Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization
Abstract
:1. Introduction
2. Related Work
2.1. Inject Gain
2.2. Ocean Color Inversion in Island Waters
3. Methodology
3.1. Injection Gain and Detail Scale Regression
3.2. HPM Injection Scheme
3.3. Mixed-Scale Regression for Detailed Images
Algorithm 1 MTF-GLP-HPM-HSMI |
|
4. Experimental Results
4.1. Datasets and Preprocessing
4.2. Benchmarks and Assessment
4.3. Quantitative Comparison Results
4.4. Visual and Qualitative Comparisons
4.5. Extended Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, Y.; Duan, M.; Cui, X.; Zhao, Q.; Tian, S.; Lin, Y.; Wang, W. Advancing application of satellite remote sensing technologies for linking atmospheric and built environment to health. Front. Public Health 2023, 11, 1270033. [Google Scholar] [CrossRef] [PubMed]
- Dube, T.; Shekede, M.D.; Massari, C. Remote sensing for water resources and environmental management. Remote Sens. 2022, 15, 18. [Google Scholar] [CrossRef]
- Ma, F.; Huo, S.; Yang, F. Graph-based logarithmic low-rank tensor decomposition for the fusion of remotely sensed images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11271–11286. [Google Scholar] [CrossRef]
- Wu, K.; Chen, T.; Xu, Y.; Song, D.; Li, H. A Novel Change Detection Approach Based on Spectral Unmixing from Stacked Multitemporal Remote Sensing Images with a Variability of Endmembers. Remote Sens. 2021, 13, 2550. [Google Scholar] [CrossRef]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A review of remote sensing applications for water security: Quantity, quality, and extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A review of remote sensing for water quality retrieval: Progress and challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Concha, J.A.; Schott, J.R. Retrieval of color producing agents in Case 2 waters using Landsat 8. Remote Sens. Environ. 2016, 185, 95–107. [Google Scholar] [CrossRef]
- Soppa, M.A.; Silva, B.; Steinmetz, F.; Keith, D.; Scheffler, D.; Bohn, N.; Bracher, A. Assessment of polymer atmospheric correction algorithm for hyperspectral remote sensing imagery over coastal waters. Sensors 2021, 21, 4125. [Google Scholar] [CrossRef]
- Yu, G.; Zhong, Y.; Fu, D.; Chen, F.; Chen, C. Remote sensing estimation of δ15NPN in the Zhanjiang Bay using Sentinel-3 OLCI data based on machine learning algorithm. Front. Mar. Sci. 2024, 11, 1366987. [Google Scholar] [CrossRef]
- Liu, Z.; Han, X.H. Hyperspectral image super resolution using deep internal and self-supervised learning. CAAI Trans. Intell. Technol. 2024, 9, 128–141. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, X.; Spyrakos, E.; Li, J.; McGlinchey, C.; Constantinescu, A.M.; Tyler, A.N. Water color from Sentinel-2 MSI data for monitoring large rivers: Yangtze and Danube. Geo-Spat. Inf. Sci. 2024, 27, 854–869. [Google Scholar] [CrossRef]
- Joshi, N.; Park, J.; Zhao, K.; Londo, A.; Khanal, S. Monitoring harmful algal blooms and water quality using sentinel-3 OLCI satellite imagery with machine learning. Remote Sens. 2024, 16, 2444. [Google Scholar] [CrossRef]
- Zeng, F.; Song, C.; Cao, Z.; Xue, K.; Lu, S.; Chen, T.; Liu, K. Monitoring inland water via Sentinel satellite constellation: A review and perspective. ISPRS J. Photogramm. Remote Sens. 2023, 204, 340–361. [Google Scholar] [CrossRef]
- Vivone, G.; Dalla Mura, M.; Garzelli, A.; Restaino, R.; Scarpa, G.; Ulfarsson, M.O.; Alparone, L.; Chanussot, J. A new benchmark based on recent advances in multispectral pansharpening: Revisiting pansharpening with classical and emerging pansharpening methods. IEEE Geosci. Remote Sens. Mag. 2020, 9, 53–81. [Google Scholar] [CrossRef]
- Ghadjati, M.; Benazza-Benyahia, A.; Moussaoui, A. Satellite image fusion using an iterative IHS-based approach. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 133–136. [Google Scholar]
- Jelének, J.; Kopačková, V.; Koucká, L.; Mišurec, J. Testing a modified PCA-based sharpening approach for image fusion. Remote Sens. 2016, 8, 794. [Google Scholar] [CrossRef]
- Yilmaz, V.; Serifoglu Yilmaz, C.; Güngör, O.; Shan, J. A genetic algorithm solution to the gram-schmidt image fusion. Int. J. Remote Sens. 2020, 41, 1458–1485. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Y.; Chen, Y.; Wu, D. Combining component substitution and multiresolution analysis: A novel generalized BDSD pansharpening algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2867–2875. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Garzelli, A.; Lolli, S. Fast reproducible pansharpening based on instrument and acquisition modeling: AWLP revisited. Remote Sens. 2019, 11, 2315. [Google Scholar] [CrossRef]
- Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J. A Pansharpening Algorithm Based on Morphological Filters. In Mathematical Morphology and Its Applications to Signal and Image Processing; Benediktsson, J., Chanussot, J., Najman, L., Talbot, H., Eds.; ISMM 2015. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9082. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. Advantages of Laplacian pyramids over “à trous” wavelet transforms for pansharpening of multispectral images. In Proceedings of the Image and Signal Processing for Remote Sensing XVIII, Edinburgh, UK, 24–26 September 2012; Volume 8537, pp. 12–21. [Google Scholar]
- Restaino, R.; Vivone, G.; Dalla Mura, M.; Chanussot, J. Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans. Image Process. 2016, 25, 2882–2895. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, W.; Li, W. Pansharpening of multispectral images based on cycle-spinning quincunx lifting transform. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–5. [Google Scholar]
- Khader, A.; Yang, J.; Xiao, L. NMF-DuNet: Nonnegative matrix factorization inspired deep unrolling networks for hyperspectral and multispectral image fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5704–5720. [Google Scholar] [CrossRef]
- Scarpa, G.; Vitale, S.; Cozzolino, D. Target-adaptive CNN-based pansharpening. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5443–5457. [Google Scholar] [CrossRef]
- Yang, J.; Fu, X.; Hu, Y.; Huang, Y.; Ding, X.; Paisley, J. PanNet: A deep network architecture for pan-sharpening. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5449–5457. [Google Scholar]
- Fernandez-Beltran, R.; Fernandez, R.; Kang, J.; Pla, F. W-NetPan: Double-U network for inter-sensor self-supervised pan-sharpening. Neurocomputing 2023, 530, 125–138. [Google Scholar] [CrossRef]
- Fernandez, R.; Fernandez-Beltran, R.; Kang, J.; Pla, F. Sentinel-3 super-resolution based on dense multireceptive channel attention. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7359–7372. [Google Scholar] [CrossRef]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef]
- Shao, Z.; Cai, J.; Fu, P.; Hu, L.; Liu, T. Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sens. Environ. 2019, 235, 111425. [Google Scholar] [CrossRef]
- Jia, S.; Min, Z.; Fu, X. Multiscale spatial–spectral transformer network for hyperspectral and multispectral image fusion. Inf. Fusion 2023, 96, 117–129. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Xiao, L.; Zheng, Z. Multiresolution analysis-inspired spatial and spectral details preserved model for variational pansharpening. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5408815. [Google Scholar] [CrossRef]
- Yilmaz, V. Adaptive hybrid pansharpening: A novel approach for combining two methods to achieve superior pansharpening performance. Int. J. Remote Sens. 2023, 44, 4301–4325. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Chanussot, J. Full scale regression-based injection coefficients for panchromatic sharpening. IEEE Trans. Image Process. 2018, 27, 3418–3431. [Google Scholar] [CrossRef]
- Wang, P.; Yao, H.; Li, C.; Zhang, G.; Leung, H. Multiresolution analysis based on dual-scale regression for pansharpening. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5406319. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Chanussot, J. A regression-based high-pass modulation pansharpening approach. IEEE Trans. Geosci. Remote Sens. 2017, 56, 984–996. [Google Scholar] [CrossRef]
- Kumar, S.; Imen, S.; Sridharan, V.K.; Gupta, A.; McDonald, W.; Ramirez-Avila, J.J.; Abdul-Aziz, O.I.; Talchabhadel, R.; Gao, H.; Quinn, N.W.; et al. Perceived barriers and advances in integrating earth observations with water resources modeling. Remote Sens. Appl. Soc. Environ. 2024, 33, 101119. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote Sensing Techniques for Water Quality Monitoring: A Review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Du, Y.; Zhao, H.; Chen, F. Water quality Chl-a inversion based on spatio-temporal fusion and convolutional neural network. Remote Sens. 2022, 14, 1267. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Chen, L.; Tang, Q.; Hao, J.; Zhang, Y. Multi-Temporal Image Fusion-Based Shallow-Water Bathymetry Inversion Method Using Active and Passive Satellite Remote Sensing Data. Remote Sens. 2025, 17, 265. [Google Scholar] [CrossRef]
- Shi, Y.; Tan, A.; Liu, N.; Li, W.; Tao, R.; Chanussot, J. A pansharpening method based on hybrid-scale estimation of injection gains. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5400615. [Google Scholar] [CrossRef]
- Alparone, L.; Garzelli, A.; Vivone, G. Intersensor statistical matching for pansharpening: Theoretical issues and practical solutions. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4682–4695. [Google Scholar] [CrossRef]
- Restaino, R.; Dalla Mura, M.; Vivone, G.; Chanussot, J. Context-adaptive pansharpening based on image segmentation. IEEE Trans. Geosci. Remote Sens. 2016, 55, 753–766. [Google Scholar] [CrossRef]
- Vivone, G. Robust band-dependent spatial-detail approaches for panchromatic sharpening. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6421–6433. [Google Scholar] [CrossRef]
- Lolli, S.; Alparone, L.; Garzelli, A.; Vivone, G. Haze correction for contrast-based multispectral pansharpening. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2255–2259. [Google Scholar] [CrossRef]
- Palsson, F.; Ulfarsson, M.O.; Sveinsson, J.R. Model-based reduced-rank pansharpening. IEEE Geosci. Remote Sens. Lett. 2019, 17, 656–660. [Google Scholar] [CrossRef]
- Liu, P. Spatial and spectral anisotropic tensor total variation-driven adaptive pansharpening. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5002405. [Google Scholar] [CrossRef]
- Tang, Y.; Li, H.; Xie, G.; Liu, P.; Li, T. Multi-Frequency Spectral–Spatial Interactive Enhancement Fusion Network for Pan-Sharpening. Electronics 2024, 13, 2802. [Google Scholar] [CrossRef]
- Maleki, S.A.; Ghassemian, H.; Imani, M. Nonreference object-based pansharpening quality assessment. Egypt. J. Remote Sens. Space Sci. 2024, 27, 227–241. [Google Scholar] [CrossRef]
Name | Scene | Sensing Dates | Tile (Ref. S2) | |
---|---|---|---|---|
S3 | S2 | |||
HY (Huangyan Island) | the Zhongsha Islands | 21/03/2023 | 20/03/2023 | 50PNB |
XB (Sabina Shoal) | the Nansha Islands | 05/03/2024 | 05/03/2024 | 50PMR |
HG (Discovery Reef) | the Xisha Islands | 14/01/2023 | 14/01/2023 | 49QEU |
Method | RR | FR | ||||||
---|---|---|---|---|---|---|---|---|
Q2n | SAM ↓ | ERGAS ↓ | PSNR | DS ↓ | HQNR | CT | ||
GT/EXP | 1.0000 | 0.0000 | 0.0000 | — | 0.1870 | 0.0010 | 0.8123 | — |
BDSD-PC | 0.6926 | 7.1359 | 2.6272 | 44.7982 | 0.4471 | 0.0053 | 0.5499 | 0.26 |
C-GSA | 0.2787 | 13.8578 | 16.5020 | 29.4042 | 0.6642 | 0.0270 | 0.3267 | 0.53 |
AWLP | 0.5706 | 4.2464 | 16.9353 | 28.1994 | 0.2420 | 0.0318 | 0.7339 | 0.23 |
MF | 0.4403 | 6.6867 | 98.0534 | 11.6006 | 0.3755 | 0.0354 | 0.6024 | 0.28 |
MTF-GLP | 0.4987 | 5.5852 | 10.5662 | 33.0922 | 0.2948 | 0.0338 | 0.6814 | 0.10 |
MTF-GLP-HPM | 0.3694 | 9.0922 | 532.5727 | −3.2068 | 0.4252 | 0.0326 | 0.5561 | 0.11 |
MTF-GLP-HPM-R | 0.4416 | 7.8198 | 308.4144 | 1.5485 | 0.4041 | 0.0233 | 0.5820 | 0.07 |
MTF-GLP-CBD | 0.5594 | 5.3341 | 9.5631 | 33.7128 | 0.2883 | 0.0239 | 0.6947 | 0.09 |
MTF-GLP-Reg-FS | 0.5618 | 5.2926 | 9.4667 | 33.8007 | 0.2848 | 0.0236 | 0.6983 | 0.09 |
TV | 0.2828 | 10.1988 | 10.6424 | 35.0224 | 0.7937 | 0.0122 | 0.2038 | 5.65 |
RR | 0.5578 | 5.6050 | 9.7046 | 33.8492 | 0.4556 | 0.0151 | 0.5362 | 4.42 |
FE-HPM | 0.4229 | 6.9582 | 397.6030 | 1.4545 | 0.4123 | 0.0371 | 0.5659 | 0.42 |
PWMBF | 0.5312 | 4.1260 | 7.5496 | 37.3347 | 0.4788 | 0.0390 | 0.5009 | 0.47 |
HSMI | 0.7707 | 0.3332 | 7.8479 | 35.7845 | 0.2169 | 0.0341 | 0.7563 | 0.20 |
Method | RR | FR | ||||||
---|---|---|---|---|---|---|---|---|
Q2n | SAM ↓ | ERGAS ↓ | PSNR | DS ↓ | HQNR | CT | ||
GT/EXP | 1.0000 | 0.0000 | 0.0000 | — | 0.1989 | 0.0019 | 0.7995 | — |
BDSD-PC | 0.8167 | 3.6684 | 0.8800 | 59.8759 | 0.2988 | 0.0021 | 0.6998 | 0.05 |
C-GSA | 0.5357 | 7.8938 | 30.8173 | 28.8323 | 0.4937 | 0.0209 | 0.4958 | 0.26 |
AWLP | 0.5749 | 4.8236 | 36.1730 | 26.5874 | 0.2610 | 0.0223 | 0.7225 | 0.15 |
MF | 0.7115 | 1.6490 | 20.4871 | 32.4754 | 0.2684 | 0.0311 | 0.7088 | 0.04 |
MTF-GLP | 0.6142 | 4.7505 | 17.6212 | 33.8376 | 0.2603 | 0.0295 | 0.7178 | 0.07 |
MTF-GLP-HPM | 0.5821 | 2.6724 | 76.3874 | 21.6583 | 0.2744 | 0.0283 | 0.7051 | 0.08 |
MTF-GLP-HPM-R | 0.7511 | 1.7318 | 146.2509 | 16.0651 | 0.2488 | 0.0204 | 0.7359 | 0.05 |
MTF-GLP-CBD | 0.7261 | 3.7199 | 13.4657 | 36.0038 | 0.2467 | 0.0214 | 0.7371 | 0.05 |
MTF-GLP-Reg-FS | 0.7367 | 3.5922 | 12.9381 | 36.3705 | 0.2427 | 0.0210 | 0.7414 | 0.07 |
TV | 0.5230 | 10.4948 | 10.8895 | 40.4000 | 0.5157 | 0.0068 | 0.4810 | 2.62 |
RR | 0.6264 | 6.5751 | 13.9354 | 35.9274 | 0.3473 | 0.0066 | 0.6484 | 3.89 |
FE-HPM | 0.6878 | 1.7861 | 27.6523 | 29.8884 | 0.2935 | 0.0331 | 0.6830 | 0.20 |
PWMBF | 0.6889 | 3.0461 | 9.3035 | 39.7592 | 0.3850 | 0.0288 | 0.5973 | 0.24 |
HSMI | 0.8776 | 0.5600 | 12.0783 | 37.3864 | 0.2126 | 0.0226 | 0.7697 | 0.08 |
Method | RR | FR | ||||||
---|---|---|---|---|---|---|---|---|
Q2n | SAM ↓ | ERGAS ↓ | PSNR | DS ↓ | HQNR | CT | ||
GT/EXP | 1.0000 | 0.0000 | 0.0000 | — | 0.1742 | 0.0010 | 0.8250 | — |
BDSD-PC | 0.6967 | 3.3546 | 1.4289 | 51.5819 | 0.4442 | 0.0029 | 0.5542 | 0.04 |
C-GSA | 0.3733 | 13.1861 | 27.7954 | 25.5358 | 0.6680 | 0.0169 | 0.3263 | 0.20 |
AWLP | 0.6249 | 4.6637 | 40.9876 | 22.0931 | 0.2800 | 0.0142 | 0.7097 | 0.12 |
MF | 0.4875 | 4.8841 | 307.9827 | 12.0675 | 0.3513 | 0.0242 | 0.6331 | 0.04 |
MTF-GLP | 0.6095 | 3.8790 | 13.1801 | 33.5947 | 0.2700 | 0.0222 | 0.7138 | 0.07 |
MTF-GLP-HPM | 0.4186 | 5.8181 | 248.6191 | 9.3156 | 0.3600 | 0.0191 | 0.6278 | 0.07 |
MTF-GLP-HPM-R | 0.7142 | 1.6330 | 50.3957 | 23.2851 | 0.2232 | 0.0199 | 0.7614 | 0.05 |
MTF-GLP-CBD | 0.6731 | 3.2091 | 10.0218 | 34.8990 | 0.2509 | 0.0202 | 0.7340 | 0.05 |
MTF-GLP-Reg-FS | 0.6764 | 3.1540 | 9.8490 | 35.0432 | 0.2494 | 0.0200 | 0.7355 | 0.05 |
TV | 0.5180 | 8.1571 | 25.3791 | 34.6124 | 0.5676 | 0.0063 | 0.4296 | 2.31 |
RR | 0.6732 | 5.8643 | 13.6862 | 33.4933 | 0.3812 | 0.0069 | 0.6145 | 3.64 |
FE-HPM | 0.4445 | 5.2907 | 1468.0778 | −0.5753 | 0.3953 | 0.0261 | 0.5890 | 0.19 |
PWMBF | 0.7728 | 2.0174 | 7.5237 | 38.5400 | 0.3108 | 0.0197 | 0.6756 | 0.28 |
HSMI | 0.8945 | 0.3708 | 15.4491 | 31.9907 | 0.1830 | 0.0122 | 0.8071 | 0.08 |
Method | RR | FR | ||||||
---|---|---|---|---|---|---|---|---|
Q2n | SAM ↓ | ERGAS ↓ | PSNR | DS ↓ | HQNR | CT | ||
GT/EXP | 1.0000 | 0.0000 | 0.0000 | — | 0.1549 | 0.0013 | 0.8440 | — |
BDSD-PC | 0.7318 | 2.9355 | 1.0535 | 54.7527 | 0.4124 | 0.0025 | 0.5862 | 0.57 |
MTF-GLP-Reg-FS | 0.6846 | 2.4776 | 7.1824 | 38.9821 | 0.2542 | 0.0237 | 0.7281 | 0.35 |
RR | 0.5214 | 9.7966 | 15.4098 | 34.6199 | 0.5658 | 0.0122 | 0.4289 | 17.78 |
HSMI | 0.8669 | 0.5118 | 14.2184 | 37.6199 | 0.1677 | 0.0171 | 0.8180 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, D.; Ma, J.; Liu, B.; Zhu, Y. Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization. Sensors 2025, 25, 3530. https://doi.org/10.3390/s25113530
Fu D, Ma J, Liu B, Zhu Y. Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization. Sensors. 2025; 25(11):3530. https://doi.org/10.3390/s25113530
Chicago/Turabian StyleFu, Dongyang, Jin Ma, Bei Liu, and Yan Zhu. 2025. "Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization" Sensors 25, no. 11: 3530. https://doi.org/10.3390/s25113530
APA StyleFu, D., Ma, J., Liu, B., & Zhu, Y. (2025). Multi-Source Pansharpening of Island Sea Areas Based on Hybrid-Scale Regression Optimization. Sensors, 25(11), 3530. https://doi.org/10.3390/s25113530