PubMed]
- Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.-S.; Khan, F.S. Transformers in Remote Sensing: A Survey. Remote Sens. 2023, 15, 1860. [Google Scholar] [CrossRef]
- Boulila, W.; Ghandorh, H.; Masood, S.; Alzahem, A.; Koubaa, A.; Ahmed, F.; Khan, Z.; Ahmad, J. A TransformerBased Approach Empowered by a Self-Attention Technique for Semantic Segmentation in Remote Sensing. Heliyon 2024, 10, e29396. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Into Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Giri, R.N.; Janghel, R.R.; Govil, H.; Pandey, S.K. Spatial Feature Extraction Using Pretrained Convolutional Neural Network for Hyperspectral Image Classification. In Proceedings of the 2022 IEEE 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, 8–9 October 2022; pp. 386–389. [Google Scholar] [CrossRef]
- Ma, X.; Chen, W.; Pei, Z.; Liu, J.; Huang, B.; Chen, J. A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 3188–3200. [Google Scholar] [CrossRef]
- Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications. Information 2024, 15, 517. [Google Scholar] [CrossRef]
- Husken, M.; Stagge, P. Recurrent Neural Networks for Time Series Classification. Neurocomputing 2003, 50, 223–235. [Google Scholar] [CrossRef]
- Zeng, L.; Ren, W.; Shan, L.; Huo, F.; Meng, F. Lithology Spatial Distribution Prediction Based on Recurrent Neural Network with Kriging Technology. J. Pet. Sci. Eng. 2022, 214, 110538. [Google Scholar] [CrossRef]
- Jain, B.; Wilfred Godfrey, W. Multi-Generator MD-GAN with Reset Discriminator: A Framework to Handle Non-IID Data. In Computer Vision and Image Processing. CVIP 2022. Communications in Computer and Information Science; Gupta, D., Bhurchandi, K., Murala, S., Raman, B., Kumar, S., Eds.; Springer: Cham, Switzerland, 2022; Volume 1776, pp. 289–303. [Google Scholar] [CrossRef]
- Motamed, S.; Rogalla, P.; Khalvati, F. Data Augmentation Using Generative Adversarial Networks (GANs) for GAN-Based Detection of Pneumonia and COVID-19 in Chest X-Ray Images. Inform. Med. Unlocked 2021, 27, 100779. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Zhijiang, Z.; Yu, Y.; Khan, M.A.; Yan, K.; Aziz, K. GAN-Holo: Generative Adversarial Networks-Based Generated Holography Using Deep Learning. Complexity 2021, 2021, 6662161. [Google Scholar] [CrossRef]
- Assuncao, F.; Sereno, D.; Lourenco, N.; Machado, P.; Ribeiro, B. Automatic Evolution of AutoEncoders for Compressed Representations. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Shinde, K.; Itier, V.; Mennesson, J.; Vasiukov, D.; Shakoor, M. Dimensionality Reduction through Convolutional Autoencoders for Fracture Patterns Prediction. Appl. Math. Model. 2023, 114, 94–113. [Google Scholar] [CrossRef]
- Wahid, A.; Yahya, M.; Breslin, J.G.; Intizar, M.A. Self-Attention Transformer-Based Architecture for Remaining Useful Life Estimation of Complex Machines. Procedia Comput. Sci. 2023, 217, 456–464. [Google Scholar] [CrossRef]
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A Survey of Transformers. AI Open 2022, 3, 111–132. [Google Scholar] [CrossRef]
- Farina, M.; Ahmad, U.; Taha, A.; Younes, H.; Mesbah, Y.; Yu, X.; Pedrycz, W. Sparsity in Transformers: A Systematic Literature Review. Neurocomputing 2024, 582, 127468. [Google Scholar] [CrossRef]
- Chaurasia, A.N.; Parmar, R.M.; Dave, M.G.; Krishnayya, N.S.R. Integrating Field- and Remote Sensing Data to Perceive Species Heterogeneity across a Climate Gradient. Sci. Rep. 2024, 14, 42. [Google Scholar] [CrossRef]
- Ma, Y.; Wu, H.; Wang, L.; Huang, B.; Ranjan, R.; Zomaya, A.; Jie, W. Remote Sensing Big Data Computing: Challenges and Opportunities. Future Gener. Comput. Syst. 2015, 51, 47–60. [Google Scholar] [CrossRef]
- Barsi, A.; Kugler, Z.; Juhasz, A.; Szabo, G.; Batini, C.; Abdulmuttalib, H.; Huang, G.; Shen, H. Remote Sensing Data Quality Model: From Data Sources to Lifecycle Phases. Int. J. Image Data Fusion 2019, 10, 280–299. [Google Scholar] [CrossRef]
- Park, B.-H.; Kim, Y.; Kim, B.-D.; Hong, T.; Kim, S.; Lee, J.K. High Performance Computing: Infrastructure, Application, and Operation. J. Comput. Sci. Eng. 2012, 6, 280–286. [Google Scholar] [CrossRef]
- Bortnyk, K.; Yaroshchuk, B.; Bahnuk, N.; Pekh, P. Overcoming Challenges in Artificial Intelligence Training: Data Limitations, Computational Costs and Model Robustness. Comput.-Integr. Technol. Educ. Sci. Prod. 2023, 53, 37–43. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Dobson, J.E. On Reading and Interpreting Black Box Deep Neural Networks. Int. J. Digit. Humanit. 2023, 5, 431–449. [Google Scholar] [CrossRef]
- Contreras, J.; Winterfeld, A.; Popp, J.; Bocklitz, T. Spectral Zones-Based SHAP/LIME: Enhancing Interpretability in Spectral Deep Learning Models Through Grouped Feature Analysis. Anal. Chem. 2024, 96, 15588–15597. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.; Li, J. Unlocking the Potential of Explainable Artificial Intelligence in Remote Sensing Big Data. Remote Sens. 2023, 15, 5448. [Google Scholar] [CrossRef]
- Tanveer, M.H.; Fatima, Z.; Zardari, S.; Guerra-Zubiaga, D. An In-Depth Analysis of Domain Adaptation in Computer and Robotic Vision. Appl. Sci. 2023, 13, 12823. [Google Scholar] [CrossRef]
- Huang, X.; Liu, M.-Y.; Belongie, S.; Kautz, J. Multimodal Unsupervised Image-to-Image Translation. In Computer Vision–ECCV 2018. ECCV 2018. Lecture Notes in Computer Science; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer: Cham, Switzerland, 2018; Volume 11207, pp. 179–196. [Google Scholar] [CrossRef]
- Zhang, C.; Xi, W.; Liu, X.; Bai, G.; Sun, J.; Yu, F. Unsupervised Multimodal Image-to-Image Translation: Generate What You Want. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022. [Google Scholar] [CrossRef]
- Xia, W.; Yang, Y.; Xue, J.-H. Unsupervised Multi-Domain Multimodal Image-to-Image Translation with Explicit Domain-Constrained Disentanglement. Neural Netw. 2020, 131, 50–63. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Q.; Wang, Y. Transferable Attention Networks for Adversarial Domain Adaptation. Inf. Sci. 2020, 539, 422–433. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Q.; Jing, W.; He, G.; Zhu, L.; Gao, S. Multimodal Contrastive Learning for Remote Sensing Image Feature Extraction Based on Relaxed Positive Samples. Sensors 2024, 24, 7719. [Google Scholar] [CrossRef]
- Berg, P.; Uzun, B.; Pham, M.-T.; Courty, N. Multimodal Supervised Contrastive Learning in Remote Sensing Downstream Tasks. IEEE Geosci. Remote Sens. Lett. 2024, 21, 6007405. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, G.; Yu, X.; Yu, A.; Guo, Y.; Liu, B.; Zhou, J. Multimodal Self-Supervised Learning for Remote Sensing Data Land Cover Classification. Pattern Recognit. 2025, 157, 110959. [Google Scholar] [CrossRef]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Gunther, A.; Najjar, H.; Dengel, A. Explainable Multimodal Learning in Remote Sensing: Challenges and Future Directions. IEEE Geosci. Remote Sens. Lett. 2024, 21, 8002405. [Google Scholar] [CrossRef]
- Dantas, P.V.; Sabino da Silva, W.; Cordeiro, L.C.; Carvalho, C.B. A Comprehensive Review of Model Compression Techniques in Machine Learning. Appl. Intell. 2024, 54, 11804–11844. [Google Scholar] [CrossRef]
- Lyu, Z.; Yu, T.; Pan, F.; Zhang, Y.; Luo, J.; Zhang, D.; Chen, Y.; Zhang, B.; Li, G. A Survey of Model Compression Strategies for Object Detection. Multimed. Tools Appl. 2024, 83, 48165–48236. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Meng, L. Model Compression for Deep Neural Networks: A Survey. Computers 2023, 12, 60. [Google Scholar] [CrossRef]
- Gong, S.; Li, X. An Improved Remote Sensing Object Detection Model Based on YOLOv8s. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024. [Google Scholar] [CrossRef]
- Elhamied, E.M.A.; Youssef, S.M.; Shenawy, M.E. Improved Model Integrating FPN with Refined IoU for Efficient Object Detection Algorithm in Remote Sensing Satellite Images. In Proceedings of the 2024 International Conference on Machine Intelligence and Smart Innovation (ICMISI), Alexandria, Egypt, 12–14 May 2024; pp. 244–250. [Google Scholar] [CrossRef]
- Ishikawa, S.; Todo, M.; Taki, M.; Uchiyama, Y.; Matsunaga, K.; Lin, P.; Ogihara, T.; Yasui, M. Example-Based Explainable AI and Its Application for Remote Sensing Image Classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103215. [Google Scholar] [CrossRef]
- Emre Celebi, M. Unsupervised and Semi-Supervised Learning; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Li, Y.; Li, Z.; Wang, Z.; Wang, K.; Yu, Q. Semi-Supervised Remote Sensing Image Scene Classification with Prototype-Based Consistency. Chin. J. Aeronaut. 2024, 37, 459–470. [Google Scholar] [CrossRef]
- Kothari, N.S.; Meher, S.K. Semisupervised Classification of Remote Sensing Images Using Efficient Neighborhood Learning Method. Eng. Appl. Artif. Intell. 2020, 90, 103520. [Google Scholar] [CrossRef]
- Xu, C.; Du, X.; Fan, X.; Giuliani, G.; Hu, Z.; Wang, W.; Liu, J.; Wang, T.; Yan, Z.; Zhu, J.; et al. Cloudbased storage and computing for remote sensing big data: A technical review. Int. J. Digit. Earth 2022, 15, 1417–1445. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Gong, J.; Hu, X.; Xiong, H.; Zhou, H.; Cao, Z. LuoJiaAI: A Cloud-Based Artificial Intelligence Platform for Remote Sensing Image Interpretation. Geo-Spat. Inf. Sci. 2023, 26, 218–241. [Google Scholar] [CrossRef]
- Banholzer, S.; Kossin, J.; Donner, S. The Impact of Climate Change on Natural Disasters. In Reducing Disaster: Early Warning Systems For Climate Change; Singh, A., Zommers, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 21–49. [Google Scholar] [CrossRef]
- Kuglitsch, M.; Albayrak, A.; Aquino, R.; Craddock, A.; Edward-Gill, J.; Kanwar, R.; Koul, A.; Ma, J.; Marti, A.; Menon, M.; et al. Artificial Intelligence for Disaster Risk Reduction: Opportunities, Challenges, and Prospects. Early Warn. Anticip. Action 2022, 71. Available online: https://wmo.int/media/magazine-article/artificial-intelligence-disaster-risk-reduction-opportunities-challenges-and-prospects (accessed on 24 June 2025).
- Bulatov, K.M.; Zinin, P.V.; Khramov, N.A. Modified Spectral Ratio Method for Distant Measurement of Temperature Distribution by Multispectral Video Cameras. Comput. Opt. 2025, 49, 151–158. Available online: https://computeroptics.ru/KO/PDF/KO49-1/490119.pdf (accessed on 24 June 2025). [CrossRef]
- Gashnikov, M.V.; Kuznetsov, A.V. Detection of Artificial Fragments Embedded in Remote Sensing Images by Adversarial Neural Networks. Comput. Opt. 2022, 46, 643–649. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B. Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI). Sensors 2021, 21, 4738. [Google Scholar] [CrossRef]
- Akter, S.; Babu, M.M.; Hani, U.; Sultana, S.; Bandara, R.; Grant, D. Unleashing the Power of Artificial Intelligence for Climate Action in Industrial Markets. Ind. Mark. Manag. 2024, 117, 92–113. [Google Scholar] [CrossRef]
- McMillan, L.; Varga, L. A Review of the Use of Artificial Intelligence Methods in Infrastructure Systems. Eng. Appl. Artif. Intell. 2022, 116, 105472. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chai, K.K.; Lau, E. AI-Assisted Approach for Building Energy and Carbon Footprint Modeling. Energy AI 2021, 5, 100091. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B.B. A Systematic Review on Approaches and Methods Used for Flood Vulnerability Assessment: Framework for Future Research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Silvestro, D.; Goria, S.; Sterner, T.; Antonelli, A. Improving Biodiversity Protection through Artificial Intelligence. Nat. Sustain. 2022, 5, 415–424. [Google Scholar] [CrossRef]
- Hillebrand, K.; Johannsen, F. KlimaKarl—A Chatbot to Promote Employees’ Climate-Friendly Behavior in an Office Setting. In The Next Wave of Sociotechnical Design. DESRIST 2021. Lecture Notes in Computer Science; Chandra Kruse, L., Seidel, S., Hausvik, G.I., Eds.; Springer: Cham, Switzerland, 2021; Volume 12807, pp. 3–15. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, K.; Wang, K.; Nepal, R. How Does Artificial Intelligence Promote Renewable Energy Development? The Role of Climate Finance. Energy Econ. 2024, 133, 107493. [Google Scholar] [CrossRef]
- Sankarasubramanian, P.; Ganesh, E.N. Artificial IntelligenceBased Detection System for Hazardous Liquid Metal Fire. In Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March 2021. [Google Scholar]
- Duklan, N.; Ghildiyal, S.; Maheshwari, H.; Joshi, K.; Kumar, S. Umang Artificial Intelligence in Adherence of Climate Change Estimation: Opportunities and Challenges. In Proceedings of the 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 6–8 July 2023; pp. 1102–1107. [Google Scholar] [CrossRef]
- Pham, B.T.; Luu, C.; Phong, T.V.; Nguyen, H.D.; Le, H.V.; Tran, T.Q.; Ta, H.T.; Prakash, I. Flood Risk Assessment Using Hybrid Artificial Intelligence Models Integrated with Multi-Criteria Decision Analysis in Quang Nam Province, Vietnam. J. Hydrol. 2021, 592, 125815. [Google Scholar] [CrossRef]
- Qian, Y.; Liu, J.; Shi, L.; Forrest, J.Y.-L.; Yang, Z. Can Artificial Intelligence Improve Green Economic Growth? Evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 16418–16437. [Google Scholar] [CrossRef] [PubMed]
- Kaack, L.H.; Donti, P.L.; Strubell, E.; Kamiya, G.; Creutzig, F.; Rolnick, D. Aligning Artificial Intelligence with Climate Change Mitigation. Nat. Clim. Change. 2022, 12, 518–527. [Google Scholar] [CrossRef]
- Owe, A.; Baum, S. The Ethics of Sustainability for Artificial Intelligence. In Proceedings of the 1st International Conference on AI for People: Towards Sustainable AI (CAIP), Bologna, Italy, 20–24 November 2021. [Google Scholar] [CrossRef]
- Luccioni, A.; Schmidt, V.; Vardanyan, V.; Bengio, Y. Using Artificial Intelligence to Visualize the Impacts of Climate Change. IEEE Comput. Graph. Appl. 2021, 41, 8–14. [Google Scholar] [CrossRef]
Algorithm | Characteristics | Advantages | Disadvantages |
---|---|---|---|
SVM | Supervised learning algorithm; effective for small datasets; uses a hyperplane to classify data; kernel functions for non-linear problems [99] | High accuracy for small/medium datasets; effective for high-dimensional data; suitable for hyperspectral image classification in RS [100] | Computationally expensive for large datasets; difficult to tune (e.g., choosing kernel and parameters); sensitive to noise and overlapping classes [101] |
RF | Ensemble of decision trees; Supervised learning; Uses bagging and feature randomization; Handles categorical and continuous variables [102] | Robust to overfitting; Works well for multispectral/hyperspectral data; Handles missing data well; Easy to interpret variable importance [103] | May struggle with high-dimensional data (e.g., hyperspectral images) without proper tuning; Computationally expensive for large datasets [104] |
KNN | Instance-based supervised learning; Non-parametric; Classification based on majority vote of neighbors [105] | Simple and intuitive; Effective for small-scale, low-dimensional RS data; No training phase, fast implementation [106] | Computationally expensive at prediction time; Requires careful selection of k and distance metric; Sensitive to noisy or imbalanced data [107] |
Clustering Algorithms (e.g., K-Means, DBSCAN) | Unsupervised learning; Groups data points based on similarity; K-Means: Assumes spherical clusters; DBSCAN: Handles arbitrary shapes [108] | Useful for land-cover mapping and unsupervised classification; K-Means: Fast and easy to implement; DBSCAN: Effective for noisy and non-linear cluster shapes [88] | K-Means: Sensitive to initialization and outliers; DBSCAN: Parameter sensitivity (e.g., epsilon and min points); struggles with high-dimensional data [109] |
GBMs and XGBoost | Ensemble of weak learners (decision trees); sequential boosting to reduce error; XGBoost: Optimized, faster implementation of GBM [110] | High predictive accuracy for land-cover classification and change detection; handles missing data well; XGBoost: fast and scalable for large RS datasets [111] | Computationally expensive for large datasets; requires extensive parameter tuning; may overfit if not regularized properly [112] |
Study (as Cited) | RS Task | Method(s) | Dataset/Imagery | Reported Performance | Notes/Limitations |
---|---|---|---|---|---|
Salleh et al. [61] | Urban surface mapping | SVM vs. Rule-based | WorldView-2 | SVM: 75.1%; Rule-based: 88.6–92.2% (overall accuracy) | SVM struggled with impervious surfaces and mixed urban objects |
Pacheco et al. [78] | Fire-affected area classification | KNN vs. RF | Landsat-8, Sentinel-2, Terra | Accuracy: 89–93%; AUC > 0.88 | Spectral mixing and sensor timing caused commission (1–15.7%) and omission (8.8–20%) errors |
Han et al. [71,72] | Soil moisture estimation | Physics-informed ML (RF-based) | Multi-source RS + ISMN | RMSE: 0.05 cm3/cm3; R = 0.9 | Robust dataset (1 km resolution), but computationally intensive |
Kattenborn et al. [114] | Vegetation species mapping | CNN (U-Net) | UAV RGB imagery | Accuracy ≥ 84% | Relied on high-quality annotated training data |
Tang et al. [121] | Land cover classification | DRRNN | 5 RS datasets | State-of-the-art (highest accuracy among compared DL methods) | Improved misclassification correction via spatial autocorrelation |
Jin et al. [126] | Cloud removal in RS images | HyA-GAN | RICE dataset | Outperformed existing models on PSNR | GAN training unstable, requires careful tuning |
Climate Challenges | AI Solutions |
---|---|
Strengthening Infrastructure | AI enhances the predictive maintenance of infrastructure, including roadways, power systems, and water facilities, while also evaluating new project designs for their vulnerability. Additionally, it supports environmental monitoring and pollution control efforts [188]. |
Reducing Carbon Emissions | AI-based “energy and carbon footprint modeling” helps track future carbon emissions by analyzing current data, allowing for targeted optimization strategies in industries and transportation, ultimately reducing overall emissions [189]. |
Managing Vulnerability and Risk | AI utilizes 3D image recognition in UAV-based digital models to assess the seismic vulnerability of buildings in earthquake-prone areas. It also uses artificial neural networks for flood risk assessments, predicting areas most at risk and helping guide preparedness strategies [190]. |
Preserving Biodiversity | AI-driven technologies, such as image recognition in agricultural vehicles and field robots, assist in identifying and eliminating harmful pests and weeds, administering pesticides in controlled doses to protect ecosystems [191]. |
Education and Changing Consumer Behavior | AI and ML algorithms leverage consumer data to recommend eco-friendly products and green courses, influencing long-term shifts toward sustainable consumption. For instance, Klimakarl, an AI chatbot, encourages “green behavior” in office settings, promoting climate-conscious decisions [192]. |
Climate Finance | AI and ML applications in climate finance improve carbon price forecasting, energy cost models, and provide environmental and financial insights that guide both mitigation and adaptation investment decisions [193]. |
Establishing Early Warning Systems | By integrating AI with wireless sensor networks and IoT, real-time monitoring of factors that trigger landslides or industrial hazards, such as liquid metal leaks, can be achieved, enabling timely warnings and interventions [194]. |
Anticipating Long-term Climate Change | AI can bolster long-term climate projections by analyzing historical data and creating both regional and global climate models. These models help local authorities assess potential risks from disasters like floods or wildfires and make informed decisions regarding economic and infrastructural planning [195]. |
Managing Crises | AI-powered hybrid models, integrating multi-criteria decision-making, are useful for flood risk assessment. These models can pinpoint vulnerable areas and preemptively suggest strategies to mitigate damage during crises [196] |
Green Economic Recovery | AI accelerates green economic recovery by improving productivity, fostering innovation, and optimizing resource use. Through smart robots and machine vision, AI also helps reduce waste and pollution, making industries more resource-efficient [197] |
Climate Research and Modeling | AI’s capabilities in pattern recognition, prediction, and NLP advance climate research by addressing key challenges in reducing climate impacts and enhancing resilience strategies [198]. |
Collaboration and Partnership | “AI for the Planet” is a collaborative initiative that uses AI to tackle the climate crisis. It encourages global partnerships, advanced analytics, and innovation in AI to develop solutions for sustainable climate actions, while fostering collaboration among stakeholders [199]. |
Accessibility to Climate Data | The “AI Climate Impact Visualizer” is an interactive tool that allows users to explore AI-generated visualizations of future climate impacts, such as floods or hurricanes, in their areas. It also provides scientific explanations for these predictions, making climate data more accessible to the public [200] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazanskiy, N.; Khabibullin, R.; Nikonorov, A.; Khonina, S. A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges. Sensors 2025, 25, 5965. https://doi.org/10.3390/s25195965
Kazanskiy N, Khabibullin R, Nikonorov A, Khonina S. A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges. Sensors. 2025; 25(19):5965. https://doi.org/10.3390/s25195965
Chicago/Turabian StyleKazanskiy, Nikolay, Roman Khabibullin, Artem Nikonorov, and Svetlana Khonina. 2025. "A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges" Sensors 25, no. 19: 5965. https://doi.org/10.3390/s25195965
APA StyleKazanskiy, N., Khabibullin, R., Nikonorov, A., & Khonina, S. (2025). A Comprehensive Review of Remote Sensing and Artificial Intelligence Integration: Advances, Applications, and Challenges. Sensors, 25(19), 5965. https://doi.org/10.3390/s25195965