A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation
Abstract
Highlights
- Development of a wearable closed-loop TENS system: The proposed system integrates real-time sEMG acquisition, adaptive signal processing, and a boost-regulated power supply, enabling personalized, responsive neuromodulation.
- System validation with low-latency and stable output: The system demonstrates a closed-loop latency of less than 10 ms, stable biphasic waveforms (±22 mA) under prolonged operation, and minimal inter-channel leakage (<1.2%).
- Real-time, ambulatory neuromodulation: The system provides a platform for personalized, mobile neuromodulation, offering potential for non-invasive pain management and motor rehabilitation.
- Enhanced clinical feasibility: The low-latency and reliable multi-channel output could pave the way for future clinical applications, such as biofeedback-based therapies and neurorehabilitation.
Abstract
1. Introduction
2. System Design and Implementation
2.1. Biosignal Acquisition Front-End
2.2. Signal Processing and Control Unit
2.3. Boost-Regulated Power Supply
2.4. Programmable Stimulation Engine
3. System Evaluation and Results
3.1. Hardware Performance Validation
3.2. Closed-Loop Responsiveness Tests
3.3. Power Delivery Performance and Channel Isolation
3.4. Prospective Human-Subject Validation Design
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DeJesus, B.M.; Rodrigues, I.K.L.; Azevedo-Santos, I.F.; DeSantana, J.M. Effect of Transcutaneous Electrical Nerve Stimulation on Pain-Related Quantitative Sensory Tests in Chronic Musculoskeletal Pain and Acute Experimental Pain: Systematic Review and Meta-Analysis. J. Pain 2023, 24, 1337–1382. [Google Scholar] [CrossRef]
- Chen, S.-H.; Lin, Y.-W.; Tseng, W.-L.; Lin, W.-T.; Lin, S.-C.; Hsueh, Y.-Y. Ultrahigh Frequency Transcutaneous Electrical Nerve Stimulation for Neuropathic Pain Alleviation and Neuromodulation. Neurotherapeutics 2024, 21, e00336. [Google Scholar] [CrossRef] [PubMed]
- Jamison, R.N.; Curran, S.; Wan, L.; Ross, E.L.; Gilligan, C.J.; Edwards, R.R. Higher Pain Sensitivity Predicts Efficacy of a Wearable Transcutaneous Electrical Nerve Stimulation Device for Persons With Fibromyalgia: A Randomized Double-Blind Sham-Controlled Trial. Neuromodul. Technol. Neural Interface 2022, 25, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Islam, R.K.; Tong, V.T.; Tynes, B.E.; Sala, K.R.; Abbott, B.; Patel, C.R.; Lentz, I.B.; Behara, R.; Patil, S.; et al. Transcutaneous Electrical Nerve Stimulation for Prevention and Treatment of Post-Herpetic Neuralgia: A Narrative Review. Cureus 2024, 16, e74416. [Google Scholar] [CrossRef]
- RaviChandran, N.; Teo, M.Y.; Aw, K.; McDaid, A. Design of Transcutaneous Stimulation Electrodes for Wearable Neuroprostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Green, M.; Tram, J.; Wang, E.; Murphy, M.; Abd-Elsayed, A.; Chakravarthy, K. Latest Advancements in Transcutaneous Electrical Nerve Stimulation (TENS) and Electronic Muscle Stimulation (EMS): Revisiting an Established Therapy with New Possibilities. J. Pain Res. 2025, 18, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Liao, L.; Wan, X.; Li, X.; Li, X.; Wang, Y. Inhibitory Effects of a Smartphone-Controlled Wearable Transcutaneous Tibial Nerve Stimulation Device on Bladder Reflexes in Anesthetized Cats. Neurourol. Urodyn. 2022, 41, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hao, M.-Z.; Zhang, J.; Chou, C.-H.; Lan, N. An Experimental Protocol for Evaluating Pulse Width Modulation Ranges of Evoked Tactile Sensory Feedback in Amputees. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; Volume 2020, pp. 3869–3872. [Google Scholar] [CrossRef]
- Shi, P.; Du, J.; Fang, F.; Yu, H.; Liu, J. Design and Implementation of an Intelligent Analgesic Bracelet Based on Wrist-Ankle Acupuncture. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1431–1440. [Google Scholar] [CrossRef]
- Li, Q.; Yang, W.; Yao, L.; Chen, H.; Li, Z.; Gong, Y.; Shi, J. Exploring the Rules of Related Parameters in Transcutaneous Electrical Nerve Stimulation for Cancer Pain Based on Data Mining. Pain Ther. 2023, 12, 1355–1374. [Google Scholar] [CrossRef]
- Zelmann, R.; Paulk, A.C.; Basu, I.; Sarma, A.; Yousefi, A.; Crocker, B.; Eskandar, E.; Williams, Z.; Cosgrove, G.R.; Weisholtz, D.S.; et al. CLoSES: A Platform for Closed-Loop Intracranial Stimulation in Humans. NeuroImage 2020, 223, 117314. [Google Scholar] [CrossRef]
- Höhler, C.; Wild, L.; de Crignis, A.; Jahn, K.; Krewer, C. Contralaterally EMG-Triggered Functional Electrical Stimulation during Serious Gaming for Upper Limb Stroke Rehabilitation: A Feasibility Study. Front. Neurorobot. 2023, 17, 1168322. [Google Scholar] [CrossRef]
- Tian, M.; Guo, A.; Guo, X.; Jiang, N.; Lei, Q.; Cheng, L.; Li, J.; Zhang, J. Active Electrode With a High-Gain a-IGZO TFT Bootstrap Amplifier for Surface Electromyography Signal Acquisition. IEEE Trans. Electron Devices 2024, 71, 6731–6737. [Google Scholar] [CrossRef]
- Oreggioni, J.; Caputi, A.A.; Silveira, F. Current-Efficient Preamplifier Architecture for CMRR Sensitive Neural Recording Applications. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.T.; Nguyen, K.H.V.; Do, X.P.; Tu, P.H.T.; Pham, H.-T. A New Design of an Electromyography Sensor for Movement Detection in Human-Machine Interaction Systems. Adv. Mech. Eng. 2025, 17, 16878132251338446. [Google Scholar] [CrossRef]
- Li, Y.; Su, Z.; Chen, K.; Zhang, W.; Du, M. Application of an EMG Interference Filtering Method to Dynamic ECGs Based on an Adaptive Wavelet-Wiener Filter and Adaptive Moving Average Filter. Biomed. Signal Process. Control 2022, 72, 103344. [Google Scholar] [CrossRef]
- Song, K.; Choi, S.; Lee, H. Voluntary Muscle Contraction Detection Algorithm Based on LSTM for Muscle Quality Measurement Algorithm. Appl. Sci. 2021, 11, 8676. [Google Scholar] [CrossRef]
- Pasinetti, S.; Lancini, M.; Bodini, I.; Docchio, F. A Novel Algorithm for EMG Signal Processing and Muscle Timing Measurement. IEEE Trans. Instrum. Meas. 2015, 64, 2995–3004. [Google Scholar] [CrossRef]
- Yilmaz, S.; Kilci, S.B. Modeling and Simulation of a Fuzzy Heat Distribution Controlled High-Voltage DC Resistive Divider. Meas. Control 2020, 53, 485–500. [Google Scholar] [CrossRef]
- Tang, K.W.K.; Jeong, J.; Hsieh, J.-C.; Yao, M.; Ding, H.; Wang, W.; Liu, X.; Pyatnitskiy, I.; He, W.; Moscoso-Barrera, W.D.; et al. Bioadhesive Hydrogel-Coupled and Miniaturized Ultrasound Transducer System for Long-Term, Wearable Neuromodulation. Nat. Commun. 2025, 16, 4940. [Google Scholar] [CrossRef]
- Habibollahi, Z.; Zhou, Y.; Jenkins, M.E.; Garland, S.J.; Friedman, E.; Naish, M.D.; Trejos, A.L. Tremor Suppression Using Functional Electrical Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 3289–3298. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Ruan, S.-J.; Chen, P.-C.; Liu, Y.-T.; Hsueh, Y.-H. A Low-Cost Wireless Multichannel Surface EMG Acquisition System. IEEE Consum. Electron. Mag. 2020, 9, 14–19. [Google Scholar] [CrossRef]
- Terkelsen, A.J.; Bach, F.W.; Jensen, T.S. Experimental Forearm Immobilization in Humans Induces Cold and Mechanical Hyperalgesia. Anesthesiology 2008, 109, 297–307. [Google Scholar] [CrossRef]
- Wang, B.-K.; Liu, T.-H.; Xie, F.; Liu, Y.-Q. Pain Vision System for Evaluating Chronic Pain: A Comparison with VAS Scoring. Pain Res. Manag. 2020, 2020, 6312581. [Google Scholar] [CrossRef]
- Tegegne, B.S.; Man, T.; van Roon, A.M.; Riese, H.; Snieder, H. To the Editor-10-Second ECG-Based RMSSD as Valid Measure of HRV. Heart Rhythm 2019, 16, e35. [Google Scholar] [CrossRef]
- Sen, K.; Maji, U.; Pal, S. GSR-Based Auto-Monitoring of Pain Initiation/Elimination Time Using Nonlinear Dynamic Model. IEEE Sens. J. 2023, 23, 28120–28128. [Google Scholar] [CrossRef]
- Seminara, L.; Fares, H.; Franceschi, M.; Valle, M.; Strbac, M.; Farina, D.; Dosen, S. Dual-Parameter Modulation Improves Stimulus Localization in Multichannel Electrotactile Stimulation. IEEE Trans. Haptics 2020, 13, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, S.; Yu, T.; Zhang, Y.; Ye, G.; Cui, H.; He, C.; Jiang, W.; Zhai, Y.; Lu, C.; et al. Ultra-Conformal Skin Electrodes with Synergistically Enhanced Conductivity for Long-Time and Low-Motion Artifact Epidermal Electrophysiology. Nat. Commun. 2021, 12, 4880. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Chen, Z.; Sun, Z.; Xue, J. Electrode Shift Fast Adaptive Correction for Improving Myoelectric Control Interface Performance. IEEE Sens. J. 2023, 23, 25036–25047. [Google Scholar] [CrossRef]
- Gregory, J.; Tang, S.; Luo, Y.; Shen, Y. Bio-Impedance Identification of Fingertip Skin for Enhancement of Electro-Tactile-Based Preference. Int. J. Intell. Robot. Appl. 2017, 1, 327–341. [Google Scholar] [CrossRef]
- Nan, K.; Wong, K.; Li, D.; Ying, B.; McRae, J.C.; Feig, V.R.; Wang, S.; Du, N.; Liang, Y.; Mao, Q.; et al. An Ingestible, Battery-Free, Tissue-Adhering Robotic Interface for Non-Invasive and Chronic Electrostimulation of the Gut. Nat. Commun. 2024, 15, 6749. [Google Scholar] [CrossRef]
- Gibson, C.; Eubanks, F.; Hobson, F. 4.2.3 A Systems Approach to Medical Device Compliance with IEC 60601–1:2005. INCOSE Int. Symp. 2012, 22, 505–516. [Google Scholar] [CrossRef]
- Northup, S.J. Safety Evaluation of Medical Devices: US Food and Drug Administration and International Standards Organization Guidelines. Int. J. Toxicol. 1999, 18, 275–283. [Google Scholar] [CrossRef]
System | Modality | Closed-Loop Control | Channels | Latency | Wearable | Application |
---|---|---|---|---|---|---|
CLoSES [11] | Intracranial | Yes | 1–2 | ~100 ms | No | Epilepsy research |
(EMG-FES) systems [12] | Surface (FES) | Triggered | 1–2 | 50–150 ms | Yes | Motor rehabilitation |
Proposed system | Surface (TENS) | Yes | 6 | <10 ms | Yes | Pain modulation |
Metric | Value |
---|---|
Sensitivity | 92.6% |
Specificity | 90.3% |
AUC | 0.94 |
Test Sessions | 10 |
Component/Parameter | Specification |
---|---|
MCU | STM32L152 (3.3 V, 80 MHz) |
EMG ADC | 12-bit, 1 kHz |
Boost Converter | Output: up to 100 V, PI-controlled |
Stimulation Channels | Six independent biphasic outputs |
Stimulation Parameters | Programmable amplitude (0–100 V), pulse width (20–500 μs), frequency (1–100 Hz) |
Wireless Interface | BLE 4.2, UART interface |
Power Supply | 3.7 V Li-ion, 400 mAh |
PCB Dimensions | 35 mm × 45 mm, four-layer compact design |
Channel Number | Leakage Current (mA) |
---|---|
1 | 0.15 ± 0.02 |
2 | 0.20 ± 0.02 |
3 | 0.17 ± 0.02 |
4 | 0.15 ± 0.01 |
5 | 0.13 ± 0.02 |
6 | 0.11 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, J.; Luo, S.; Shi, P. A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation. Sensors 2025, 25, 5113. https://doi.org/10.3390/s25165113
Du J, Luo S, Shi P. A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation. Sensors. 2025; 25(16):5113. https://doi.org/10.3390/s25165113
Chicago/Turabian StyleDu, Jiahao, Shengli Luo, and Ping Shi. 2025. "A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation" Sensors 25, no. 16: 5113. https://doi.org/10.3390/s25165113
APA StyleDu, J., Luo, S., & Shi, P. (2025). A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation. Sensors, 25(16), 5113. https://doi.org/10.3390/s25165113