Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina
Abstract
:1. Introduction
2. Material and Methods
2.1. Design and Fabrication of Intraretinal Probe
2.2. Electrode Characterization
2.3. Retina Preparation and Insertion Protocol
2.4. Electrophysiological Recordings, In Vitro Impedance Measurements, and Signal Processing
2.5. Resistivity Measurements
2.6. COMSOL Simulations
2.7. Statistics
3. Results and Discussion
3.1. Impedance Measurements and Electrophysiological Activity of WT and RCS Rats
3.2. From Impedance Measurements to Resistivity Profiles Using the PRF Method
3.3. Relating Electrophysiological Data to the Resistivity Profile
3.4. Simulations of Current Spread Using the Measured Resistivity Profile
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palanker, D. Electronic Retinal Prostheses. Cold Spring Harb. Perspect. Med. 2023, 13, a041525. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.; Al Abed, A.; Lovell, N.H.; Dokos, S. Optimizing Stimulation Strategies for Retinal Electrical Stimulation: A Modelling Study. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2872–2875. [Google Scholar] [CrossRef]
- Kasi, H.; Hasenkamp, W.; Cosendai, G.; Bertsch, A.; Renaud, P. Simulation of epiretinal prostheses-Evaluation of geometrical factors affecting stimulation thresholds. J. Neuroeng. Rehabil. 2011, 8, 44. [Google Scholar] [CrossRef] [PubMed]
- Khalili Moghaddam, G.; Lovell, N.H.; Wilke, R.G.H.; Suaning, G.J.; Dokos, S. Performance optimization of current focusing and virtual electrode strategies in retinal implants. Comput. Methods Programs Biomed. 2014, 117, 334–342. [Google Scholar] [CrossRef]
- Zheng, S.; Zhou, W.; Song, X.; Li, L. Influence of Retinal Degeneration Stages on RGC Threshold under epiretinal electrical stimulation: A Modeling Study. J. Phys. Conf. Ser. 2021, 1827, 012016. [Google Scholar] [CrossRef]
- Wang, B.; Weiland, J.D. Resistivity profiles of wild-type, rd1, and rd10 mouse retina. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1650–1653. [Google Scholar] [CrossRef]
- Kasi, H.; Meissner, R.; Babalian, A.; Lintel, H.V.; Bertsch, A.; Renaud, P. Direct localised measurement of electrical resistivity profile in rat and embryonic chick retinas using a microprobe. J. Electr. Bioimpedance 2010, 1, 84–92. [Google Scholar] [CrossRef]
- Ogden, T.E.; Ito, H. Avian retina. II. An evaluation of retinal electrical anisotropy. J. Neurophysiol. 1971, 34, 367–373. [Google Scholar] [CrossRef]
- Chang, B.; Hawes, N.L.; Hurd, R.E.; Davisson, M.T.; Nusinowitz, S.; Heckenlively, J.R. Retinal degeneration mutants in the mouse. Vis. Res. 2002, 42, 517–525. [Google Scholar] [CrossRef]
- Strauss, O.; Stumpff, F.; Mergler, S.; Wienrich, M.; Wiederholt, M. The Royal College of Surgeons Rat: An Animal Model for Inherited Retinal Degeneration with a Still Unknown Genetic Defect. Cells Tissues Organs 1998, 162, 101–111. [Google Scholar] [CrossRef]
- Galindo-Romero, C.; Norte-Muñoz, M.; Gallego-Ortega, A.; Rodríguez-Ramírez, K.T.; Lucas-Ruiz, F.; González-Riquelme, M.J.; Vidal-Sanz, M.; Agudo-Barriuso, M. The retina of the lab rat: Focus on retinal ganglion cells and photoreceptors. Front. Neuroanat. 2022, 16, 994890. [Google Scholar] [CrossRef]
- Gilger, B.C. Ocular Pharmacology and Toxicology; Humana Press: Totowa, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Brindley, G.S. The passive electrical properties of the frog’s retina, choroid and sclera for radial fields and currents. J. Physiol. 1956, 134, 339–352. [Google Scholar] [CrossRef]
- Mercanzini, A.; Colin, P.; Bensadoun, J.-C.; Bertsch, A.; Renaud, P. In Vivo Electrical Impedance Spectroscopy of Tissue Reaction to Microelectrode Arrays. IEEE Trans. Biomed. Eng. 2009, 56, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Weiland, J.D. Analysis of the Peak Resistance Frequency Method. IEEE Trans. Biomed. Eng. 2016, 63, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Béduer, A.; Joris, P.; Mosser, S.; Delattre, V.; Fraering, P.C.; Renaud, P. Accurate resistivity mouse brain mapping using microelectrode arrays. Biosens. Bioelectron. 2014, 60, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Goldstein, A.K.; Chen, Z.C.; Vasireddy, P.; Bhuckory, M.B.; Palanker, D.V. Mapping the retinal resistivity with electrical impedance tomography for modeling of retinal stimulation. Investig. Ophthalmol. Vis. Sci. 2024, 65, 5408. [Google Scholar]
- Rincón Montes, V.; Gehlen, J.; Ingebrandt, S.; Mokwa, W.; Walter, P.; Müller, F.; Offenhäusser, A. Development and in vitro validation of flexible intraretinal probes. Sci. Rep. 2020, 10, 19836. [Google Scholar] [CrossRef]
- Rincón Montes, V. Development, Characterization, and Application of Intraretinal Implants. Ph.D. Thesis, RWTH Aachen University, Jülich, Germany, 2021. [Google Scholar]
- Rincón Montes, V.; Gehlen, J.; Lück, S.; Mokwa, W.; Müller, F.; Walter, P.; Offenhäusser, A. Toward a Bidirectional Communication Between Retinal Cells and a Prosthetic Device–A Proof of Concept. Front. Neurosci. 2019, 13, 367. [Google Scholar] [CrossRef]
- Albrecht, W.; Moers, J.; Hermanns, B. HNF-Helmholtz Nano Facility. J. Large-Scale Res. Facil. JLSRF 2017, 3, A112. [Google Scholar] [CrossRef]
- Abu Shihada, J.; Jung, M.; Decke, S.; Koschinski, L.; Musall, S.; Rincón Montes, V.; Offenhäusser, A. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings. Adv. Sci. 2024, 11, 2305944. [Google Scholar] [CrossRef]
- Lewis, C.M.; Boehler, C.; Liljemalm, R.; Fries, P.; Stieglitz, T.; Asplund, M. Recording Quality Is Systematically Related to Electrode Impedance. Adv. Healthc. Mater. 2024, 13, 2303401. [Google Scholar] [CrossRef]
- Walter, A. McsMatlabDataTools, GitHub, version 1.3.1; created with MATLAB 2022a; MathWorks: Natick, MA, USA, 2025.
- Hill, D.N.; Mehta, S.B.; Kleinfeld, D. Quality Metrics to Accompany Spike Sorting of Extracellular Signals. J. Neurosci. 2011, 31, 8699–8705. [Google Scholar] [CrossRef]
- Mousavi, H.; Ferrari, L.M.; Whiteley, A.; Ismailova, E. Kinetics and Physicochemical Characteristics of Electrodeposited PEDOT:PSS Thin Film Growth. Adv. Electron. Mater. 2023, 9, 2201282. [Google Scholar] [CrossRef]
- Boinagrov, D.; Pangratz-Fuehrer, S.; Goetz, G.; Palanker, D. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J. Neural Eng. 2014, 11, 026008. [Google Scholar] [CrossRef]
- Palanker, D.; Vankov, A.; Huie, P.; Baccus, S. Design of a high-resolution optoelectronic retinal prosthesis. J. Neural Eng. 2005, 2, S105–S120. [Google Scholar] [CrossRef]
- Guo, L.; Normando, E.M.; Nizari, S.; Lara, D.; Cordeiro, M.F. Tracking Longitudinal Retinal Changes in Experimental Ocular Hypertension Using the cSLO and Spectral Domain-OCT. Investig. Opthalmology Vis. Sci. 2010, 51, 6504. [Google Scholar] [CrossRef]
- Ryals, R.C.; Andrews, M.D.; Datta, S.; Coyner, A.S.; Fischer, C.M.; Wen, Y.; Pennesi, M.E.; McGill, T.J. Long-term Characterization of Retinal Degeneration in Royal College of Surgeons Rats Using Spectral-Domain Optical Coherence Tomography. Investig. Opthalmology Vis. Sci. 2017, 58, 1378. [Google Scholar] [CrossRef] [PubMed]
- Nruthyathi, N.; Jung, M.; Wang, J.; Montes, V.R.; Offenhäusser, A.; Willuweit, A.; Müller, F. Late emergence of pathological oscillatory activity in the retina of the Retinitis pigmentosa model RCS (Royal College of Surgeons) rats. PLoS ONE 2025, 20, e0324345. [Google Scholar]
- Gehlen, J.; Esser, S.; Schaffrath, K.; Johnen, S.; Walter, P.; Müller, F. Blockade of Retinal Oscillations by Benzodiazepines Improves Efficiency of Electrical Stimulation in the Mouse Model of RP, rd10. Investig. Opthalmology Vis. Sci. 2020, 61, 37. [Google Scholar] [CrossRef]
- Biswas, S.; Haselier, C.; Mataruga, A.; Thumann, G.; Walter, P.; Müller, F. Pharmacological Analysis of Intrinsic Neuronal Oscillations in rd10 Retina. PLoS ONE 2014, 9, e99075. [Google Scholar] [CrossRef]
- Grünert, U.; Martin, P.R. Cell types and cell circuits in human and non-human primate retina. Prog. Retin. Eye Res. 2020, 78, 100844. [Google Scholar] [CrossRef]
- Obien, M.E.J.; Deligkaris, K.; Bullmann, T.; Bakkum, D.J.; Frey, U. Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 2015, 8, 423. [Google Scholar] [CrossRef]
- Boehler, C.; Carli, S.; Fadiga, L.; Stieglitz, T.; Asplund, M. Tutorial: Guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 2020, 15, 3557–3578. [Google Scholar] [CrossRef] [PubMed]
- Lacour, S.P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, M.; Willuweit, A.; Rincón Montes, V. Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina. Sensors 2025, 25, 3765. https://doi.org/10.3390/s25123765
Jung M, Willuweit A, Rincón Montes V. Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina. Sensors. 2025; 25(12):3765. https://doi.org/10.3390/s25123765
Chicago/Turabian StyleJung, Marie, Antje Willuweit, and Viviana Rincón Montes. 2025. "Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina" Sensors 25, no. 12: 3765. https://doi.org/10.3390/s25123765
APA StyleJung, M., Willuweit, A., & Rincón Montes, V. (2025). Intraretinal Electrophysiology and Resistivity Profiles of WT and RCS Rat Retina. Sensors, 25(12), 3765. https://doi.org/10.3390/s25123765