You are currently viewing a new version of our website. To view the old version click .
Sensors
  • Correction
  • Open Access

25 July 2025

Correction: Sarmadi et al. Attention Horizon as a Predictor for the Fuel Consumption Rate of Drivers. Sensors 2022, 22, 2301

,
,
and
1
Center for Applied Intelligent Systems Research, Halmstad University, 302 50 Halmstad, Sweden
2
Stratio Company, 1050-127 Lisbon, Portugal
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Machine Learning from Heterogeneous Condition Monitoring Sensor Data for Predictive Maintenance and Smart Industry

Error in Algorithms 1 and 2

Algorithms 1 and 2 have been updated, with the new, correct versions shown below. The lines that needed to be corrected from the original paper [1] are annotated with dashed-line boxes. In the boxes below, you can see the corrections.
Algorithm 1 Finding the set of paths before stopping at red traffic lights during a day for a vehicle
Procedure FindPaths(C, S, T)
    SP ← { i | si ∈ S ∧ si < 1 }// All point indices with slow vehicle speed
    P←∅// P: The set of extracted traffic light paths
    For i ∈ SP
        If ∄ (RD) ∈ P such that i ∈ R
            t ← T(ci)// t: coordinates of the closest traffic light
            j ← i + 1
            While j ≤ N ∧ (dist(cjt) < dist(cj1t) ∧ dist(cj, t) < 50)// Distance unit is meters
                j ← j + 1
            End While
            If dist(cj1t) < 5//Distance unit is meters
                While j > 1 ∧ (j−1 ∈ SP ∨ j ∉ SP)//Go back to the last slowdown point
                    ← j − 1
                End While
                P ← P ∪ CreatePath(CjtP)
                Break
            End If
        End If
    End For
    Return P
End Procedure
Algorithm 2 Creating a path given its closest point to the traffic light
Procedure CreatePath(C, j, t, P)
    k ← 1
    dk ← 0// dk: Traversed distance to the stopping point at the path’s k-th index
    rk ← j// rk: The data point index at the path’s k-th index
    While dk < Lp ∧ rk > 1 ∧ [∄ (RD) ∈ P such that rk1 ∈ R]
        k ← k + 1
        rk ← rk1 − 1
        dk ← dk−1 + dist( c r k , c r k 1 )
    End While
    R ← ⟨r1r2, ..., rk
    D ← ⟨d1d2, ..., dk
    If dk ≥ Lp// If the path’s traversed distance is greater than Lp
        Return {(RD)}
    Else
        Return 
    End If
End Procedure
The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

  1. Sarmadi, H.; Nowaczyk, S.; Prytz, R.; Simão, M. Attention Horizon as a Predictor for the Fuel Consumption Rate of Drivers. Sensors 2022, 22, 2301. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.