Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices
Abstract
1. Introduction
- mechanical devices,
- electromechanical devices,
- electrical devices.
- Track Occupation and Train Detection: Inductive and magneto-inductive sensors are installed along the tracks to detect the passage of train axles, enabling precise tracking of a train’s location. This capability is critical for effective traffic management, establishing safe distances, and controlling signaling systems.
- Axle Counting and Train Integrity Checks: Modern track sensors enable the counting of each rail vehicle’s axle, as well as tracking travel speed and direction. This is essential for axle counting systems, which are used to control track and switch availability.
- Monitoring the State of Track Equipment: Position sensors are utilized to verify the positioning of railroad switches and derailers, along with the status of light signals. This monitoring allows for the automatic detection of failures or malfunctions within these components.
2. Research Goal, Object, and Methodology
- Dual power supply lines with a power generator,
- Single power supply line with a power generator,
- Dual power supply lines.
3. Reliability Model of Electric Power Supply Systems for Railway Traffic Control Devices
- 0—an operable and committable state. There is no threat.
- 1—a controlled failure state. Despite the occurrence of the failure, the system retains the capacity to revert to an operational state without the necessity of external intervention.
- 2—a critical failure state. The system needs repair, and the intervention of a technician is required.
- λ = 0.00025 h−1 (intensity of failures estimated based on operational data for the studied area),
- λ2 = 0.000025 h−1 (intensity of transitions to a critical failure state constituting 10% of the λ value),
- λ3 = 60 h−1 (intensity of control by the diagnostic subsystem),
- µ1 = 6 h−1 (intensity of recovery—inverse of assumed recovery time = 10 min),
- µ2 = 0.33 h−1 (intensity of repair—inverse of assumed repair time = 3 h),
- µ3 = 60 h−1 (intensity of reporting—after 1 min, the diagnostic subsystem reports the system status—Figure 8b),
- k = 0.1 (probability of detecting a threat and sending a message to support).
4. Verification of the Assumptions for the Markov Model
5. Discussion and Recommendations for Power Supply Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RCMS | Railway Traffic Control and Management Systems |
PLC | Programmable Logic Controller |
CCTV | Closed Circuit Television |
ATS | Automatic Transfer Switch |
NTPSL | Non-Traction Power Supply Line |
RTCS | Railway Traffic Control Systems |
EPROM | Erasable Programmable Read-Only Memory |
SPD | Surge Protection Device |
EMI | Electromagnetic Interference |
RFI | Radio Frequency Interference |
TVS | Transient Voltage Surge |
References
- Anagnostopoulos, A. Modal Shift to Rail Transport as a Mitigation Measure to Decarbonize the Transport Sector. Review of Barriers and Opportunities. E3S Web Conf. 2024, 585, 12001. [Google Scholar] [CrossRef]
- Rybicka, I.; Stopka, O.; L’upták, V.; Chovancová, M.; Droździel, P. Application of the methodology related to the emission standard to specific railway line in comparison with parallel road transport: A case study. MATEC Web Conf. 2018, 244, 03002. [Google Scholar] [CrossRef]
- Zitrický, V.; Nedeliaková, E.; Valla, M. The position of road and rail transport in terms of carbon neutrality. Transp. Res. Procedia 2023, 74, 210–216. [Google Scholar] [CrossRef]
- López-Acevedo, F.J.; Herrero, M.J.; Escavy Fernández, J.I.; González Bravo, J. Potential Reduction in Carbon Emissions in the Transport of Aggregates by Switching from Road-Only Transport to an Intermodal Rail/Road System. Sustainability 2024, 16, 9871. [Google Scholar] [CrossRef]
- European Union Agency for Railways. Report on Railway Safety and Interoperability in the EU 2024; Publications Office of the European Union: Luxemburg, 2024; pp. 14–15. ISBN 9789294774583. [Google Scholar] [CrossRef]
- Flammini, F. Railway Safety, Reliability, and Security: Technologies and Systems Engineering; IGI Global: Hershey, PA, USA, 2012; ISBN 978-146-66-1644-8. [Google Scholar]
- Perpinya, X. (Ed.) Reliability and Safety in Railway; InTech: London, UK, 2012; ISBN 978-953-51-0451-3. [Google Scholar]
- Leitner, B. A General Model for Railway Systems Risk Assessment with the Use of Railway Accident Scenarios Analysis. Procedia Eng. 2017, 187, 150–159. [Google Scholar] [CrossRef]
- Titko, M.; Lusková, M. Analysis of Risks Associated with Transport Infrastructure Elements Failure due to Extreme Weather Events. In Proceedings of the 20th International Scientific Conference, Transport Means, Juodkrante, Lithuania, 5–7 October 2016; pp. 207–212. [Google Scholar]
- Haładyn, S. The Problem of Train Scheduling in the Context of the Load on the Power Supply Infrastructure. A Case Study. Energies 2021, 14, 4781. [Google Scholar] [CrossRef]
- Kornaszewski, M.; Pniewski, R. Impact of new informatics solutions using in railway transport on its safety. In Proceedings of the International Conference Transport Means, Kaunas, Lithuania, 3–5 October 2018; Part II. pp. 996–1001. [Google Scholar]
- Theeg, G.; Vlasenko, S. (Eds.) Railway Signalling & Interlocking. International Compendium, 2nd ed.; PMC Media House GmbH: Hamburg, Germany, 2018; ISBN 9783962451561. [Google Scholar]
- Kampik, M.; Fice, M.; Piaskowy, A. Testing Algorithms for Controlling the Distributed Power Supply System of a Railway Signal Box. Energies 2024, 17, 4423. [Google Scholar] [CrossRef]
- Nash, C.; Smith, A. Regulation and Competition in Railways. In International Encyclopedia of Transportation, 1st ed.; Vickerman, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 409–413. ISBN 9780081026724. [Google Scholar]
- Wontorski, P. Digital Design of a Railway Traffic Control System: Purpose and Scope of Digitization. WJTE 2020, 131, 7–16. [Google Scholar] [CrossRef]
- Chrzan, M. Study of the Possibility of Using Transmission in the LTE System on a Selected Railway Line for the Purpose of Running Railway Traffic. AoT 2021, 57, 91–101. [Google Scholar] [CrossRef]
- Poroshin, A.; Nikitin, A.; Shatokhin, V.; Kotenko, A. Diagnostics and Monitoring of Railway Automation and Remote Control Power Supply Devices. In Proceedings of the 2017 IEEE East-West Design & Test Symposium (EWDTS), Novi Sad, Serbia, 29 September–2 October 2017; pp. 1–6. [Google Scholar]
- Ma, Z.; Wu, Y.; Xiao, M.; Liu, G.; Zhang, Z. Interference Suppression for Railway Wireless Communication Systems: A Reconfigurable Intelligent Surface Approach. IEEE Trans. Veh. Technol. 2021, 70, 11593–11603. [Google Scholar] [CrossRef]
- González-Plaza, A.; Gutiérrez Cantarero, R.; Arancibia Banda, R.B.; Briso Rodríguez, C. 5G Based on MNOs for Critical Railway Signalling Services: Future Railway Mobile Communication System. Appl. Sci. 2022, 12, 9003. [Google Scholar] [CrossRef]
- Olczykowski, Z.; Wojciechowski, J.; Młyńczak, J. Reliability and quality of the power supply for rail transport. Sci. J. Sil. Univ. Technol. Ser. Transp. 2017, 96, 139–149. [Google Scholar] [CrossRef]
- Nowakowski, W.; Olczykowski, Z.; Wojciechowski, J. Supply railway traffic control devices in case of failure of the power system. Arch. Transp. Syst. Telemat. 2017, 10, 16–20. [Google Scholar]
- Łukasiak, J.M.; Paś, J.; Rosiński, A. Selected Reliability Aspects Related to the Power Supply of Security Systems. Energies 2024, 17, 3665. [Google Scholar] [CrossRef]
- Wojciechowski, J.; Krawczyk, G. Assessment of Power Quality Parameters in the Power Supply Circuits of the Railway Automation DC System. In Proceedings of the Transport Means 2024: 28th International Scientific Conference, KTU leidykla “Technologija”, Kaunas, Lithuania, 22 December 2024; pp. 1014–1019. [Google Scholar] [CrossRef]
- Stawowy, M.; Rosiński, A.; Siergiejczyk, M.; Perlicki, K. Quality and Reliability-Exploitation Modeling of Power Supply Systems. Energies 2021, 14, 2727. [Google Scholar] [CrossRef]
- Frenkel, I.; Bolvashenkov, I.; Herzog, H.G.; Khvatskin, L. Performance Availability Assessment of Combined Multi Power Source Traction Drive Considering Real Operational Conditions. Transp. Telecommun. 2016, 17, 179–191. [Google Scholar] [CrossRef]
- Kiedrowski, P.; Saganowski, Ł. Method of Assessing the Efficiency of Electrical Power Circuit Separation with the Power Line Communication for Railway Signs Monitoring. Transp. Telecommun. 2021, 22, 407–416. [Google Scholar] [CrossRef]
- Kaleybar, H.J.; Brenna, M.; Foiadelli, F.; Fazel, S.S.; Zaninelli, D. Power Quality Phenomena in Electric Railway Power Supply Systems: An Exhaustive Framework and Classification. Energies 2020, 13, 6662. [Google Scholar] [CrossRef]
- Chovančíková, N.; Dvořák, Z. Effect of a Power Failure on Rail Transport. Transp. Res. Procedia 2019, 40, 1289–1296. [Google Scholar] [CrossRef]
- Andrusca, M.; Adam, M.; Dragomir, A.; Lunca, E. Innovative Integrated Solution for Monitoring and Protection of Power Supply System from Railway Infrastructure. Sensors 2021, 21, 7858. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowa-Bajon, M. Podstawy Sterowania Ruchem Kolejowym, Funkcje, Wymagania Zarys Technika; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2002; ISBN 8372073430. [Google Scholar]
- Dyduch, J.; Kornaszewski, M. Systemy Sterowania Ruchem Kolejowym, 2nd ed.; Wydawnictwo Politechniki Radomskiej: Radom, Poland, 2007; ISBN 978-83-7351-153-8. [Google Scholar]
- Młyńczak, J.; Toruń, A.; Bester, L. European Rail Traffic Management System (ERTMS). In Intelligent Transportation Systems—Problems and Perspectives. Studies in Systems, Decision and Control; Sładkowski, A., Pamuła, W., Eds.; Springer: Cham, Switzerland, 2016; Volume 32, pp. 217–242. [Google Scholar] [CrossRef]
- Garcia-Perez, A.; Shaikh, S.A.; Kalutarage, H.K.; Jahantab, M. Towards a Knowledge-Based Approach for Effective Decision-Making in Railway Safety. J. Knowl. Manag. 2015, 19, 641–659. [Google Scholar] [CrossRef]
- Perzyński, T.; Lewiński, A.; Łukasik, Z. The concept of Emergency Notification System for inland navigation. In Information, Communication and Environment. Marine Navigation and Safety of Sea Transportation; Weintrit, A., Neuman., T., Eds.; CRC Press Taylor & Francis Group: London, UK, 2015; pp. 173–177. ISBN 9781138028579. [Google Scholar]
- Jalolova, M.; Amirov, L.; Askarova, M.; Zakhidov, G. Territorial features of railway transport control mechanisms. Transp. Res. Procedia 2022, 63, 2645–2652. [Google Scholar] [CrossRef]
- Kara, T.; Savas, M.C. Design and simulation of a decentralized railway traffic control system. Eng. Technol. Appl. Sci. Res. 2016, 6, 945–951. [Google Scholar] [CrossRef]
- Nowakowski, W.; Ciszewski, T.; Młyńczak, J.; Łukasik, Z. Failure Evaluation of the Level Crossing Protection System Based on Fault Tree Analysis. In Recent Advances in Traffic Engineering for Transport Networks and Systems; Macioszek, E., Sierpiński, G., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2018; Volume 21, pp. 107–115. ISBN 978-3-319-64083-9. [Google Scholar]
- Drózd, P.; Rosiński, A. Issues of Railway Traffic Control Devices Availability in the Exploitation Process. J. KONBiN 2020, 50, 181–203. [Google Scholar] [CrossRef]
- Standardy Techniczne—Szczegółowe Warunki Techniczne dla Modernizacji lub Budowy Linii Kolejowych do Prędkości Vmax<=250km/h. TOM. V Elektroenergetyka Nietrakcyjna. 2022. Available online: https://www.plk-sa.pl/files/public/user_upload/pdf/Akty_prawne_i_przepisy/Standardy_techniczne/11.04.2022/4_TOM_V_.PDF (accessed on 20 May 2025).
- CNTK 4034/10; Opracowanie Wymagań na Zasilanie Energią Elektryczną Urządzeń Sterowania Ruchem Kolejowym. CNTK: Warszawa, Poland, 2003.
- Mendes, A.M.S.; Rocha, R.F.; Marques Cardoso, A.J. Analysis of a Railway Power System Based on Four Quadrant Converters Operating under Faulty Conditions. In Proceedings of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011; pp. 1019–1024. [Google Scholar] [CrossRef]
- Zhao, K.; Ciufo, P.; Perera, S. Rectifier Capacitor Filter Stress Analysis When Subject to Regular Voltage Fluctuations. IEEE Trans. Power Electron. 2013, 28, 3627–3635. [Google Scholar] [CrossRef]
- Barbusiński, K.; Kwaśnicki, P.; Gronba-Chyła, A.; Generowicz, A.; Ciuła, J.; Szeląg, B.; Fatone, F.; Makara, A.; Kowalski, Z. Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules. Energies 2024, 17, 680. [Google Scholar] [CrossRef]
- Chung, H.S.; Wang, H.; Blaabjerg, F.; Pecht, M. (Eds.) Reliability of Power Electronic Converter Systems; Institution of Engineering and Technology: Stevenage, UK, 2015; ISBN 978-1-84919-901-8. [Google Scholar]
- Flicker, J.; Johnson, J.; Hacke, P.; Thiagarajan, R. Automating Component-Level Stress Measurements for Inverter Reliability Estimation. Energies 2022, 15, 4828. [Google Scholar] [CrossRef]
- Ajra, Y.; Hoblos, G.; Al Sheikh, H.; Moubayed, N. A Literature Review of Fault Detection and Diagnostic Methods in Three-Phase Voltage-Source Inverters. Machines 2024, 12, 631. [Google Scholar] [CrossRef]
- Baudais, B.; Ben Ahmed, H.; Jodin, G.; Degrenne, N.; Lefebvre, S. Life Cycle Assessment of a 150 kW Electronic Power Inverter. Energies 2023, 16, 2192. [Google Scholar] [CrossRef]
- Rahimpour, S.; Tarzamni, H.; Kurdkandi, N.V.; Husev, O.; Vinnikov, D.; Tahami, F. An Overview of Lifetime Management of Power Electronic Converters. IEEE Access 2022, 10, 109688–109711. [Google Scholar] [CrossRef]
- Peyghami, S.; Wang, Z.; Blaabjerg, F. A Guideline for Reliability Prediction in Power Electronic Converters. IEEE Trans. Power Electron. 2020, 35, 10958–10968. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Kwak, S. Enhance Reliability of Semiconductor Devices in Power Converters. Electronics 2020, 9, 2068. [Google Scholar] [CrossRef]
- Hosseinabadi, F.; Chakraborty, S.; Bhoi, S.K.; Prochart, G.; Hrvanovic, D.; Hegazy, O. A Comprehensive Overview of Reliability Assessment Strategies and Testing of Power Electronics Converters. IEEE Open J. Power Electron. 2024, 5, 473–512. [Google Scholar] [CrossRef]
- Aqueveque, P.; Wiechmann, E.; Burgos, R. On the Efficiency and Reliability of High-Current Rectifiers. In Proceedings of the Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA, 8–12 October 2006; Volume 3, pp. 1290–1297. [Google Scholar] [CrossRef]
- Power System Protection, 2nd ed.; IEEE Press series on power and energy systems; Wiley IEEE Press: Hoboken, NJ, USA; Piscataway, NJ, USA, 2022; ISBN 978-1-119-51310-0.
- Sykes, J.; Madani, V.; Burger, J.; Adamiak, M.; Premerlani, W. Reliabilty of Protection Systems (What Are the Real Concerns). In Proceedings of the 2010 63rd Annual Conference for Protective Relay Engineers, College Station, TX, USA, 29 March–1 April 2010; pp. 1–16. [Google Scholar]
- Wang, H.; Li, S.; Lin, Z.; Li, W.; Liu, Q.; Jiang, W. Analysis of Factors Influencing Contact Arc Erosion under Capacitive Inrush Currents in High-Voltage DC Relays. AIP Adv. 2025, 15, 045201. [Google Scholar] [CrossRef]
- Yu, G.-F.; Chiu, Y.-J.; Zheng, X.; Yuan, Z.-L.; Wang, Z.-X. Contact Pressure of High-Voltage DC Power Relay Change and Life Prediction and Structure Optimization. Adv. Mech. Eng. 2021, 13, 1687814021991666. [Google Scholar] [CrossRef]
- Zhu, Q.C.; Li, Z.B.; Wei, J.; Liu, Z.X.; Huang, J.; Zhang, D.D.; Hasegawa, M. Experimental Study on Arcing Effects to Contact Materials in 270V Dc. Plasma Phys. Technol. 2017, 4, 61–65. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, J.; Wang, H.; Yang, C.; Sun, S. Study on Reliability Technology of Contactor Relay. J. Zhejiang Univ.—Sci. A 2007, 8, 481–484. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, M.; Zhao, N.; Chen, A. A Reliability Assessment Method for High Speed Train Electromagnetic Relays. Energies 2018, 11, 652. [Google Scholar] [CrossRef]
- Bao, Y.; Guo, C.; Zhang, J.; Wu, J.; Pang, S.; Zhang, Z. Impact Analysis of Human Factors on Power System Operation Reliability. J. Mod. Power Syst. Clean Energy 2018, 6, 27–39. [Google Scholar] [CrossRef]
- Torres, E.S.; Celeita, D.; Ramos, G. State of the Art of Human Factors Analysis Applied to Industrial and Commercial Power Systems. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 22–24 October 2018; pp. 33–38. [Google Scholar]
- Kornaszewski, M.; Ciszewski, T.; Nowakowski, W.; Pniewski, R. A Formal Model of the Exploitation Process for Railway Signalling Devices. Appl. Sci. 2024, 14, 11274. [Google Scholar] [CrossRef]
- Kumar, N.; Tee, K.F. Reliability and Inspection Modelling of Railway Signalling Systems. Modelling 2021, 2, 344–354. [Google Scholar] [CrossRef]
- Łukasik, Z.; Nowakowski, W.; Ciszewski, T.; Freimane, J. A fault diagnostic methodology for railway automatics systems. Procedia Comput. Sci. 2019, 149, 159–166. [Google Scholar] [CrossRef]
- Durmus, M.S.; Ustoglu, İ.; Tsarev, R.Y.; Schwarz, M. Modular fault diagnosis in fixed-block railway signaling systems. IFAC-PapersOnLine 2016, 49, 459–464. [Google Scholar] [CrossRef]
- Gertsbakh, I.B. Mixed Vehicle Flow At Signalized Intersection: Markov Chain Analysis. Transp. Telecommun. 2015, 16, 190–196. [Google Scholar] [CrossRef]
- Migawa, K.; Borowski, S.; Neubauer, A.; Sołtysiak, A. Semi-Markov Model of the System of Repairs and Preventive Replacements by Age of City Buses. Appl. Sci. 2021, 11, 10411. [Google Scholar] [CrossRef]
- Girtler, J. The Semi-Markov Model of the Process of Appearance of Sea-Going Ship Propupsion System Ability and Inability States in Application to Determining the Reliablity of These Systems. Pol. Marit. Res. 2013, 20, 18–24. [Google Scholar] [CrossRef]
- Gilardoni, G.L.; De Toledo, M.L.G.; Freitas, M.A.; Colosimo, E.A. Dynamics of an Optimal Maintenance Policy for Imperfect Repair Models. Eur. J. Oper. Res. 2016, 248, 1104–1112. [Google Scholar] [CrossRef]
- Hariga, M.; Azaiez, N. Heuristic Procedures for the Single Facility Inspection Problem with Minimal Repair and Increasing Failure Rate. J. Oper. Res. Soc. 2006, 57, 1081–1088. [Google Scholar] [CrossRef]
- Ouali, M.-S.; Tadj, L.; Yacout, S.; Ait-Kadi, D. A Survey of Replacement Models with Minimal Repair. In Replacement Models with Minimal Repair; Tadj, L., Ouali, M.-S., Yacout, S., Ait-Kadi, D., Eds.; Springer Series in Reliability Engineering; Springer: London, UK, 2011; pp. 3–100. ISBN 978-0-85729-214-8. [Google Scholar]
- Huynh, K.T.; Castro, I.T.; Barros, A.; Bérenguer, C. Modeling Age-Based Maintenance Strategies with Minimal Repairs for Systems Subject to Competing Failure Modes Due to Degradation and Shocks. Eur. J. Oper. Res. 2012, 218, 140–151. [Google Scholar] [CrossRef]
- Kampik, M.; Bodzek, K.; Piaskowy, A.; Pilśniak, A.; Fice, M. An Analysis of Energy Consumption in Railway Signal Boxes. Energies 2023, 16, 7985. [Google Scholar] [CrossRef]
Devices | Number of Failures in Each Month | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Σ | I | II | III | IV | V | VI | VII | VII | IX | X | XI | XII | |
Rectifier 48–60 V DC | 14 | 2 | 8 | 2 | 1 | 1 | |||||||
Rectifier 24 V DC | 10 | 2 | 3 | 3 | 1 | 1 | |||||||
Rectifier 120 V DC | 11 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | ||||
Controller | 6 | 1 | 2 | 1 | 2 | ||||||||
Electric protections | 11 | 1 | 3 | 2 | 2 | 1 | 1 | 1 | |||||
Inverter 230 V AC | 2 | 1 | 1 | ||||||||||
Rectiverter 220 V | 7 | 2 | 1 | 1 | 2 | 1 | |||||||
Generator | 6 | 1 | 1 | 1 | 3 | ||||||||
Batteries | 3 | 1 | 2 | ||||||||||
Sensors | 7 | 3 | 1 | 1 | 2 | ||||||||
Power failure (mains interference) | 15 | 2 | 1 | 3 | 2 | 2 | 1 | 2 | 2 | ||||
Damaged cable (ground fault) | 3 | 2 | 1 | ||||||||||
Switching elements | 5 | 1 | 1 | 1 | 1 | 1 | |||||||
Other | 4 | 1 | 1 | 1 | 1 | ||||||||
Total failures | 104 | 9 | 15 | 6 | 8 | 5 | 18 | 11 | 10 | 6 | 5 | 5 | 6 |
Alarm Label | Number of Alarms in Each Month | ||||||
---|---|---|---|---|---|---|---|
Σ | XII | I | II | III | IV | V | |
FAILURE—Current circuit—Source 1 !!! | 2 | 2 | |||||
FAILURE—Current circuit—Source 2 !!! | 6 | 5 | 1 | ||||
24 V DC failure | 11 | 1 | 7 | 3 | |||
Source 1 not available | 14 | 5 | 2 | 3 | 2 | 2 | |
Source 2 not available | 15 | 5 | 2 | 3 | 2 | 1 | 2 |
POWER GENERATOR running | 12 | 3 | 2 | 3 | 2 | 2 | |
BATTERY Mode—RTCS Power Supply | 51 | 16 | 15 | 6 | 4 | 6 | 4 |
START power generator | 14 | 7 | 2 | 3 | 2 | ||
Temperature inside switchboard > 25 | 30 | 6 | 6 | 7 | 5 | 6 | |
Z1 AC_FAIL: AC Power Failure | 47 | 16 | 11 | 6 | 4 | 5 | 5 |
Z2 CHG/UPS: Battery Mode | 39 | 16 | 6 | 6 | 4 | 3 | 4 |
Z2 DCM: Battery discharged | 39 | 16 | 6 | 6 | 4 | 3 | 4 |
Z2 OP_OFF: DC rectifier—No power supply | 42 | 16 | 6 | 6 | 4 | 5 | 5 |
Contactor engaged POWER GENERATOR | 11 | 4 | 2 | 3 | 2 | ||
Contactor engaged SOURCE 1 | 12 | 6 | 1 | 3 | 2 | ||
Total alarms | 345 | 124 | 68 | 52 | 35 | 29 | 37 |
Alarm Label | Number of Alarms in Each Month | ||||||
---|---|---|---|---|---|---|---|
Σ | XII | I | II | III | IV | V | |
AC_FAIL: AC Power failure | 41 | 30 | 2 | 7 | 2 | ||
FAILURE—Current circuit—Source 1 !!! | 23 | 23 | |||||
24 V DC failure | 3 | 3 | |||||
Source 1 not available | 15 | 8 | 1 | 5 | 1 | ||
CCM: Charging—Phase 1 | 41 | 30 | 2 | 6 | 1 | 2 | |
CHG/UPS: Battery Mode | 41 | 30 | 2 | 7 | 2 | ||
CVM: Charging—Phase 2 | 38 | 29 | 1 | 6 | 2 | ||
DCM: Battery discharged | 41 | 30 | 2 | 7 | 2 | ||
FULLM: Battery fully charged | 39 | 26 | 2 | 7 | 1 | 3 | |
FVM: Charging—Phase 3 | 39 | 26 | 2 | 7 | 1 | 3 | |
Undervoltage U1 | 70 | 15 | 13 | 18 | 2 | 22 | |
Undervoltage U12 | 23 | 13 | 2 | 6 | 2 | ||
Undervoltage U23 | 22 | 12 | 2 | 6 | 2 | ||
Undervoltage U3 | 20 | 13 | 2 | 3 | 2 | ||
Undervoltage U31 | 23 | 13 | 2 | 6 | 2 | ||
OP_OFF: DC rectifier—No power supply | 41 | 30 | 2 | 7 | 2 | ||
POWER GENERATOR running | 10 | 6 | 1 | 2 | 1 | ||
BATTERY Mode UPS | 43 | 32 | 2 | 7 | 2 | ||
BATTERY Mode—RTCS Power Supply | 41 | 30 | 2 | 7 | 2 | ||
READ_IBAT: Battery charge overcurrent | 1 | 1 | |||||
START power generator | 15 | 8 | 1 | 5 | 1 | ||
RESET used | 2 | 2 | |||||
Overvoltage U1 | 13 | 13 | |||||
Contactor engaged POWER GENERATOR | 11 | 7 | 1 | 2 | 1 | ||
Contactor engaged SOURCE 1 | 35 | 28 | 1 | 5 | 1 | ||
Total alarms | 691 | 445 | 45 | 139 | 3 | 37 | 22 |
Probability of Transition to a Controlled Failure State | Availability A Basic Model (a) | Availability A Extended Model with Additional Diagnostic Status (b) |
---|---|---|
0.99 | 0.999924 | 0.999962 |
0.7 | 0.997733 | 0.998865 |
0.5 | 0.996227 | 0.99811 |
No | Average ti | ni | pi | npi | χ2 | ||||
---|---|---|---|---|---|---|---|---|---|
1 | 0 | 1456 | 728 | 15 | 0.311253056 | 0.311253056 | 20.54270171 | 30.72154228 | 1.495496684 |
2 | 1456 | 2912 | 2184 | 7 | 0.525627647 | 0.214374591 | 14.14872302 | 51.10424083 | 3.611933088 |
3 | 2912 | 4368 | 3640 | 17 | 0.673277492 | 0.147649845 | 9.744889739 | 52.6366249 | 5.401459259 |
4 | 4368 | 5824 | 5096 | 13 | 0.774970871 | 0.101693379 | 6.711763025 | 39.54192426 | 5.891436291 |
5 | 5824 | 7280 | 6552 | 6 | 0.845011875 | 0.070041004 | 4.62270627 | 1.896938018 | 0.410352271 |
6 | 7280 | 8736 | 8008 | 8 | 0.893252403 | 0.154988125 | 10.22921623 | 4.969405009 | 0.48580506 |
Total | 1 | 17.29648265 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciszewski, T.; Wojciechowski, J.; Kornaszewski, M.; Krawczyk, G.; Kuźmińska-Sołśnia, B.; Hermanowicz, A. Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices. Sensors 2025, 25, 4501. https://doi.org/10.3390/s25144501
Ciszewski T, Wojciechowski J, Kornaszewski M, Krawczyk G, Kuźmińska-Sołśnia B, Hermanowicz A. Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices. Sensors. 2025; 25(14):4501. https://doi.org/10.3390/s25144501
Chicago/Turabian StyleCiszewski, Tomasz, Jerzy Wojciechowski, Mieczysław Kornaszewski, Grzegorz Krawczyk, Beata Kuźmińska-Sołśnia, and Artur Hermanowicz. 2025. "Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices" Sensors 25, no. 14: 4501. https://doi.org/10.3390/s25144501
APA StyleCiszewski, T., Wojciechowski, J., Kornaszewski, M., Krawczyk, G., Kuźmińska-Sołśnia, B., & Hermanowicz, A. (2025). Assessment of the Risk of Failure in Electric Power Supply Systems for Railway Traffic Control Devices. Sensors, 25(14), 4501. https://doi.org/10.3390/s25144501