A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running
Abstract
1. Introduction
1.1. Artifact Subspace Reconstruction
1.2. iCanClean
1.3. Current Study
2. Materials and Methods
2.1. Participants
2.2. Dynamic Flanker Task
2.3. Standing Flanker Task
2.4. EEG Acquisition
2.5. EEG/ERP Processing
2.5.1. Pipeline 1—No Motion Correction
2.5.2. Pipeline 2—Artifact Subspace Reconstruction
2.5.3. Pipeline 3—iCanClean
2.5.4. Standing Flanker
2.6. Analysis Approach and Hypotheses
3. Results
3.1. Brain Source Dipolority
3.2. Event-Related Spectral Perturbations
3.3. Event-Related Potentials: Dynamic vs. Standing Flanker
3.3.1. P300
3.3.2. N100/P200
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
ERP | Event-related potential |
ICA | Independent components analysis |
ASR | Artifact Subspace Reconstruction |
EOG | Electrooculography |
HEOG | Horizontal Electrooculography |
References
- Downey, R.J.; Ferris, D.P. iCanClean removes motion, muscle, eye, and line-noise artifacts from phantom EEG. Sensors 2023, 23, 8214. [Google Scholar] [CrossRef]
- Gonsisko, C.B.; Ferris, D.P.; Downey, R.J. iCanClean improves independent component analysis of mobile brain imaging with EEG. Sensors 2023, 23, 928. [Google Scholar] [CrossRef]
- Gwin, J.T.; Gramann, K.; Makeig, S.; Ferris, D.P. Removal of movement artifact from high-density EEG recorded during walking and running. J. Neurophysiol. 2010, 103, 3526–3534. [Google Scholar] [CrossRef]
- Makeig, S.; Gramann, K.; Jung, T.P.; Sejnowski, T.J.; Poizner, H. Linking brain, mind and behavior. Int. J. Psychophysiol. 2009, 73, 95–100. [Google Scholar] [CrossRef]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Dual-electrode motion artifact cancellation for mobile electroencephalography. J. Neural Eng. 2018, 15, 056024. [Google Scholar] [CrossRef] [PubMed]
- Richer, N.; Bradford, J.C.; Ferris, D.P. Mobile neuroimaging: What we have learned about the neural control of human walking, with an emphasis on EEG-based research. Neurosci. Biobehav. Rev. 2024, 162, 105718. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Makeig, S.; Jung, T.P.; Bell, A.J.; Ghahremani, D.; Sejnowski, T.J. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA 1997, 94, 10979–10984. [Google Scholar] [CrossRef]
- Gwin, J.T.; Gramann, K.; Makeig, S.; Ferris, D.P. Electrocortical activity is coupled to gait cycle phase during treadmill walking. Neuroimage 2011, 54, 1289–1296. [Google Scholar] [CrossRef]
- Wagner, J.; Solis-Escalante, T.; Grieshofer, P.; Neuper, C.; Muller-Putz, G.; Scherer, R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage 2012, 63, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Solis-Escalante, T.; Scherer, R.; Neuper, C.; Muller-Putz, G. It’s how you get there: Walking down a virtual alley activates premotor and parietal areas. Front. Hum. Neurosci. 2014, 8, 93. [Google Scholar] [CrossRef]
- Wagner, J.; Makeig, S.; Gola, M.; Neuper, C.; Muller-Putz, G. Distinct β band oscillatory networks subserving motor and cognitive control during gait adaptation. J. Neurosci. 2016, 36, 2212–2226. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 2019, 198, 181–197. [Google Scholar] [CrossRef]
- Gorjan, D.; Gramann, K.; De Pauw, K.; Marusic, U. Removal of movement-induced EEG artifacts: Current state of the art and guidelines. J. Neural Eng. 2022, 19, 1004. [Google Scholar] [CrossRef]
- Kothe, C.A.; Makeig, S. BCILAB: A platform for brain-computer interface development. J. Neural Eng. 2013, 10, 6014. [Google Scholar] [CrossRef]
- Mullen, T.R.; Kothe, C.A.E.; Chi, Y.M.; Ojeda, A.; Kerth, T.; Makeig, S.; Jung, T.P.; Cauwenberghs, G. Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 2015, 62, 2553–2567. [Google Scholar] [CrossRef]
- Downey, R.J.; Ferris, D.P. The iCanClean algorithm: How to remove artifacts using reference noise recordings. arXiv 2022, arXiv:2201.11798. [Google Scholar]
- Chang, C.Y.; Hsu, S.H.; Pion-Tonachini, L.; Jung, T.P. Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings. IEEE Trans. Biomed. Eng. 2020, 67, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Chang, C.Y.; Kothe, C.; Iversen, J.R.; Miyakoshi, M. Juggler’s ASR: Unpacking the principles of artifact subspace reconstruction for revision toward extreme MoBI. J. Neurosci. Methods 2025, 420, 110465. [Google Scholar] [CrossRef]
- Delorme, A.; Palmer, J.; Onton, J.; Oostenveld, R.; Makeig, S. Independent EEG sources are dipolar. PLoS ONE 2012, 7, e30135. [Google Scholar] [CrossRef]
- Anders, P.; Müller, H.; Skjæret-Maroni, N.; Vereijken, B.; Baumeister, J. The influence of motor tasks and cut-off parameter selection on artifact subspace reconstruction in EEG recordings. Med. Biol. Eng. Comput. 2020, 58, 2673–2683. [Google Scholar] [CrossRef]
- Liu, C.; Downey, R.J.; Salminen, J.S.; Arvelo Rojas, S.; Richer, N.; Pliner, E.M.; Hwang, J.; Cruz-Almeida, Y.; Manini, T.M.; Hass, C.J.; et al. Electrical brain activity during human walking with parametric variations in terrain unevenness and walking speed. Imaging Neurosci. 2024, 2, 1–33. [Google Scholar] [CrossRef]
- Nordin, A.D.; Hairston, W.D.; Ferris, D.P. Faster gait speeds reduce alpha and beta EEG spectral power from human sensorimotor cortex. IEEE Trans. Biomed. Eng. 2020, 67, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Seeber, M.; Scherer, R.; Wagner, J.; Solis-Escalante, T.; Müller-Putz, G.R. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front. Hum. Neurosci. 2014, 8, 485. [Google Scholar] [CrossRef]
- Mustile, M.; Kourtis, D.; Ladouce, S.; Learmonth, G.; Edwards, M.G.; Donaldson, D.I.; Ietswaart, M. Mobile EEG reveals functionally dissociable dynamic processes supporting real-world ambulatory obstacle avoidance: Evidence for early proactive control. Eur. J. Neurosci. 2020, 54, 8106–8119. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, P.; De Bendetto, E.; Esposito, A.; Natalizio, A.; Parvis, M.; Pesola, M. Comparing artifact removal techniques for daily-life electroencephalography with few channels. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kumaravel, V.P.; Kartscha, V.; Benatti, S.; Vallortigara, G.; Farella, E.; Buiatti, M. Efficient artifact removal from low-density wearable EEG using artifacts subspace reconstruction. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), online, Mexico, 1–5 November 2021; pp. 333–336. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef]
- Tillman, C.M.; Wiens, S. Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology 2011, 48, 1405–1411. [Google Scholar] [CrossRef]
- Tegner, Y.; Lysholm, J. Rating systems in the evaluation of knee ligament injuries. Curr. Orthop. Pract. 1985, 198, 42–49. [Google Scholar] [CrossRef]
- McLean, S.G.; Huang, X.; Su, A.; van den Bogert, A.J. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 2004, 19, 828–838. [Google Scholar] [CrossRef]
- McLean, S.G.; Lipfert, S.W.; van den Bogert, A.J. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med. Sci. Sports Exerc. 2004, 36, 1008–1016. [Google Scholar] [CrossRef]
- Hackley, S.A.; Miller, J. Response complexity and precue interval effects on the lateralized readiness potential. Psychophysiology 1995, 32, 230–241. [Google Scholar] [CrossRef]
- Jentzsch, I.; Leuthold, H.; Ridderinkhof, K.R. Beneficial effects of ambiguous precues: Parallel motor preparation or reduced premotoric processing time? Psychophysiology 2004, 41, 231–244. [Google Scholar] [CrossRef]
- Leuthold, H.; Jentzsch, I. Distinguishing neural sources of movement preparation and execution: An electrophysiological analysis. Biol. Psychol. 2002, 60, 173–198. [Google Scholar] [CrossRef]
- Bartholow, B.D.; Pearson, M.A.; Dickter, C.L.; Sher, K.J.; Fabiani, M.; Gratton, G. Strategic control and medial frontal negativity: Beyond errors and response conflict. Psychophysiology 2005, 42, 33–42. [Google Scholar] [CrossRef]
- Groom, M.J.; Cragg, L. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain Cogn. 2015, 97, 1–9. [Google Scholar] [CrossRef]
- Olson, R.L.; Chang, Y.K.; Brush, C.J.; Kwok, A.N.; Gordon, V.X.; Alderman, B.L. Neurophysiological and behavioral correlates of cognitive control during low and moderate intensity exercise. Neuroimage 2016, 131, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Heidarnia, E.; Letafatkar, A.; Khaleghi-Tazji, M.; Grooms, D.R. Comparing the effect of a simulated defender and dual-task on lower limb coordination and variability during a side-cut in basketball players with and without anterior cruciate ligament injury. J. Biomech. 2022, 133, 110965. [Google Scholar] [CrossRef] [PubMed]
- Kothe, C. Lab Recorder (MIT License). GitHub. 2012. Available online: https://github.com/labstreaminglayer/App-LabRecorder (accessed on 14 February 2024).
- Stenner, T. LabStreamingLayer (MIT License). GitHub. 2018. Available online: https://github.com/sccn/labstreaminglayer (accessed on 14 February 2024).
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Luo, J.; Chu, S.; Cannard, C.; Hoffman, S.; Miyakoshi, M. ICA’s bug: How ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing. Front. Signal Process. 2023, 3, 1064138. [Google Scholar] [CrossRef]
- Luck, S.J. Applied Event-Related Potential Analysis; LibreTexts: Davis, CA, USA, 2022; p. 541. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 1, 156869. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Praamstra, P.; Stegeman, D.F.; van Oosterom, A. Overlap of attention and movement-related activity in lateralized event-related brain potentials. Clin. Neurophysiol. 2001, 112, 477–484. [Google Scholar] [CrossRef]
- Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148. [Google Scholar] [CrossRef]
- Bowie, D.C.; Low, K.A.; Fabiani, M.; Gratton, G. Event-related brain potentials reveal strategy selection in younger and older adults. Biol. Psychol. 2021, 164, 108163. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; MIT Press: Cambridge, MA, USA, 2014; pp. 71–117. [Google Scholar]
- Barone, J.; Rossiter, H.E. Understanding the role of sensorimotor beta oscillations. Front. Syst. Neurosci. 2021, 15, 655886. [Google Scholar] [CrossRef]
- Callan, D.E.; Torre-Tresols, J.J.; Laguerta, J.; Ishii, S. Shredding artifacts: Extracting brain activity in EEG from extreme artifacts during skateboarding using ASR and ICA. Front. Neuroergon. 2024, 5, 1358660. [Google Scholar] [CrossRef]
- Jacobson, N.S.J.; Blum, S.; Witt, K.; Debener, S. A walk in the park? Characterizing gait-related artifacts in mobile EEG recordings. Eur. J. Neurosci. 2021, 54, 8071–8440. [Google Scholar] [CrossRef]
- Bernat, E.M.; Malone, S.M.; Williams, W.J.; Patrick, C.J.; Iacono, W.G. Decomposing delta, theta, and alpha time–frequency ERP activity from a visual oddball task using PCA. Int. J. Psychophysiol. 2007, 64, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, A.; Ethridge, P.; Ait Oumeziane, B.; Foti, D. Time frequency analysis in event-related potential methodologies. In The Oxford Handbook of EEG Frequency, 1st ed.; Gable, P.A., Miller, M.W., Bernat, E.W., Eds.; Oxford University Press: Oxford, UK, 2022; pp. 88–114. [Google Scholar]
- Avital, N.; Nahum, E.; Levi, G.C.; Malka, D. Cognitive state classification using convolutional neural networks on gamma-band EEG signals. Appl. Sci. 2024, 14, 8380. [Google Scholar] [CrossRef]
- Ledwidge, P.; Foust, J.; Ramsey, A. Recommendations for developing an EEG laboratory at a primarily undergraduate institution. J. Undergrad. Neurosci. Educ. 2018, 17, A10–A19. [Google Scholar] [PubMed]
- Lau, T.M.; Gwin, J.T.; Ferris, D.P. How many electrodes are really needed for EEG-based mobile brain imaging? J. Behav. Brain Sci. 2012, 2, 387–393. [Google Scholar] [CrossRef]
- Avital, N.; Shulkin, N.; Malka, D. Automatic classification of average power in electroencephalography signals for enhanced detection of brain activity and behavioral patterns. Biosensors 2025, 15, 314. [Google Scholar] [CrossRef] [PubMed]
Congruent (M ± SD) | Incongruent (M ± SD) | Test Statistic | |
---|---|---|---|
Dynamic flanker ^ | 3.71 ± 1.32 | 4.45 ± 1.73 | t(17) = −2.0, p = 0.031 |
Standing flanker | 2.48 ± 2.72 | 3.81 ± 2.34 | t(7) = −2.22, p = 0.031 |
Dynamic (n = 18) | Dynamic (n = 8) | Standing (n = 8) | t(7) | |
---|---|---|---|---|
N100 latency | 130.89 ± 14.76 | 135 ± 16.53 | 129.50 ± 12.82 | 1.05 |
N100 amplitude | −4.13 ± 2.30 | −4.22 ± 2.27 | −5.19 ± 2.85 | 1.05 |
P200 amplitude | 4.84 ± 2.58 | 4.51 ± 2.49 | 7.51 ± 4.05 | −3.01 * |
P200 latency | 208.89 ± 20.74 | 204.5 ± 25.61 | 208 ± 18.27 | −0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledwidge, P.S.; McPherson, C.N.; Faulkenberg, L.; Morgan, A.; Baylis, G.C. A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running. Sensors 2025, 25, 4810. https://doi.org/10.3390/s25154810
Ledwidge PS, McPherson CN, Faulkenberg L, Morgan A, Baylis GC. A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running. Sensors. 2025; 25(15):4810. https://doi.org/10.3390/s25154810
Chicago/Turabian StyleLedwidge, Patrick S., Carly N. McPherson, Lily Faulkenberg, Alexander Morgan, and Gordon C. Baylis. 2025. "A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running" Sensors 25, no. 15: 4810. https://doi.org/10.3390/s25154810
APA StyleLedwidge, P. S., McPherson, C. N., Faulkenberg, L., Morgan, A., & Baylis, G. C. (2025). A Comparison of Approaches for Motion Artifact Removal from Wireless Mobile EEG During Overground Running. Sensors, 25(15), 4810. https://doi.org/10.3390/s25154810