Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions
Abstract
1. Introduction
2. Materials and Method
2.1. Measurement Principle
2.2. Fluorescence Spectroscopy Setup
2.3. Cryo LIF Chamber
2.4. Absorption Spectroscopy Setup
3. Fuels and Tracers Used
4. Results
4.1. Concentration-Dependent Measurements
4.1.1. Absorption
4.1.2. Emission
4.2. Temperature-Dependent Emission Spectra
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fdida, N.; Blaisot, J.-B.; Floch, A.; Dechaume, D. Drop-size measurement techniques applied to gasoline sprays. At. Sprays 2010, 20, 141–162. [Google Scholar] [CrossRef]
- Welss, R.; Bornschlegel, S.; Wensing, M. Characterizing Spray Propagation of GDI Injectors under Crossflow Conditions; 2018-01-1696; SAE Technical Paper: Warrendale, PA, USA, 2018. [Google Scholar]
- Massoli, P.; Beretta, F.; D’Alessio, A. Single droplet size, velocity, and optical characteristics by the polarization properties of scattered light. Appl. Opt. 1989, 28, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Domann, R.; Hardalupas, Y. Quantitative Measurement of Planar Droplet Sauter Mean Diameter in Sprays using Planar Droplet Sizing. Part. Part. Syst. Charact. 2003, 20, 209–218. [Google Scholar] [CrossRef]
- Lemoine, F.; Castanet, G. Temperature and chemical composition of droplets by optical measurement techniques: A state-of-the-art review. Exp. Fluids 2013, 54, 1–34. [Google Scholar] [CrossRef]
- Domann, R.; Hardalupas, Y. Spatial distribution of fluorescence intensity within large droplets and its dependence on dye concentration. Appl. Opt. 2001, 40, 3586–3597. [Google Scholar] [CrossRef] [PubMed]
- Frackowiak, B.; Tropea, C. Numerical analysis of diameter influence on droplet fluorescence. Appl. Opt. 2010, 49, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Maligne, D.; Bruneaux, G. Time-Resolved Fuel Film Thickness Measurement for Direct Injection SI Engines Using Refractive Index Matching. In Proceedings of the SAE 2011 World Congress and Exhibition, Detroit, MI, USA, 12–14 April 2011. [Google Scholar]
- Drake, M.C.; Fansler, T.D.; Solomon, A.S.; Szekely, G.A. Piston Fuel Films as a Source of Smoke and Hydrocarbon Emissions from a Wall-Controlled Spark-Ignited Direct-Injection Engine; 2003-01-0547; SAE Technical Paper: Warrendale, PA, USA, 2003. [Google Scholar]
- Fansler, T.D.; Parrish, S.E. Spray measurement technology: A review. Meas. Sci. Technol. 2015, 26, 012002. [Google Scholar] [CrossRef]
- Sick, V.; Stojkovic, B.D. Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques. Appl. Phys. B 2001, 73, 75–83. [Google Scholar]
- Cho, H.; Min, K. Measurement of liquid fuel film distribution on the cylinder liner of a spark ignition engine using the laser-induced fluorescence technique. Meas. Sci. Technol. 2003, 14, 975. [Google Scholar] [CrossRef]
- Alonso, M.; Kay, P.J.; Bowen, P.J.; Gilchrist, R.; Sapsford, S. A laser induced fluorescence technique for quantifying transient liquid fuel films utilising total internal reflection. Exp. Fluids 2010, 48, 133–142. [Google Scholar] [CrossRef]
- Yang, J.; Melton, L.A. Fluorescence-Based Method Designed for Quantitative Measurement of Fuel Film Thickness during Cold-Start of Engines. Appl. Spectrosc. 2000, 54, 565–574. [Google Scholar] [CrossRef]
- Spathopoulou, M.; Gavaises, M.; Theodorakakos, A.; Yanagihara, H. Formation and development of wall liquid films during impaction of gasoline fuel sprays. At. Sprays 2009, 19, 701–726. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Murthy, T.G.; Chandrasekar, S. Simultaneous Measurements of Thickness and Temperature Profile of the Lubricant Film at Chip-tool Interface during Machining Process Using Luminescent Sensors. Procedia Eng. 2014, 79, 9–16. [Google Scholar] [CrossRef]
- Yang, H.; Wei, W.; Su, M.; Chen, J.; Cai, X. Measurement of liquid water film thickness on opaque surface with diode laser absorption spectroscopy. Flow Meas. Instrum. 2018, 60, 110–114. [Google Scholar] [CrossRef]
- Pan, R.; Jeffries, J.; Dreier, T.; Schulz, C. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy. Appl. Phys. B 2016, 122, 1–10. [Google Scholar] [CrossRef]
- Wu, W.; Kong, S.; Xu, X.; Tao, J.; Li, C.; Wang, J.; Su, M.; Yang, H. Simultaneous measurement of liquid film thickness and temperature on metal surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 257, 119804. [Google Scholar] [CrossRef] [PubMed]
- Mouza, A.; Vlachos, N.A.; Paras, S.; Karabelas, A. Measurement of liquid film thickness using a laser light absorption method. Exp. Fluids 2000, 28, 355–359. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Koegl, M.; Baderschneider, K.; Hofbeck, B.; Berrocal, E.; Conrad, C.; Will, S.; Zigan, L. 3D mapping of droplet Sauter mean diameter in sprays. Appl. Opt. 2019, 58, 3775–3783. [Google Scholar] [CrossRef]
- Park, S.; Cho, H.; Yoon, I.; Min, K. Measurement of droplet size distribution of gasoline direct injection spray by droplet generator and planar image technique. Meas. Sci. Technol. 2002, 13, 859–864. [Google Scholar] [CrossRef]
- Bollmann, J.; Hickl, F.; Preuster, P.; Zigan, L.; Wasserscheid, P.; Will, S. Phosphor thermometry in heat transfer fluids and liquid organic hydrogen carrier systems using (Sr,Ca)SiAlN3:Eu2+. Meas. Sci. Technol. 2023, 34, 035206. [Google Scholar] [CrossRef]
- Ahmadinouri, F.; Parvin, P.; Rabbani, A.R. Assessment of asphaltene and resin fractions in crude oil using laser-induced fluorescence spectroscopy based on modified Beer-Lambert (LIFS-MBL). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 304, 123314. [Google Scholar] [CrossRef]
- Brübach, J.; Patt, A.; Dreizler, A. Spray thermometry using thermographic phosphors. Appl. Phys. B 2006, 83, 499–502. [Google Scholar] [CrossRef]
- Mishra, Y.N.; Yoganantham, A.; Koegl, M.; Zigan, L. Investigation of Five Organic Dyes in Ethanol and Butanol for Two-Color Laser-Induced Fluorescence Ratio Thermometry. Optics 2020, 1, 1–17. [Google Scholar] [CrossRef]
- Prenting, M.; Dzulfida, M.; Dreier, T.; Schulz, C. Characterization of tracers for two-color laser-induced fluorescence liquid-phase temperature imaging in sprays. Exp. Fluids 2020, 61, 1–15. [Google Scholar] [CrossRef]
- Koegl, M.; Mull, C.; Baderschneider, K.; Wislicenus, J.; Will, S.; Zigan, L. Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors 2019, 19, 2822. [Google Scholar] [CrossRef] [PubMed]
- Durst, A.; Wensing, M.; Berrocal, E. Light sheet fluorescence microscopic imaging for the primary breakup of diesel and gasoline sprays with real-world fuels. Appl. Opt. 2018, 57, 2704–2714. [Google Scholar] [CrossRef] [PubMed]
- Lavieille, P.; Lemoine, F.; Lavergne, G.; Lebouché, M. Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Exp. Fluids 2001, 31, 45–55. [Google Scholar] [CrossRef]
- Castanet, G.; Liénart, T.; Lemoine, F. Dynamics and temperature of droplets impacting onto a heated wall. Int. J. Heat Mass Transf. 2009, 52, 670–679. [Google Scholar] [CrossRef]
- Labergue, A.; Deprédurand, V.; Delconte, A.; Castanet, G.; Lemoine, F. New insight into two-color LIF thermometry applied to temperature measurements of droplets. Exp. Fluids 2010, 49, 547–556. [Google Scholar] [CrossRef]
- Vetrano, M.R.; Simonini, A.; Steelant, J.; Rambaud, P. Thermal characterization of a flashing jet by planar laser-induced fluorescence. Exp. Fluids 2013, 54, 1573. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, W.; Yin, Y.; Chen, S.; Yan, B.; Mu, J.; Qi, X. Nonlinear temperature calibration equation for Rhodamine B in different solutions for wide-temperature-range applications. Appl. Opt. 2019, 58, 1514–1518. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Pérez, C.; Hassan, Y.; Tan, S. Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry. Rev. Sci. Instrum. 2011, 82, 074901. [Google Scholar] [CrossRef] [PubMed]
- Chaze, W.; Caballina, O.; Castanet, G.; Lemoine, F. Spatially and temporally resolved measurements of the temperature inside droplets impinging on a hot solid surface. Exp. Fluids 2017, 58, 96. [Google Scholar] [CrossRef]
- Castanet, G.; Chaze, W.; Caballina, O.; Collignon, R.; Lemoine, F. Transient evolution of the heat transfer and the vapor film thickness at the drop impact in the regime of film boiling. Phys. Fluids 2018, 30, 122109. [Google Scholar] [CrossRef]
- Perrin, L.; Castanet, G.; Lemoine, F. Characterization of the evaporation of interacting droplets using combined optical techniques. Exp. Fluids 2015, 56, 1–16. [Google Scholar] [CrossRef]
- Palmer, J.; Reddemann, M.A.; Kirsch, V.; Kneer, R. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer. Exp. Fluids 2016, 57, 177. [Google Scholar] [CrossRef]
- Wolff, M.; Delconte, A.; Schmidt, F.; Gucher, P.; Lemoine, F. High-pressure Diesel spray temperature measurements using two-colour laser-induced fluorescence. Meas. Sci. Technol. 2007, 18, 697–706. [Google Scholar] [CrossRef]
- Depredurand, V.; Miron, P.; Labergue, A.; Wolff, M.; Castanet, G.; Lemoine, F. A temperature-sensitive tracer suitable for two-colour laser-induced fluorescence thermometry applied to evaporating fuel droplets. Meas. Sci. Technol. 2008, 19, 105403. [Google Scholar] [CrossRef]
- Deprédurand, V.; Delconte, A.; Lemoine, F. Combined PDA and LIF applied to size–temperature correlations measurements in a heated spray. Exp. Fluids 2011, 50, 561–571. [Google Scholar] [CrossRef]
- Koegl, M.; Pahlevani, M.; Zigan, L. A Novel Approach for Measurement of Composition and Temperature of N-Decane/Butanol Blends Using Two-Color Laser-Induced Fluorescence of Nile Red. Sensors 2020, 20, 5721. [Google Scholar] [CrossRef]
- Koegl, M.; Dai, H.; Baderschneider, K.; Ulrich, H.; Zigan, L. Polarization-dependent LIF/Mie ratio for sizing of micrometric ethanol droplets doped with Nile red. Appl. Opt. 2022, 61, 4204–4214. [Google Scholar] [CrossRef]
- Park, S.; Ghandhi, J.B. Fuel Film Temperature and Thickness Measurements on the Piston Crown of a Direct-Injection Spark-Ignition Engine; SAE Technical Paper: Warrendale, PA, USA, 2005. [Google Scholar]
- Schulz, C.; Sick, V. Tracer-LIF Diagnostics: Quantitative Measurement of Fuel Concentration, Temperature and Fuel/Air Ratio in Practical Combustion Systems. Prog. Energy Combust. Sci. 2005, 31, 75–121. [Google Scholar] [CrossRef]
- Luong, M.; Koban, W.; Schulz, C. Novel strategies for imaging temperature distribution using Toluene LIF. J. Phys. Conf. Ser. 2006, 45, 133. [Google Scholar] [CrossRef]
- Retzer, U.; Fink, W.; Will, T.; Will, S.; Zigan, L. Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment. Appl. Phys. B 2019, 125, 124. [Google Scholar] [CrossRef]
- Löffler, M.; Beyrau, F.; Leipertz, A. Acetone Laser-Induced Fluorescence Behavior for the Simultaneous Quantification of Temperature and Residual Gas Distribution in Fired Spark-Ignition Engines. Appl. Opt. 2010, 49, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Koegl, M.; Delwig, M.; Zigan, L. Characterization of Fluorescence Tracers for Thermometry and Film Thickness Measurements in Liquid Coolants Relevant for Thermal Management of Electric and Electronic Components. Sensors 2022, 22, 8892. [Google Scholar] [CrossRef]
- Taniguchi, M.; Lindsey, J.S. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD. Photochem. Photobiol. 2018, 94, 290–327. [Google Scholar] [CrossRef]
- Joos, F. Technische Verbrennung; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Elfasakhany, A. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis. Eng. Sci. Technol. Int. J. 2015, 18, 713–719. [Google Scholar] [CrossRef]
- Broustail, G.; Seers, P.; Halter, F.; Moreac, G.; Mounaim-Rousselle, C. Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends. Fuel 2011, 90, 1–6. [Google Scholar] [CrossRef]
- Liu, H.; Lee, C.-F.; Huo, M.; Yao, M. Comparison of Ethanol and Butanol as Additives in Soybean Biodiesel Using a Constant Volume Combustion Chamber. Energy Fuels 2011, 25, 1837–1846. [Google Scholar] [CrossRef]
- Riazi, M.R.; Chiaramonti, D. Biofuels Production and Processing Technology; CRC-Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Coordinating Research Council. Handbook of Aviation Fuel Properties; Coordinating Research Council: Alpharetta, GA, USA, 1983. [Google Scholar]
- Department of Defense. Detail Specification Turbine Fuel, Aviation, Kerosene Type, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37). 2015. Available online: https://quicksearch.dla.mil/Transient/9FA7EA4F55464FF5AA4D85B2A39A4D7C.pdf (accessed on 2 April 2019).
- Environment Canada. 2019. Available online: http://www.etc-cte.ec.gc.ca/databases/oilproperties/pdf/web_jet_a-jet_a-1.pdf (accessed on 2 April 2019).
- Groendyk, M.; Rothamer, D. Effect of increased fuel volatility on CDC operation in a light-duty CIDI engine. Fuel 2017, 194, 195–210. [Google Scholar] [CrossRef]
- Shamsi, E.; Parvin, P.; Ahmadinouri, F.; Khazai, S. Laser-induced fluorescence spectroscopy of plant-based drugs: Opium and hashish provoking at 405 nm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123055. [Google Scholar] [CrossRef] [PubMed]
- Denker, C.; Verma, M.; Wiśniewska, A.; Kamlah, R.; Kontogiannis, I.; Dineva, E.; Rendtel, J.; Bauer, S.-M.; Dionies, M.; Önel, H.; et al. Improved High-resolution Fast Imager. J. Astron. Telesc. Instrum. Syst. 2023, 9, 015001. [Google Scholar] [CrossRef]
Light sources | Halogen/deuterium lamps |
Wavelength interval | 190 nm–900 nm |
Bandwidth | 2 nm |
Scan speed | 200 nm/min |
Measurement temperature | 293 K |
Property | Unit | Isooctane | Ethanol | Jet A-1 |
---|---|---|---|---|
H/C ratio/O/C ratio | - | 2.25/- | 3/0.5 | 1.92/- |
Boiling point or range | K | 372 | 351 | 478–573 |
Density at 293 K and 0.1 MPa | g/cm3 | 0.72 | 0.79 | 0.79 |
Dynamic viscosity at 0.1 MPa and 298 K | mPa·s | 0.47 | 1.1 | 1.33 (@293 K) |
Surface tension at 293 K | N/m | 0.019 | 0.022 | 0.027 |
Heat of vaporization at 293 K | kJ/kg | 297 | 904 | 300–375 |
Stoichiometric air–fuel ratio | kg/kg | 15.2 | 9 | ~15 |
Lower heating value | MJ/kg | 44.3 | 26.8 | 43.45 |
Filter 1 | Filter 2 | |||
---|---|---|---|---|
Solvent | CWL (nm) | SN | CWL (nm) | SN |
Isooctane | 632 | #65-166 | 560 | #88-011 |
E20 | 640 | #65-168 | 600 | #65-163 |
E40 | 640 | #65-168 | 600 | #65-163 |
E100 | 540 | #65-157 | 568 | #65-160 |
Jet A-1 | 650 | #65-170 | 589 | #65-162 |
Fuel | y0 | A1 | t1 | A2 | t2 | A3 | t3 | R2 | Valid |
---|---|---|---|---|---|---|---|---|---|
Isooctane | 199.73 | −7914.23 | 0.34 | 13,478.36 | 0.25 | 2158.91 | 0.46 | 0.9975 | (203 K–293 K) |
E20 | 458.26 | −72.23 | −4.48 | 0.00 | −0.06 | −62.26 | −4.49 | 0.9962 | (223 K–293 K) |
E100 | 176.24 | 160.98 | 0.63 | 69.06 | 0.63 | 118.03 | 1.89 | 0.9996 | (183 K–293 K) |
Jet A-1 | 177.18 | 3.26 × 107 | 0.07 | 2.75 × 109 | 0.05 | 88.84 | 2.17 | 0.9991 | (183 K–293 K) |
Fuel | p1 | p2 | p3 | p4 | p5 | R2 | Valid |
---|---|---|---|---|---|---|---|
E40 | −27.40 | 164.83 | −350.82 | 273.10 | 232.99 | 0.9974 | (233 K–293 K) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koegl, M.; Vogler, J.; Zigan, L. Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions. Sensors 2024, 24, 724. https://doi.org/10.3390/s24030724
Koegl M, Vogler J, Zigan L. Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions. Sensors. 2024; 24(3):724. https://doi.org/10.3390/s24030724
Chicago/Turabian StyleKoegl, Matthias, Jonas Vogler, and Lars Zigan. 2024. "Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions" Sensors 24, no. 3: 724. https://doi.org/10.3390/s24030724
APA StyleKoegl, M., Vogler, J., & Zigan, L. (2024). Spectral Investigations of Fluorescence Tracers in Automotive and Aviation Fuels under Cryogenic Conditions. Sensors, 24(3), 724. https://doi.org/10.3390/s24030724