Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.3. Fabrication of Screen-Printed Gold Sensors
- The white dielectric paste was diluted by 5% using Dico Electronics 112-19 thinner.
- The printer spacing was adjusted to enhance layer homogeneity.
- A multi-layer approach was used, filling the screen four times in a single print cycle to achieve uniform coverage.
- Screen design specifications: a Monolen 150-31W/Y sieve with a mesh size of 32 µm, a screen thickness of 47 µm ± 2 µm, and a thread diameter of 31 µm.
3. Results and Discussion
3.1. Electrochemical Measurements
3.2. Analysis of Gold Electrodes
3.3. Comparative Study of Nickel Electrochemistry in Different Electrochemical Systems
3.3.1. Nickel Electrochemistry in 0.1 M Na2SO3 System
3.3.2. Nickel Electrochemistry in ChCl-EG System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | Atomic Absorption Spectroscopy |
AdCSV | Adsorptive Cathodic Stripping Voltammetry |
AdSV | Adsorptive Stripping Voltammetry |
AgNPs | Silver Nanoparticles |
Calix/MPA/Au | Calix[4]arene–Mercaptopropionic Acid Modified Au Electrode |
ChCl-EG | Choline Chloride–Ethylene Glycol (Deep Eutectic Solvent) |
CV | Cyclic Voltammetry |
DES | Deep Eutectic Solvent |
DMG | Dimethylglyoxime |
DP AdSV | Differential Pulse Adsorptive Stripping Voltammetry |
DPASV | Differential Pulse Anodic Stripping Voltammetry |
DPV | Differential Pulse Voltammetry |
EDTA | Ethylenediaminetetraacetic Acid |
EDX | Energy-Dispersive X-ray Spectroscopy |
EG | Ethylene Glycol |
GDC | Glassy Carbon Electrode |
HER | Hydrogen Evolution Reaction |
ICP-AES | Inductively Coupled Plasma—Atomic Emission Spectroscopy |
ICP-MS | Inductively Coupled Plasma—Mass Spectrometry |
LSV | Linear Sweep Voltammetry |
OER | Oxygen Evolution Reaction |
PbF-SPE | Plated Lead-Film Screen-Printed Electrode (PbF-SPE) |
RBiABE | Bismuth Bulk Annular Band Working Electrode |
SEM | Scanning Electron Microscopy |
SMAMQ | Sulfamethoxazole-quinolinol |
SPAu | Screen-Printed Au Electrode |
SWAdS | Square Wave Adsorptive Stripping Voltammetry |
SWASV | Square Wave Anodic Stripping Voltammetry |
SWSV | Square Wave Stripping Voltammetry |
USEPA | United States Environmental Protection Agency |
WHO | World Health Organization |
XPS | X-ray Photoelectron Spectroscopy |
References
- Li, J.; Li, Y.; Liu, H.; Ran, F. Nano gold for supercapacitors and batteries. Nano Energy 2024, 128, 109839. [Google Scholar] [CrossRef]
- Chintada, V.B.; Koona, R.; Bahubalendruni, M.V.A.R. State of Art Review on Nickel-Based Electroless Coatings and Materials State of Art Review on Nickel-Based Electroless Coatings and Materials. J. Bio-Tribo-Corros. 2022, 7, 134. [Google Scholar] [CrossRef]
- Okonkwo, B.O.; Jeong, C. Advances on Cr and Ni Electrodeposition for Industrial Applications—A Review. Coatings 2022, 12, 1555. [Google Scholar] [CrossRef]
- Jo, H.; Lee, S.; Kim, D.; Lee, J. Low Temperataure Sealing of Anodized Aluminum Alloy for Enhancing Corrosion Resistance. Materials 2020, 13, 4904. [Google Scholar] [CrossRef]
- Angeles-Olvera, Z.; Crespo-Yapur, A.; Rodríguez, O.; Cholula-Díaz, J.L.; Martínez, L.M.; Videa, M. Nickel-Based Electrocatalysts for Water Electrolysis. Energies 2022, 15, 1609. [Google Scholar] [CrossRef]
- Tibaquirá, J.E.; Hristovski, K.D.; Westerhoff, P.; Posner, J.D. Recovery and quality of water produced by commercial fuel cells. Int. J. Hydrogen Energy 2011, 36, 4022–4028. [Google Scholar] [CrossRef]
- Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A. Toxic heavy metal ions contamination in water and their sustainable reduction by eco - friendly methods: Isotherms, thermodynamics and kinetics study. Sci. Rep. 2024, 14, 7595. [Google Scholar] [CrossRef]
- Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; Arnica, G.; Rajasimman, M.; Baskar, G.; Pugazhendhi, A. Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environ. Res. 2024, 258, 119440. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- March, G.; Nguyen, T.D.; Piro, B. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef]
- Setiyanto, H.; Nega, A.; Damayanti, R.; Permata, S. Ultrasensitive electrochemical sensor based on dimethylglyoxime/carbon paste electrode modified with a bimetallic nanocomposite for nickel detection in environmental water samples. Inorg. Chem. Commun. 2024, 169, 113051. [Google Scholar] [CrossRef]
- Bobrowski, A.; Maczuga, M. A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel. Sens. Actuators B Chem. 2014, 191, 291–297. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, S.; Diao, Y.; Deng, X.; Li, W.; He, H.; Liu, Q.; Hu, G. Magnetic multi-walled carbon nanotubes modified with surface-imprinted polymers for ultrasensitive electrochemical detection of trace-level nickel ions in groundwater. Mater. Today Chem. 2024, 35, 101863. [Google Scholar] [CrossRef]
- We, K. The renewable bismuth bulk annular band working electrode: Fabrication and application in the adsorptive stripping voltammetric determination of nickel (II) and cobalt (II) ska. Anal. Chim. Acta 2015, 881, 44–53. [Google Scholar] [CrossRef]
- Padilla, V.; Serrano, N. Determination of Trace Levels of Nickel (II) by Adsorptive Stripping Voltammetry Using a Disposable and Low-Cost Carbon Screen-Printed Electrode. Chemosensors 2021, 9, 94. [Google Scholar] [CrossRef]
- Abraham, N.J.; Abraham, K.E. Detection of Selenium and Nickel Metal Ion in Water Using Mn3O4 -Cn-Modified Electrode. Int. J. Electrochem. 2021, 6650542. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Radha, S.; Muthumeenakshi, K.; Sreeja, B.S. Chronoamperometry and Differential Pulse Analysis of Nickel Ions in Aqueous Solution Using Carbon Nanotubes with Nanosheet Shaped Bismuth Oxychloride Sensor. J. Inorg. Organomet. Polym. Mater. 2024, 34, 4583–4593. [Google Scholar] [CrossRef]
- Pokpas, K.; Jahed, N.; Baker, P.G.; Iwuoha, E.I. Complexation-Based Detection of Nickel (II) at a Graphene-Chelate Probe in the Presence of Cobalt and Zinc by Adsorptive Stripping Voltammetry. Sensors 2017, 8, 1711. [Google Scholar] [CrossRef]
- Rosal, M.; Cetó, X.; Serrano, N.; Ariño, C.; Esteban, M.; Díaz-Cruz, J.M. Dimethylglyoxime modified screen-printed electrodes for nickel determination. J. Electroanal. Chem. 2019, 839, 83–89. [Google Scholar] [CrossRef]
- Selvolini, G.; Marrazza, G. On spot detection of nickel and cobalt from exhausted batteries by a smart electrochemical sensor. Talanta 2023, 253, 123918. [Google Scholar] [CrossRef]
- Vijayalakshmi, K.; Radha, S.; Muthumeenakshi, K.; Sreeja, B.S. Electrochemical sensing of nickel using modified silver nanoparticles/bismuth oxybromide graphite electrode. J. Mater. Sci. Mater. Electron. 2023, 34, 1744. [Google Scholar] [CrossRef]
- Anchidin-Norocel, L.; Savage, W.K.; Gutt, G.; Amariei, S. Development, Optimization, Characterization, and Application of Electrochemical Biosensors for Detecting Nickel Ions in Food. Biosensors 2021, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Fatimah, S.; Abdul, N.; Ainliah, S.; Ahmad, A. Electrochemical detection of nickel (II) and zinc (II) ions by a dicarboxyl-Calix [4] arene- based sensor (Calix/MPA/Au) through differential pulse voltammetry analysis. AQUA Water Infrastruct. Ecosyst. Soc. 2023, 72, 160–172. [Google Scholar] [CrossRef]
- Dewi, G.C.; Levin, O. Analysis of Nickel(II) in Water Medium using Electrochemical Techniques. Chem. Mater. 2023, 2, 24–29. [Google Scholar] [CrossRef]
- Mousavi, S.H.; Zanjanchi, M.A.; Mohammadi, A.; Moafi, H.F. Novel sulfamethoxazole-based chemosensor for detection of Ni (II) ion: A combination of experimental, antibacterial and DFT studies. J. Mol. Struct. 2025, 1319, 139599. [Google Scholar] [CrossRef]
- Phi, T.-L.; Nguyen, S.T.; Van Hieu, N.; Palomar-Pardavé, M.; Morales-Gil, P.; Le Manh, T. Insights into Electronucleation and Electrodeposition of Nickel from a Non-aqueous Solvent Based on NiCl2·6H2O Dissolved in Ethylene Glycol. Inorg. Chem. 2022, 61, 5099–5111. [Google Scholar] [CrossRef]
- Jamil, Z.; Ruiz-Trejo, E.; Brandon, N.P. Nickel Electrodeposition on Silver for the Development of Solid Oxide Fuel Cell Anodes and Catalytic Membranes. J. Electrochem. Soc. 2017, 164, D210–D217. [Google Scholar] [CrossRef]
- Razika, R.; Djouani, D.; Qian, X. Mechanism of electrodeposition of nickel. Int. J. Curr. Res. 2022, 10, 64228–64239. [Google Scholar]
- Bockris, J.O.M.; Potter, E.C. The Mechanism of Hydrogen Evolution at Nickel Cathodes in Aqueous Solutions. J. Chem. Phys. 1952, 20, 614–628. [Google Scholar] [CrossRef]
- Budnikova, Y.G.; Yakhvarov, D.G.; Morozov, V.I.; Kargin, Y.M.; Il’Yasov, A.V.; Vyakhireva, Y.N.; Sinyashin, O.G. Electrochemical Reduction of Nickel Complexes with 2,2’Bipyridine. Russ. J. Gen. Chem. 2002, 72, 168–172. [Google Scholar] [CrossRef]
- Abbott, A.P.; Ballantyne, A.; Harris, R.C.; Juma, J.A.; Ryder, K.S. A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochim. Acta 2015, 176, 718–726. [Google Scholar] [CrossRef]
- Neuróhr, K.; Pogány, L.; Tóth, B.G.; Révész, Á.; Bakonyi, I.; Péter, L. Electrodeposition of Ni from Various Non-Aqueous Media: The Case of Alcoholic Solutions. J. Electrochem. Soc. 2015, 162, D256–D264. [Google Scholar] [CrossRef]
- Puglia, M.K.; Bowen, P.K. Cyclic Voltammetry Study of Noble Metals and Their Alloys for Use in Implantable Electrodes. ACS Omega 2022, 7, 34200–34212. [Google Scholar] [CrossRef] [PubMed]
- Laschi, S.; Palchetti, I.; Mascini, M. Gold-based screen-printed sensor for detection of trace lead. Sens. Actuators B-Chem. 2006, 114, 460–465. [Google Scholar] [CrossRef]
- Jena, B.K.; Raj, C.R. Gold Nanoelectrode Ensembles for the Simultaneous Electrochemical Detection of Ultratrace Arsenic, Mercury, and Copper. Anal. Chem. 2008, 80, 4836–4844. [Google Scholar] [CrossRef]
- Chen, X.; Yi, Z.; Peng, G.; Yuan, Z.; Wang, R.; Li, Y. In-situ deposition of gold nanoparticles on screen-printed carbon electrode for rapid determination of Hg2+ in water samples. Int. J. Electrochem. Sci. 2024, 19, 100544. [Google Scholar] [CrossRef]
- Kozak, J.; Tyszczuk-Rotko, K. Screen-printed gold electrode for ultrasensitive voltammetric determination of the antipsychotic drug thioridazine. Measurement 2023, 217, 113107. [Google Scholar] [CrossRef]
- Noori, J.S.; Dimaki, M. Detection of Glyphosate in Drinking Water: A Fast and Direct Detection Method without Sample Pretreatment. Sensors 2018, 9, 2961. [Google Scholar] [CrossRef]
- Giancarla, A.; Zanoni, C.; Merli, D.; Magnaghi, L.R.; Biesuz, R. A new cysteamine-copper chemically modified screen-printed gold electrode for glyphosate determination. Talanta 2024, 269, 125436. [Google Scholar] [CrossRef]
- Zafeiratos, S.; Paloukis, F.E.; Neophytides, S.G. Nickel electrodeposition on a gold polycrystalline foil: A combined voltammetric and photoelectron spectroscopy study. J. Phys. Chem. B 2004, 108, 1371–1379. [Google Scholar] [CrossRef]
- Gomaa, E.A. Cyclic Voltammetry, Kinetics, Thermodynamic and Molecular Docking Parameters for the Interaction of Nickel Chloride with Diphenylthiocarbazone. Open Acad. J. Adv. Sci. Technol. 2020, 4, 30–44. [Google Scholar] [CrossRef]
- Kirillova, E.V.; Stepanov, V.P. Capacitance of a Gold Electrode in Molten Mixtures of Potassium Nitrate and Potassium Chloride. Russ. Metall. 2021, 2021, 75–79. [Google Scholar] [CrossRef]
- Ballantyne, A.D.; Forrest, G.C.H.; Frisch, G.; Hartley, J.M.; Ryder, K.S. Electrochemistry and speciation of Au+ in a deep eutectic solvent: Growth and morphology of galvanic immersion coatings. Phys. Chem. Chem. Phys. 2015, 17, 30540–30550. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, R.; Panzeri, G.; Firtin, G.; Kahyaoglu, B.; Nobili, L.; Magagnin, L. Electrodeposition of ZnNi Alloys from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol for Corrosion Protection. J. Phys. Chem. B 2020, 124, 10739–10751. [Google Scholar] [CrossRef]
- Li, W.; Hao, J.; Mu, S.; Liu, W. Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent. Appl. Surf. Sci. 2019, 507, 144889. [Google Scholar] [CrossRef]
- Geng, T.; Zeller, S.J.; Kibler, L.A.; Ceblin, M.U.; Jacob, T. Electrodeposition of Cu onto Au(111) from Deep Eutectic Solvents: Molar Ratio of Salt and Hydrogen Bond Donor. ChemElectroChem 2022, 9, e202101283. [Google Scholar] [CrossRef]
- Hsieh, L.-Y.; Fong, J.-D.; Hsieh, Y.-Y.; Wang, S.-P.; Sun, I.-W. Electrodeposition of Bismuth in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent under Ambient Atmosphere. J. Electrochem. Soc. 2018, 165, D331–D338. [Google Scholar] [CrossRef]
- Nicholson, M.M. Anodic Stripping Voltammetry of Nickel at Solid Electrodes. Anal. Chem. 1960, 32, 1058–1062. [Google Scholar] [CrossRef]
- Srivastava, H.K.; Tikoo, P.K. Electrodeposition of Nickel from N,N-dimethylformamide. Surf. Coat. Technol. 1987, 31, 343–350. [Google Scholar] [CrossRef]
- Cui, J.; Sun, H.; Tan, Y.; Zhou, X.; Wang, B.; Sun, J. Electrodeposition of Ni from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol. Jom 2024, 76, 2178–2188. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060. [Google Scholar] [CrossRef]
- Doneux, T.; Sorgho, A.; Bougouma, M. Electrodeposition in Deep Eutectic Solvents: The “Obvious”, the “Unexpected” and the “Wonders”. Molecules 2024, 29, 3439. [Google Scholar] [CrossRef] [PubMed]
Substrate | Technique | Accumulation Time (s) | Dynamic Linear Range (µgL−1) | Detection Limit (µgL−1) | Reference |
---|---|---|---|---|---|
AgNPs/Fe3O4/DMG/CPE | SWSV | 60 | 0.002–0.01 µM | 0.0006 µM | [11] |
0.12–0.59 * | 0.035 * | ||||
ICP-MS | 0.1 | ||||
PbF-SPE | SWAdS | 60 | 0.6–2.9 | 0.20 | [12] |
Fe3O4@MWCNTs@IIP | DPASV | 0.5–20 and 20–200 | 0.27 | [13] | |
RBiABE | DP AdSV | 30 | 0.59–41 | 0.29 | [14] |
AAS | 0.5 | ||||
Carbon-SPE | DPAdSV | 120 | 1.7–150 | 0.5 | [15] |
Pt/Mn3O4-Chitosan | CV | 18 | 5–250 | 0.718 | [16] |
MWCNT-BiOCl nanosheets | Chrono deposition | 60 | 20–160 µM | 0.019 µM | [17] |
with DPV stripping | 1174–9390 * | 1.115 * | |||
NGr-DMG-GCE | AdCSV | 120 | 2–20 | 1.5 | [18] |
Carbon-SPE | AdSV | 60 | 7.6 to 200 | 2.3 | [19] |
Bi-Graphene-SPE | SWAdS | 120 | 10–40 | 2.5 | [20] |
Ag/BiOBr | CV | - | 3.4–13.6 µM | 0.122 µM | [21] |
199.5–798.2 * | 7.2 * | ||||
ICP-AES | 10 | ||||
Bismuth biomaterials | CV, LSV | -- | 1.7–170 µM | 0.477–1.669 µM | [22] |
99.7–9977 * | 28–97.9 * | ||||
Au-SPE -calixarene | DPV | 120 | 340 | 130–1680 | [23] |
Pt/Pt | CV | - | 15–40 mM 880,350–2347,600 * | 274.99 ppm 274,990 * | [24] |
Au-SPE-NiCl2 6H2O-NaSO3 | 20–196 mM ** 119.7–1380.38 µg absolute value | 0.79 mM ** 4.74 µg absolute value | This work | ||
Au-SPE-NiSO4 6H2O-NaSO3 | 89–329 mM ** 574.58–2896.35 µg | 27.35 mM ** 176.6 µg absolute value | This work | ||
Au-SPE-NiCl2-ChCl-EG | CV | - | 0.5–10 mM ** 2.9–61.6 µg absolute value | 1.6 µM ** 0.72 µg absolute value | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godja, N.; Assadollahi, S.; Hütter, M.; Mehrabi, P.; Khajehmeymandi, N.; Schalkhammer, T.; Munteanu, F.-D. Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing. Sensors 2025, 25, 3959. https://doi.org/10.3390/s25133959
Godja N, Assadollahi S, Hütter M, Mehrabi P, Khajehmeymandi N, Schalkhammer T, Munteanu F-D. Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing. Sensors. 2025; 25(13):3959. https://doi.org/10.3390/s25133959
Chicago/Turabian StyleGodja, Norica, Saied Assadollahi, Melanie Hütter, Pooyan Mehrabi, Narges Khajehmeymandi, Thomas Schalkhammer, and Florentina-Daniela Munteanu. 2025. "Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing" Sensors 25, no. 13: 3959. https://doi.org/10.3390/s25133959
APA StyleGodja, N., Assadollahi, S., Hütter, M., Mehrabi, P., Khajehmeymandi, N., Schalkhammer, T., & Munteanu, F.-D. (2025). Flexible Screen-Printed Gold Electrode Array on Polyimide/PET for Nickel(II) Electrochemistry and Sensing. Sensors, 25(13), 3959. https://doi.org/10.3390/s25133959