Leakage Detection Using Distributed Acoustic Sensing in Gas Pipelines
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Facility and Setup
2.2. DAS Data Acquisition and Processing
2.2.1. Standard Deviation Processing and Vibration Intensity Quantification
2.2.2. Spectrum Analysis
3. Results
3.1. Standard Deviation Visualization
3.2. Leakage Detection Sensitivity Across Different Sensing Cables Based on Vibration Intensity
3.2.1. Based on Leak Size and Position
3.2.2. Based on Flowrate
3.3. Leakage Detection Sensitivity Across Different Sensing Cables Based on Frequency Spectrum Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration (EIA). Homepage. U.S. Department of Energy: Washington, DC, USA. Available online: https://www.eia.gov/ (accessed on 8 April 2025).
- Pipeline and Hazardous Materials Safety Administration (PHMSA). Homepage; U.S. Department of Transportation: Washington, DC, USA, 1 April 2025. Available online: https://www.phmsa.dot.gov/ (accessed on 8 April 2025).
- Belvederesi, C.; Thompson, M.S.; Komers, P.E. Statistical analysis of environmental consequences of hazardous liquid pipeline accidents. Heliyon 2018, 4, e00901. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, Z.; Chen, W.; Kang, R.; He, X.; Miao, Y. Selection of key indicators for reputation loss in oil and gas pipeline failure event. Eng. Fail. Anal. 2019, 99, 69–84. [Google Scholar] [CrossRef]
- Hanafiah, N.M.; Zardasti, L.; Yahaya, N.; Noor, N.M.; Safuan, A.A. Comparison of human health and safety loss due to corroded gas pipeline failure in rural and urban areas: A case study in Malaysia. Solid State Phenom. 2015, 227, 221–224. [Google Scholar] [CrossRef]
- Qing, X.P.; Beard, S.; Shen, S.B.; Banerjee, S.; Bradley, I.; Salama, M.M.; Chang, F. Development of a real-time active pipeline integrity detection system. Smart Mater. Struct. 2009, 18, 115010. [Google Scholar] [CrossRef]
- Kishawy, H.A.; Gabbar, H.A. Review of pipeline integrity management practices. Int. J. Press. Vessels Pip. 2010, 87, 373–380. [Google Scholar] [CrossRef]
- Parlak, B.O.; Yavasoglu, H.A. A comprehensive analysis of in-line inspection tools and technologies for steel oil and gas pipelines. Sustainability 2023, 15, 2783. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, M.; Qin, L.; Lin, D.; Liu, C.; Li, J.; Li, C.; Wen, S.; Han, C. In-line inspection methods and tools for oil and gas pipelines: A review. Int. J. Press. Vessels Pip. 2024, 206, 105409. [Google Scholar] [CrossRef]
- Fokwa, D.; Poumegne, K.B.; Huisken, M.P.W.; Gilbert, T.; Fogue, M. Tensile, shear and bending properties of Raffia vinifera L. Arecacea. AASCIT J. Mater. 2020, 6, 1–6. Available online: http://www.aascit.org/journal/materials (accessed on 10 April 2025).
- Rui, Z.; Han, G.; Zhang, H.; Wang, S.; Pu, H.; Ling, K. A new model to evaluate two leak points in a gas pipeline. J. Nat. Gas Sci. Eng. 2017, 46, 491–497. [Google Scholar] [CrossRef]
- Tikhonova, S.; Kapitonova, T.; Struchkova, G. Safety assessment of oil and gas pipelines using satellite information. Procedia Struct. Integr. 2019, 20, 230–235. [Google Scholar] [CrossRef]
- Bednarz, B.; Popielski, P.; Sieńko, R.; Howiacki, T.; Bednarski, Ł. Distributed fibre optic sensing (DFOS) for deformation assessment of composite collectors and pipelines. Sensors 2021, 21, 5904. [Google Scholar] [CrossRef] [PubMed]
- Inaudi, D.; Glisic, B. Long-range pipeline monitoring by distributed fiber optic sensing. J. Press. Vessel Technol. 2009, 132, 011701. [Google Scholar] [CrossRef]
- Benabid, M.K.; Garcia-Ceballos, A.; Jin, G.; Fan, Y. Easy deployed distributed acoustic sensing system for leakage detection in gas pipelines. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 16–18 September 2024; p. 19. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Shi, B.; Zhang, Y.; Wang, Z.; Wang, H.; Xie, T. Detecting gas pipeline leaks in sandy soil with fiber-optic distributed acoustic sensing. Tunn. Undergr. Space Technol. 2023, 141, 105367. [Google Scholar] [CrossRef]
- Zuo, J.; Liu, Y.; Wang, X.; Yu, J.; Zhang, C.; Lin, Z. Pipeline leak detection technology based on distributed optical fiber acoustic sensing system. IEEE Access 2020, 8, 30789–30796. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Tejedor, J.; Macias-Guarasa, J.; Martins, H.F.; Piote, D.; Pastor-Graells, J.; Martin-Lopez, S.; Corredera, P.; Gonzalez-Herraez, M. A novel fiber optic-based surveillance system for prevention of pipeline integrity threats. Sensors 2017, 17, 355. [Google Scholar] [CrossRef] [PubMed]
- Stajanca, P.; Chruscicki, S.; Homann, T.; Seifert, S.; Schmidt, D.; Habib, A. Detection of leak-induced pipeline vibrations using fiber-optic distributed acoustic sensing. Sensors 2018, 18, 2841. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Jin, G.; Fan, Y. Characterization of gas–liquid two-phase slug flow using distributed acoustic sensing in horizontal pipes. Sensors 2024, 24, 3402. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ceballos, A.; Benabid, M.K.; Jin, G.; Fan, Y. Monitoring slug flow using distributed acoustic sensing technology with different sensing cable configurations. SPE J. 2024, 29, 6980–6992. [Google Scholar] [CrossRef]
- Issa, N.; Roelens, M.; Frisken, S. Distributed optical sensing systems and methods: PCT Patent Application. PCT AU2018/050775, 26 July 2018. [Google Scholar]
- Chambers, D.; Jin, G.; Tourei, A.; Issah, A.H.; Lellouch, A.; Martin, E.; Zhu, D.; Girard, A.; Yuan, S.; Cullison, T.; et al. DASCore: A Python Library for Distributed Fiber Optic Sensing. Seismica 2024, 3, 10–26443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lian, Z.; Zhou, Z.; Song, Z.; Liu, M.; Yang, K. Leakage Detection in a Buried Gas Pipeline Based on Distributed Optical Fiber Time-Domain Acoustic Wave Signal. Eng. Fail. Anal. 2022, 141, 106594. [Google Scholar] [CrossRef]
Cable Type | Supported Pipe (m) | Buried Pipe (m) | Flow Direction |
---|---|---|---|
Straight (taped external) | 32 → 52 | 35 → 58 | Downstream |
Black (internal) | 110 → 131 | 118 → 140 | Upstream |
Flat (internal) | 143 → 164 | 154 → 175 | Downstream |
Thick (internal) | 192 → 215 | Not included | Upstream |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benabid, M.-K.; Baumgartner, P.; Jin, G.; Fan, Y. Leakage Detection Using Distributed Acoustic Sensing in Gas Pipelines. Sensors 2025, 25, 4937. https://doi.org/10.3390/s25164937
Benabid M-K, Baumgartner P, Jin G, Fan Y. Leakage Detection Using Distributed Acoustic Sensing in Gas Pipelines. Sensors. 2025; 25(16):4937. https://doi.org/10.3390/s25164937
Chicago/Turabian StyleBenabid, Mouna-Keltoum, Peyton Baumgartner, Ge Jin, and Yilin Fan. 2025. "Leakage Detection Using Distributed Acoustic Sensing in Gas Pipelines" Sensors 25, no. 16: 4937. https://doi.org/10.3390/s25164937
APA StyleBenabid, M.-K., Baumgartner, P., Jin, G., & Fan, Y. (2025). Leakage Detection Using Distributed Acoustic Sensing in Gas Pipelines. Sensors, 25(16), 4937. https://doi.org/10.3390/s25164937