Asymmetric Spread Analysis of Heart Rate Variability in XC Mountain Biking During a 20-Minute Autonomic Profile Test
Abstract
1. Introduction
2. Methodology
Autonomic Profile Test
3. Data Analysis
3.1. Calculation of the Asymmetric Spread Index (ASI)
3.2. Porta’s Index (PI%)
3.3. Guzik’s Index (GI%)
3.4. Ehler’s Index (EI)
- where
- Δ(RR): The difference between two consecutive R-R intervals (ΔRR = RRₙ₊₁ − RRₙ).
- Δ(RR⁻): The negative values of Δ(RR), representing heart rate accelerations.
- Δ(RR⁺): The positive values of Δ(RR), representing heart rate decelerations.
3.5. Statistical Analysis
4. Results
5. Discussion
5.1. Asymmetrical Propagation of Heart Rate
5.2. Vagal Response in Athletes
5.3. Neurovegetative Balance in Mountain Bikers by Gender
6. Conclusions
7. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Lundstrom, J.; Foreman, A.; Biltz, G. Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes. Int. J. Sports Med. 2023, 44, 9–19. [Google Scholar] [CrossRef] [PubMed]
- van Ravenswaaij-Arts, C.M.; Kollee, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Intern. Med. 1993, 118, 436–447. [Google Scholar] [CrossRef]
- Woerner, S. Autonomic Function in Indoor Versus Mountain Bike Riding. Available online: https://libres.uncg.edu/ir/asu/f/Woerner,%20Shaun%20Thesis.XX.pdf (accessed on 1 June 2025).
- Swart, A.; Constantinou, D. The effects of a 3-day mountain bike cycling race on the autonomic nervous system (ANS) and heart rate variability in amateur cyclists: A prospective quantitative research design. BMC Sports Sci. Med. Rehabil. 2023, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Herzig, D.; Asatryan, B.; Brugger, N.; Eser, P.; Wilhelm, M. The association between endurance training and heart rate variability: The confounding role of heart rate. Front. Physiol. 2018, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Bourdillon, N.; Bellenoue, S.; Schmitt, L.; Millet, G.P. Daily cardiac autonomic responses during the Tour de France in a male professional cyclist. Front. Neurosci. 2024, 17, 1221957. [Google Scholar] [CrossRef]
- Solaro, N.; Pagani, M.; Spataro, A.; Lucini, D. Assessing the cardiac autonomic response to bicycle exercise in Olympic athletes with different loads of endurance training: New insights from statistical indicators based on multilevel exploratory factor analysis. Front. Physiol. 2023, 14, 1245310. [Google Scholar] [CrossRef]
- Mina-Paz, Y.; Santana-García, V.N.; Tafur-Tascon, L.J.; Cabrera-Hernández, M.A.; Pliego-Carrillo, A.C.; Reyes-Lagos, J.J. Analysis of short-term heart rate asymmetry in high-performance athletes and non-athletes. Symmetry 2022, 14, 1229. [Google Scholar] [CrossRef]
- Sibrecht, G.; Piskorski, J.; Krauze, T.; Guzik, P. Heart Rate Asymmetry, Its Compensation, and Heart Rate Variability in Healthy Adults During 48-h Holter ECG Recordings. J. Clin. Med. 2023, 12, 1219. [Google Scholar] [CrossRef]
- Gąsior, J.S.; Gąsienica-Józkowy, M.; Młyńczak, M.; Rosoł, M.; Makuch, R.; Baranowski, R.; Werner, B. Heart rate dynamics and asymmetry during sympathetic activity stimulation and post-stimulation recovery in ski mountaineers—A pilot exploratory. Front. Sports Act. Living 2024, 6, 1336034. [Google Scholar] [CrossRef]
- Tafur-Tascón, L.; Cabrera-Hernandez, M.; Neisa-Herrera, L.; García-Corzo, S.; Povea-Combariza, C.; Tejada Rojas, C. Autonomic modulation and association with the performance in a jump test in university Colombian players of rugby seven. J. Hum. Sport Exerc. 2019, 14, S1102–S1111. [Google Scholar]
- Rohila, A.; Sharma, A. Asymmetric spread of heart rate variability. Biomed. Signal Process. Control 2020, 60, 101985. [Google Scholar] [CrossRef]
- Python, version 3.12; Python Software Foundation: Wilmington, DE, USA, 2023.
- Silva, L.E.V.; Fazan, R.; Marin-Neto, J.A. PyBioS: A freeware computer software for analysis of cardiovascular signals. Comput. Methods Programs Biomed. 2020, 197, 105718. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Casali, K.R.; Casali, A.G.; Gnecchi-Ruscone, T.; Tobaldini, E.; Montano, N.; Lange, S.; Geue, D.; Cysarz, D.; Van Leeuwen, P. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R550–R557. [Google Scholar] [CrossRef]
- Piskorski, J.; Guzik, P. Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults. Physiol. Meas. 2007, 28, 287–300. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Havstad, J.W.; Prichard, D.A.; Theiler, J. Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 1998, 18, 7474–7486. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Samuele, M.M. The physiology of mountain biking. Sports Med. 2007, 37, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Wundersitz, D.W.; Wright, B.J.; Gordon, B.A.; Pompei, S.; Lavie, C.J.; Nadurata, V.; Nolan, K.; Kingsley, M.I. Sympathovagal Balance is a Strong Predictor of Post High-Volume Endurance Exercise Cardiac Arrhythmia. Front. Physiol. 2022, 13, 848174. [Google Scholar] [CrossRef]
- Molina, G.E.; Porto, L.G.; Fontana, K.E.; Junqueira, L.F. Unaltered R–R interval variability and bradycardia in cyclists as compared with non-athletes. Clin. Auton. Res. 2013, 23, 141–148. [Google Scholar] [CrossRef]
- Grant, C.; Viljoen, M.; Janse van Rensburg, D.; Wood, P. Heart Rate Variability Assessment of the Effect of Physical Training on Autonomic Cardiac Control. Ann. Noninvasive Electrocardiol. 2012, 17, 219–229. [Google Scholar] [CrossRef]
- Gourine, A.; Ackland, G. Cardiac Vagus and Exercise. Physiology 2019, 71, 71–80. [Google Scholar] [CrossRef]
- Klintworth, A.; Ajtay, Z.; Paljunite, A.; Szabados, S.; Hejjel, L. Heart rate asymmetry follows the inspiration/expiration ratio in healthy volunteers. Physiol. Meas. 2012, 33, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Pawłowski, R.; Buszko, K.; Newton, J.; Kujawski, S.P.; Zalewski, P. Heart Rate Asymmetry Analysis During Head-Up Tilt Test in Healthy Men. Front. Physiol. 2021, 12, 657902. [Google Scholar] [CrossRef] [PubMed]
- Koenig, J.; Thayer, J.F. Sex differences in healthy human heart rate variability: A meta-analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef] [PubMed]
- Catai, A.M.; Pastre, C.M.; Godoy, M.F.; Silva, E.D.; Takahashi, A.C.M.; Vanderlei, L.C.M. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Özgünen, K.; Günaştı, Ö.; Özdemir, Ç.; Korkmaz Eryılmaz, S.; Gezgin, E.; Boyraz, C.; Kılcı, A.; Adaş, Ü.; Kurdak, S.S. The relationship between cardiac damage biomarkers and heart rate variability following 60 min of running. Clin. Auton. Res. 2022, 32, 249–260. [Google Scholar] [CrossRef] [PubMed]
Male | Female | |
---|---|---|
Age (yr) | 19 ± 1 | 19 ± 1 |
Weight (Kg) | 63.54 | 57.5 |
Height (cm) | 171.8 | 160.2 |
BMI (kg/m2) | 21.56 | 22.49 |
FAT (%) | 8 | 13 |
VO2max (mL/kg/min) | 67.5 | 58.5 |
HRmax (bpm) | 204 | 194 |
Powermax (watts) | 355 | 265 |
HF (ms2) (Mean SD) | LF (ms2) (Mean SD) | VLF (ms2) (Mean SD) | LF/HF (Ratio) (Mean SD) | RMSSD (ms) (Mean SD) | PNN50 (%) (Mean SD) | |
---|---|---|---|---|---|---|
Phase 1 | 2233.60 (2047.47) | 1318.80 (1192.05) | 395.80 (307.01) | 0.75 (0.49) | 79.22 (40.73) | 48.90 (25.05) |
Phase 2 | 9921.40 (4066.71) | 3015.20 (4540.54) | 346.40 (505.25) | 0.24 (0.25) | 127.26 (47.06) | 51.02 (19.77) |
Phase 3 | 17,864.20 (25,684.51) | 4001.60 (5512.22) | 1489.20 (3069.58) | 0.22 (0.11) | 165.86 (99.63) | 56.24 (13.46) |
Phase 4 | 3518.20 (1598.80) | 5456.80 (2731.57) | 2833.20 (1931.24) | 1.62 (0.56) | 135.36 (95.80) | 23.92 (17.07) |
Phase 5 | 689.40 (202.42) | 1624.60 (765.58) | 523.20 (426.36) | 2.33 (0.88) | 51.38 (18.53) | 12.02 (8.83) |
Phase 6 | 1347.00 (2977.40) | 780.20 (1612.93) | 164.80 (191.72) | 2.97 (2.40) | 29.76 (34.16) | 1.46 (1.58) |
Phase 7 | 1606.60 (1142.73) | 972.80 (838.02) | 240.00 (235.98) | 0.60 (0.19) | 88.26 (54.74) | 22.78 (9.50) |
Phase 8 | 2143.20 (1830.63) | 1722.20 (1880.27) | 363.40 (445.33) | 0.81 (0.38) | 112.02 (37.43) | 51.68 (13.27) |
HF (ms2) (Mean SD) | LF (ms2) (Mean SD) | VLF (ms2) (Mean SD) | LF/HF (Ratio) (Mean SD) | RMSSD (ms) (Mean SD) | PNN50 (%) (Mean SD) | |
---|---|---|---|---|---|---|
Phase 1 | 2114.60 (1662.04) | 2645.80 (4096.01) | 411.40 (512.80) | 0.91 (0.74) | 77.40 (36.35) | 45.34 (24.33) |
Phase 2 | 16,861.40 (12,485.93) | 4810.00 (6040.46) | 426.20 (645.18) | 0.27 (0.24) | 157.30 (72.17) | 49.00 (26.92) |
Phase 3 | 19,095.00 (20,116.92) | 2668.20 (5018.58) | 1257.60 (2608.54) | 0.16 (0.18) | 173.04 (115.90) | 56.96 (27.43) |
Phase 4 | 3165.20 (3616.31) | 7213.40 (5844.94) | 2727.00 (4501.18) | 3.15 (1.22) | 46.94 (24.71) | 18.44 (10.82) |
Phase 5 | 882.20 (864.23) | 3595.80 (2172.76) | 2193.80 (2397.88) | 9.91 (11.71) | 57.36 (40.62) | 16.90 (16.80) |
Phase 6 | 1464.00 (3255.16) | 824.80 (1765.09) | 169.40 (285.28) | 3.91 (6.98) | 56.74 (37.73) | 7.34 (3.93) |
Phase 7 | 4411.20 (8308.09) | 1437.40 (2244.24) | 364.00 (344.49) | 0.53 (0.23) | 103.02 (76.49) | 18.12 (13.19) |
Phase 8 | 3589.00 (3776.50) | 3347.80 (3813.98) | 388.00 (508.38) | 0.83 (0.32) | 113.10 (62.83) | 47.20 (16.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafur-Tascón, L.J.; Martínez-Patiño, M.J.; Mina-Paz, Y. Asymmetric Spread Analysis of Heart Rate Variability in XC Mountain Biking During a 20-Minute Autonomic Profile Test. Sensors 2025, 25, 4677. https://doi.org/10.3390/s25154677
Tafur-Tascón LJ, Martínez-Patiño MJ, Mina-Paz Y. Asymmetric Spread Analysis of Heart Rate Variability in XC Mountain Biking During a 20-Minute Autonomic Profile Test. Sensors. 2025; 25(15):4677. https://doi.org/10.3390/s25154677
Chicago/Turabian StyleTafur-Tascón, Luis Javier, María José Martínez-Patiño, and Yecid Mina-Paz. 2025. "Asymmetric Spread Analysis of Heart Rate Variability in XC Mountain Biking During a 20-Minute Autonomic Profile Test" Sensors 25, no. 15: 4677. https://doi.org/10.3390/s25154677
APA StyleTafur-Tascón, L. J., Martínez-Patiño, M. J., & Mina-Paz, Y. (2025). Asymmetric Spread Analysis of Heart Rate Variability in XC Mountain Biking During a 20-Minute Autonomic Profile Test. Sensors, 25(15), 4677. https://doi.org/10.3390/s25154677