A Compact and Robust RFID Tag Based on an AMC Structure
Abstract
1. Introduction
2. AMC Design
3. Results and Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hall, P.S.; Hao, Y.; Nechayev, Y.I.; Alomainy, A.; Constantinou, C.C.; Parini, C.; Kamarudin, M.R.; Salim, T.Z.; Hee, D.T.M.; Dubrovka, R.; et al. Antennas and propagation for on-body communication systems. IEEE Antennas Propag. Mag. 2007, 49, 41–58. [Google Scholar] [CrossRef]
- Serra, A.A.; Nepa, P.; Manara, G. A Wearable Two-Antenna System on a Life Jacket for Cospas-Sarsat Personal Locator Beacons. IEEE Trans. Antennas Propag. 2012, 60, 1035–1042. [Google Scholar] [CrossRef]
- Michel, A.; Karathanasis, K.; Nepa, P.; Volakis, J.L. Accuracy of a multi-probe conformal sensor in estimating the dielectric constant in deep biological tissues. IEEE Sens. J. 2015, 15, 5217–5221. [Google Scholar] [CrossRef]
- Marrocco, G. RFID antennas for the UHF remote monitoring of human subjects. IEEE Trans. Antennas Propag. 2007, 55, 1862–1870. [Google Scholar] [CrossRef]
- Kiourti, A.; Lee, C.; Volakis, J.L. Fabrication of textile antennas and circuits with 0.1 mm precision. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 151–153. [Google Scholar] [CrossRef]
- Moro, R.; Agneessens, S.; Rogier, H.; Dierck, A.; Bozzi, M. Textile microwave components in substrate integrated waveguide technology. IEEE Trans. Microw. Theory Techn. 2015, 63, 422–432. [Google Scholar] [CrossRef]
- Casula, G.A.; Michel, A.; Montisci, G.; Nepa, P.; Valente, G. Energy-based considerations for ungrounded wearable UHF antenna design. IEEE Sens. J. 2017, 17, 687–694. [Google Scholar] [CrossRef]
- Casula, G.A.; Michel, A.; Nepa, P.; Montisci, G.; Mazzarella, G. Robustness of wearable UHF-band PIFAs to human-body proximity. IEEE Trans. Antennas Propag. 2016, 64, 2050–2055. [Google Scholar] [CrossRef]
- Michel, A.; Colella, R.; Casula, G.A.; Nepa, P.; Catarinucci, L.; Montisci, G.; Mazzarella, G.; Manara, G. Design considerations on the placement of a wearable UHF-RFID PIFA on a compact ground plane. IEEE Trans. Antennas Propag. 2018, 66, 3142–3147. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Valente, G.; Gatto, G. A robust printed antenna for UHF wearable applications. IEEE Trans. Antennas Propag. 2018, 66, 4337–4342. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G. A design rule to reduce the human body effect on wearable PIFA antennas. Electronics 2019, 8, 244. [Google Scholar] [CrossRef]
- Casula, G.A.; Montisci, G.; Rogier, H. A wearable textile RFID tag based on an eighth-mode substrate integrated waveguide cavity. IEEE Access 2020, 8, 11116–11123. [Google Scholar] [CrossRef]
- Zhu, S.; Langley, R. Dual-band wearable textile antenna on an EBG substrate. IEEE Trans. Antennas Propag. 2009, 57, 926–935. [Google Scholar] [CrossRef]
- Kim, S.; Ren, Y.J.; Lee, H.; Rida, A.; Nikolaou, S.; Tentzeris, M.M. Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 663–666. [Google Scholar] [CrossRef]
- Raad, H.R.; Abbosh, A.I.; Al-Rizzo, H.M.; Rucker, D.G. Flexible and compact AMC based antenna for telemedicine applications. IEEE Trans. Antennas Propag. 2013, 61, 524–531. [Google Scholar] [CrossRef]
- Park, I.Y.; Kim, D. Artificial magnetic conductor loaded long range passive RFID tag antenna mountable on metallic objects. Electron Lett. 2014, 50, 335–336. [Google Scholar] [CrossRef]
- Sanusi, O.M.; Ghaffar, F.A.; Shamim, A.; Vaseem, M.; Wang, Y.; Roy, L. Development of a 2.45 GHz Antenna for Flexible Compact Radiation Dosimeter Tags. IEEE Trans. Antennas Propag. 2019, 67, 5063–5072. [Google Scholar] [CrossRef]
- Hong, J.H.; Chiu, C.-W.; Wang, H.-C. Design of Circularly Polarized Tag Antenna with Artificial Magnetic Conductor for on-Body Applications. Prog. Electromagn. Res. C 2018, 81, 89–99. [Google Scholar] [CrossRef]
- Kim, D.; Yeo, J. Low-Profile RFID Tag Antenna Using Compact AMC Substrate for Metallic Objects. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 718–720. [Google Scholar]
- De Cos, M.E.; Las-Heras, F. Dual-Band Antenna/AMC Combination for RFID. Int. J. Antenn. Propag. 2012, 2012, 804536. [Google Scholar] [CrossRef]
- Michel, A.; Franchina, V.; Nepa, P.; Salvatore, A. A UHF RFID Tag Embeddable in Small Metal Cavities. IEEE Trans. Antennas Propag. 2019, 67, 1374–1379. [Google Scholar] [CrossRef]
- Yang, E.S.; Son, H.W. Dual-polarised metal-mountable UHF RFID tag antenna for polarisation diversity. Electron. Lett. 2016, 52, 496–498. [Google Scholar] [CrossRef]
- Bong, F.-L.; Lim, E.-H.; Lo, F.-L. Compact orientation insensitive dipolar patch for metal-mountable UHF RFID tag design. IEEE Trans. Antennas Propag. 2018, 66, 1788–1795. [Google Scholar] [CrossRef]
- Hamani, A.; Yagoub, M.C.E.; Vuong, T.-P.; Touhami, R. A Novel Broadband Antenna Design for UHF RFID Tags on Metallic Surface Environments. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 91–94. [Google Scholar] [CrossRef]
- Ng, W.-H.; Lim, E.-H.; Bong, F.-L.; Chung, B.-K. Compact Folded Crossed-Dipole for On-Metal Polarization Diversity UHF Tag. IEEE J. Radio Freq. Identif. 2020, 4, 115–123. [Google Scholar] [CrossRef]
- Althobaiti, T.; Sharif, A.; Ouyang, J.; Ramzan, N.; Abbasi, Q.H. Planar Pyramid Shaped UHF RFID Tag Antenna with Polarisation Diversity for IoT Applications Using Characteristics Mode Analysis. IEEE Access 2020, 8, 103684–103696. [Google Scholar] [CrossRef]
- Inserra, D.; Wen, G. Compact crossed dipole antenna with meandered series power divider for UHF RFID tag and handheld reader devices. IEEE Trans. Antennas Propag. 2019, 67, 4195–4199. [Google Scholar] [CrossRef]
- Bhaskar, S.; Singh, A.K. Linearly tapered meander line cross dipole circularly polarized antenna for UHF RFID tag applications. Int. J. RF Microw. Comput. Aided Eng. 2019, 29, e21563. [Google Scholar] [CrossRef]
- Tran, H.H.; Ta, S.X.; Park, I. A compact circularly polarized crossed dipole antenna for an RFID tag. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 674–677. [Google Scholar] [CrossRef]
- Chen, H.-D.; Sim, C.-Y.-D.; Tsai, C.-H.; Kuo, C. Compact circularly polarized meandered-loop antenna for UHF-band RFID tag. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1602–1605. [Google Scholar] [CrossRef]
- Hsu, H.-T.; Huang, T.-J. A 1 × 2 Dual-Band Antenna Array for Radio-Frequency Identification (RFID) Handheld Reader Applications. IEEE Trans. Antennas Propag. 2014, 62, 5260–5267. [Google Scholar] [CrossRef]
- Sharif, A.; Kumar, R.; Althobaiti, T.; Alotaibi, A.A.; Safi, L.; Ramzan, N.; Imran, M.A.; Abbasi, Q.H. Bio-Inspired Circular-Polarized UHF RFID Tag Design Using Characteristic Mode Analysis. IEEE Sens. J. 2023, 23, 10847–10855. [Google Scholar] [CrossRef]
- Romputtal, A.; Phongcharoenpanich, C. IoT-Linked Integrated NFC and Dual Band UHF/2.45 GHz RFID Reader Antenna Scheme. IEEE Access 2019, 7, 177832–177843. [Google Scholar] [CrossRef]
- Hammad, H.F. New Technique for Segmenting RFID Bandwidth for IoT Applications. IEEE J. Radio Freq. Identif. 2021, 5, 446–450. [Google Scholar] [CrossRef]
- Anee, R.-E.-A.; Karmakar, N.C. Chipless RFID Tag Localization. IEEE Trans. Microw. Theory Tech. 2013, 61, 4008–4017. [Google Scholar] [CrossRef]
- Cappelli, I.; Fort, A.; Mugnaini, M.; Panzardi, E.; Pozzebon, A.; Tani, M.; Vignoli, V. Battery-Less HF RFID Sensor Tag for Soil Moisture Measurements. IEEE Trans. Instrum. Meas. 2021, 70, 9504113. [Google Scholar] [CrossRef]
- Lasantha, L.; Karmakar, N.C.; Ray, B. Chipless RFID Sensors for IoT Sensing and Potential Applications in Underground Mining—A Review. IEEE Sens. J. 2023, 23, 9033–9048. [Google Scholar] [CrossRef]
- Alam, M.S.; Misran, N.; Yatim, B.; Islam, M.T. Development of electromagnetic band gap structures in the perspective of microstrip antenna design. Int. J. Antenn. Propag. 2013, 2013, 22. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Ge, Z.-C.; Chen, X.-Y. Research progress on Fabry-Perot resonator antenna. J. Zhejiang Univ. Sci. A 2009, 10, 583–588. [Google Scholar] [CrossRef]
- Bala, B.D.; Rahim, M.K.A.; Murad, N.A. Complementary electric-LC resonator antenna for WLAN applications. Appl. Phys. A 2014, 117, 635–639. [Google Scholar] [CrossRef]
- Alu, A.; Engheta, N. Guided modes in a waveguide filled with a pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) layers. IEEE Trans Microw Theory Techniq. 2004, 52, 199–210. [Google Scholar] [CrossRef]
- Cheribi, H.; Ghanem, F.; Kimouche, H. Metamaterial-based frequency reconfigurable antenna. Electron. Lett. 2013, 49, 315–316. [Google Scholar] [CrossRef]
- Jose, J. Frequency selective bistable switching in metamaterial based photonic bandgap medium. Opt. Commun. 2014, 328, 116–120. [Google Scholar] [CrossRef]
- Hu, F.; Zou, T.; Quan, B.; Xu, X.; Bo, S.; Chen, T.; Wang, L.; Gu, C.; Li, J. Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt. Commun. 2014, 332, 321–326. [Google Scholar] [CrossRef]
- Nouh, M.; Aldraihem, O.; Baz, A. Vibration characteristics of metamaterial beams with periodic local resonances. J. Vib. Acoust. 2014, 136, 061012. [Google Scholar] [CrossRef]
- GuoHe, W.; Li, L.; Teng, B.T.; Sun, X. A wideband and dual resonant terahertz metamaterial using a modified SRR structure. Prog. Electromagn. Res. 2012, 134, 289–299. [Google Scholar]
- Costa, F.; Monorchio, A. Multiband electromagnetic wave absorber based on reactive impedance ground planes. IET Microw. Antenn. Propag. 2010, 4, 1720–1727. [Google Scholar] [CrossRef]
- Genovesi, S.; Monorchio, A.; Mittra, R.; Manara, G. A sub-boundary approach for enhanced particle swarm optimization and its application to the design of artificial magnetic conductors. IEEE Trans. Antennas Propag. 2007, 55, 766–770. [Google Scholar] [CrossRef]
- Rao, K.; Nikitin, P.; Lam, S. Antenna design for UHF RFID tags: A review and a practical application. IEEE Trans. Antennas Propag. 2005, 53, 3870–3876. [Google Scholar] [CrossRef]
Ref. | Lx Ly | Hz | εr | fres (MHz) | Ptx (dBm) | Gtx (dBi) | Pchip (dBm) | Gtag (dBi) | Rm (m) | Rt (m) | M | B | A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[16] | 100 × 60 mm2 (0.289 × 0.174 λ02) | 10 mm (0.029 λ0) | 4.5 | 868 | 30 | 6 | −17 | - | 12.2 | - | Yes | No | Yes |
[17] | 100 × 20 mm2 (0.817 × 0.163 λ02) | 9.24 mm (0.075 λ0) | 3.5 | 2450 | 32 | 6 | −14 | 4.4 | 1 | - | No | Yes | Yes |
[18] | 215 × 211 mm2 (0.656 × 0.644 λ02) | 6.4 mm (0.020 λ0) | 4.4 | 915 | 36 | - | −16.7 | 5 | 15.7 | 17.7 | No | Yes | Yes |
[19] | 34.44 × 67 mm2 (0.105 × 0.204 λ02) | 3.63 mm (0.011 λ0) | 6.45 | 915 | 33 | - | −17 | −2 | 4.8 | - | Yes | No | Yes |
[20] | 44.1 × 44.1 mm2 (0.323 × 0.323 λ02) | 1.524 mm (0.011 λ0) | 3.28 | 2200 | - | - | - | 2.9 | - | - | Yes | No | Yes |
[21] | 25 × 25 mm2 (0.072 × 0.072 λ02) | 2.5 mm (0.007 λ0) | 9 | 868 | 35.2 | - | −18.5 | - | 0.98 | 1.3 | Yes | No | No |
[22] | 40 × 40 mm2 (0.122 × 0.122 λ02) | 1.6 mm (0.005 λ0) | 3.3 | 915 | 36 | - | −19.9 | −5.5 | 7.7 | - | Yes | No | No |
[23] | 30 × 30 mm2 (0.092 × 0.092 λ02) | 1.6 mm (0.005 λ0) | 1.06 | 915 | 36 | - | −19.9 | −12 | 3.5 | - | Yes | No | No |
[24] | 104 × 31 mm2 (0.301 × 0.090 λ02) | 7.6 mm (0.022 λ0) | 4.4 | 868 | 36 | - | −18.5 | 1.5 | 11.8 | - | Yes | No | No |
[25] | 64 × 64 mm2 (0.195 × 0.195 λ02) | 2 mm (0.005 λ0) | 4.4 | 915 | 36 | - | −17 | - | 10.2 | 12 | Yes | No | No |
[26] | 50 × 50 mm2 (0.153 × 0.153 λ02) | 2 mm (0.006 λ0) | 4.4 | 915 | 36 | 6 | −19.5 | −4.9 | 8.5 | - | Yes | No | No |
[27] | 56 × 56 mm2 (0.171 × 0.171 λ02) | 0.4 mm (0.0012 λ0) | 4.6 | 915 | 36 | 9 | −14 | 1.4 | 9.9 | 10 | No | No | No |
[28] | 58 × 58 mm2 (0.177 × 0.177 λ02) | 1.6 mm (0.005 λ0) | 4.4 | 915 | 36 | 8 | −17.4 | 1.28 | 15.6 | 15 | No | No | No |
[29] | 35.6 × 35.6 mm2 (0.109 × 0.109 λ02) | 0.508 mm (0.0015 λ0) | 3.38 | 915 | 35.2 | 14 | −15 | - | 7.6 | - | No | No | No |
[30] | 58.6 × 58.6 mm2 (0.181 × 0.181 λ02) | 0.4 mm (0.0012 λ0) | 4.4 | 925 | 30 | 9 | −17 | 1.7 | 20.5 | 19.9 | No | No | No |
This work | 76 × 76 mm2 (0.22 × 0.22 λ02) | 3.245 mm (0.009 λ0) | 6 | 868 | 30 | 5.16 | −17.3 | 0.7 | - | 11 | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casula, G.A.; Muntoni, G.; Maxia, P.; Montisci, G. A Compact and Robust RFID Tag Based on an AMC Structure. Sensors 2024, 24, 1468. https://doi.org/10.3390/s24051468
Casula GA, Muntoni G, Maxia P, Montisci G. A Compact and Robust RFID Tag Based on an AMC Structure. Sensors. 2024; 24(5):1468. https://doi.org/10.3390/s24051468
Chicago/Turabian StyleCasula, Giovanni Andrea, Giacomo Muntoni, Paolo Maxia, and Giorgio Montisci. 2024. "A Compact and Robust RFID Tag Based on an AMC Structure" Sensors 24, no. 5: 1468. https://doi.org/10.3390/s24051468
APA StyleCasula, G. A., Muntoni, G., Maxia, P., & Montisci, G. (2024). A Compact and Robust RFID Tag Based on an AMC Structure. Sensors, 24(5), 1468. https://doi.org/10.3390/s24051468