Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity
Abstract
1. Introduction
2. Theory and Design
3. Measurements and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seeds, A.J.; Williams, K.J. Microwave photonics. J. Light. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Minasian, R.A. Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 2006, 54, 832–846. [Google Scholar] [CrossRef]
- Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave photonics. Laser Photonics Rev. 2013, 7, 506–538. [Google Scholar] [CrossRef]
- Munoz, P.; Domenech, J.D.; Artundo, I.; den Bested, J.H.; Capmany, J. Evolution of fabless generic photonic integration. In Proceedings of the 2013 15th International Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 23–27 June 2023; pp. 1–3. [Google Scholar]
- Doménech, J.; Muñoz, P.; Capmany, J. Discretely tunable microwave photonics beamformer based on ring resonators and arrayed waveguide gratings. In Proceedings of the Silicon Photonics and Photonic Integrated Circuits II, Brussels, Belgium, 12–16 April 2010; pp. 373–380. [Google Scholar]
- Hu, G.; Cui, Y.; Yang, Y.; Yang, J.; Tian, D.; Yun, B.; Zhang, R. Optical beamformer based on diffraction order multiplexing (DOM) of an arrayed waveguide grating. J. Light. Technol. 2019, 37, 2898–2904. [Google Scholar] [CrossRef]
- Vidal, B.; Corral, J.L.; Piqueras, M.A.; Marti, J. Optical delay line based on arrayed waveguide gratings’ spectral periodicity and dispersive media for antenna beamforming applications. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 1202–1210. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, L.; Lu, L.; Wang, X.; Chen, J. Integrated optical delay line based on a loopback arrayed waveguide grating for radio-frequency filtering. IEEE Photonics J. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Carpintero, G.; Rouvalis, E.; Ławniczuk, K.; Van Dijk, F.; Chtioui, M.; Renaud, C.C.; Leijtens, X.J.; Bente, E.A.; Seeds, A. Millimeter-wave signal generation by optical heterodyne of two channels from an arrayed waveguide grating-based multi-wavelength laser. In Proceedings of the 2012 IEEE International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September 2012; pp. 51–54. [Google Scholar]
- Guo, H.; Xiao, G.; Mrad, N.; Albert, J.; Yao, J. Wavelength interrogator based on closed-loop piezo-electrically scanned space-to-wavelength mapping of an arrayed waveguide grating. J. Light. Technol. 2010, 28, 2654–2659. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. Ultracompact 40-channel arrayed waveguide grating on silicon nitride platform at 860 nm. IEEE J. Quantum Electron. 2019, 56, 1–8. [Google Scholar] [CrossRef]
- Akca, B.; Považay, B.; Alex, A.; Wörhoff, K.; De Ridder, R.; Drexler, W.; Pollnau, M. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip. Opt. Express 2013, 21, 16648–16656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.; Wang, J.; Yi, D.; Chan, D.W.U.; Yuan, W.; Tsang, H.K. Integrated scanning spectrometer with a tunable micro-ring resonator and an arrayed waveguide grating. Photonics Res. 2022, 10, A74–A81. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Tsang, H.K. High resolution silicon nitride spectrometer by integrating micro-rings and arrayed waveguide gratings in tandem. In Proceedings of the 2019 IEEE 16th International Conference on Group IV Photonics (GFP), Singapore, 28–30 August 2019; pp. 1–2. [Google Scholar]
- Ismail, N.; Choo-Smith, L.-P.; Wörhoff, K.; Driessen, A.; Baclig, A.; Caspers, P.; Puppels, G.; De Ridder, R.; Pollnau, M. Raman spectroscopy with an integrated arrayed-waveguide grating. Opt. Lett. 2011, 36, 4629–4631. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; Selvaraja, S.K.; Dumon, P.; Brouckaert, J.; De Vos, K.; Van Thourhout, D.; Baets, R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 33–44. [Google Scholar] [CrossRef]
- Zou, J.; Ma, X.; Xia, X.; Wang, C.; Zhang, M.; Hu, J.; Wang, X.; He, J.-J. Novel wavelength multiplexer using (N+ 1)×(N+ 1) arrayed waveguide grating and polarization-combiner-rotator on SOI platform. J. Light. Technol. 2021, 39, 2431–2437. [Google Scholar] [CrossRef]
- Stoll, A.; Zhang, Z.; Haynes, R.; Roth, M. High-Resolution Arrayed-Waveguide-Gratings in Astronomy: Design and Fabrication Challenges. Photonics 2017, 4, 30–32. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Lin, Z.; Zhang, S.; Zhang, Z.; Zhang, C.; Tang, C.; Li, E.; Prades, J.D. Design, fabrication and characterization of arrayed waveguide grating devices based on different polymers. Opt. Commun. 2023, 530, 129139. [Google Scholar] [CrossRef]
- Weng, S.; Yuan, P.; Zhuang, W.; Zhang, D.; Luo, F.; Zhu, L. SOI-Based Multi-Channel AWG with Fiber Bragg Grating Sensing Interrogation System. Photonics 2021, 8, 214. [Google Scholar] [CrossRef]
- Li, S.; Yuan, P.; Li, T.; Li, K.; Zhu, L. SOI-based 15-channel arrayed waveguide grating design for fiber Bragg grating interrogator. Photonics Nanostructures-Fundam. Appl. 2023, 53, 101113. [Google Scholar] [CrossRef]
- Stoll, A.; Madhav, K.; Roth, M. Performance limits of astronomical arrayed waveguide gratings on a silica platform. Opt. Express 2020, 28, 39354–39367. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Wang, L.; You, J.; Wang, Y.; Yin, X.; Chen, J.; Sun, B.; An, J.; Wu, Y. The O-band 20-channel 800 GHz Arrayed Waveguide Grating based on silica platform for 1 Tb/s or higher-speed communication system. Opt. Laser Technol. 2022, 156, 108475. [Google Scholar] [CrossRef]
- Seyringer, D.; Serecunova, S.; Uherek, F.; Seyringer, H.; Chovan, J. 256-Channel 10-GHz AWG demultiplexer for ultra-dense WDM. In Proceedings of the 2023 23rd International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 2–6 July 2023; pp. 1–4. [Google Scholar]
- Bissessur, H.; Gaborit, F.; Martin, B.; Pagnod-Rossiaux, P.; Peyre, J.-L.; Renaud, M. 16channel phased array wavelength demultiplexer on InP with low polarisation sensitivity. Electron. Lett. 1994, 30, 336–337. [Google Scholar] [CrossRef]
- Schindler, A.; Garten, A.-B.; Boerma, H.; Ganzer, F.; Runge, P.; Schell, M. Low crosstalk INP-Based arrayed waveguide grating PIC. In Proceedings of the 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 13–17 November 2022; pp. 1–2. [Google Scholar]
- Takenobu, S.; Kuwana, Y.; Takayama, K.; Sakane, Y.; Mitsufumi, O.; Hideki, S.; Norbert, K.; Brinker, W.; Huihai, Y.; Zawadzki, C. All-polymer 8x8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOPTM). In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 24–28 February 2008; p. JWA32. [Google Scholar]
- Caut, A.; Girardi, M.; Torres-Company, V.; Larsson, A.; Karlsson, M. Channel Scalability of Silicon Nitride (De-) multiplexers for Optical Interconnects at 1 μm. J. Light. Technol. 2023, 42, 276–286. [Google Scholar] [CrossRef]
- Shang, K.; Pathak, S.; Qin, C.; Yoo, S.B. Low-loss compact silicon nitride arrayed waveguide gratings for photonic integrated circuits. IEEE Photonics J. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- van Wijk, A.; Doerr, C.R.; Ali, Z.; Karabiyik, M.; Akca, B.I. Compact ultrabroad-bandwidth cascaded arrayed waveguide gratings. Opt. Express 2020, 28, 14618–14626. [Google Scholar] [CrossRef]
- Tu, H.; Zhang, Y.; Guo, W. Arrayed Waveguide Grating Based on Z-cut Lithium Niobate Platform. In Proceedings of the 2023 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 2–6 July 2023; pp. 1–3. [Google Scholar]
- Yu, Y.; Yu, Z.; Zhang, Z.; Tsang, H.K.; Sun, X. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics 2022, 9, 3253–3259. [Google Scholar] [CrossRef]
- van Wijk, A.C.; Doerr, C.R.; Akca, I.B. Custom Arrayed Waveguide Gratings with Improved Performance. Adv. Photonics Res. 2023, 4, 2300198. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Z.; Li, L.; Pang, A.; Wu, A.; Li, W.; Wang, X.; Zou, S.; Qi, M.; Gan, F. Low-loss and low-crosstalk 8× 8 silicon nanowire AWG routers fabricated with CMOS technology. Opt. Express 2014, 22, 9395–9403. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Le, Z.; Hu, J.; He, J.-J. Performance improvement for silicon-based arrayed waveguide grating router. Opt. Express 2017, 25, 9963–9973. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Zou, X.; Zou, F.; Zhang, Y.; Yan, L.; Pan, W. High-performance 32-channel silicon arrayed waveguide grating with 100 GHz spacing. IEEE Photonics Technol. Lett. 2023, 35, 369–372. [Google Scholar] [CrossRef]
- Ismail, N.; Sun, F.; Sengo, G.; Wörhoff, K.; Driessen, A.; De Ridder, R.M.; Pollnau, M. Improved arrayed-waveguide-grating layout avoiding systematic phase errors. Opt. Express 2011, 19, 8781–8794. [Google Scholar] [CrossRef] [PubMed]
- Adar, R.; Henry, C.H.; Dragone, C.; Kistler, R.C.; Milbrodt, M.A. Broad-band array multiplexers made with silica waveguides on silicon. J. Light. Technol. 1993, 11, 212–219. [Google Scholar] [CrossRef]
- Cheung, S.; Su, T.; Okamoto, K.; Yoo, S. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 310–316. [Google Scholar] [CrossRef]
- Gatkine, P.; Veilleux, S.; Hu, Y.; Bland-Hawthorn, J.; Dagenais, M. Arrayed waveguide grating spectrometers for astronomical applications: New results. Opt. Express 2017, 25, 17918–17935. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xiong, H.-N.; Li, X.; Chen, X.; Wang, C.; Le, Z.; Wang, X.; Ma, X.; Zou, J. Crosstalk reduction for Arrayed waveguide gratings on Silicon-on-Insulator platform. Opt. Laser Technol. 2024, 175, 110817. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, L.; Yang, L. Experimental Demonstration of a Horseshoe-shaped 16-channel Arrayed Waveguide Grating (De) multiplexer. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 2189–2192. [Google Scholar]
- Ye, T.; Fu, Y.; Qiao, L.; Chu, T. Low-crosstalk Si arrayed waveguide grating with parabolic tapers. Opt. Express 2014, 22, 31899–31906. [Google Scholar] [CrossRef]
- Smit, M.K.; Van Dam, C. PHASAR-based WDM-devices: Principles, design and applications. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 236–250. [Google Scholar] [CrossRef]
- Dai, D.; Liu, L.; Wosinski, L.; He, S. Design and fabrication of an ultrasmall overlapped AWG demultiplexers based on α-Si nanowire waveguides. Electron. Lett. 2006, 42, 400–402. [Google Scholar] [CrossRef]
- Okamoto, K.; Ishida, K. Fabrication of silicon reflection-type arrayed-waveguide gratings with distributed Bragg reflectors. Opt. Lett. 2013, 38, 3530–3533. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Dai, D. Ultra-small Si-nanowire-based 400 GHz-spacing 15 × 15 arrayed-waveguide grating router with microbends. Electron. Lett. 2011, 47, 1. [Google Scholar] [CrossRef]
- Pathak, S.; Vanslembrouck, M.; Dumon, P.; Van Thourhout, D.; Verheyen, P.; Lepage, G.; Absil, P.; Bogaerts, W. Effect of mask discretization on performance of silicon arrayed waveguide gratings. IEEE Photonics Technol. Lett. 2014, 26, 718–721. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Y.; Sun, S.; Han, Y.; Huang, Y.; Lin, S.; Yang, L.; Yu, J. A Low-loss 4-channel Arrayed Waveguide Grating Using Parabolic Tapered Waveguides. In Proceedings of the Asia Communications and Photonics Conference, Beijing, China, 24–27 October 2020; p. M4A. 83. [Google Scholar]
- Kamei, S.; Ishii, M.; Kaneko, A.; Shibata, T.; Itoh, M. NXN Cyclic-Frequency Router With Improved Performance Based on Arrayed-Waveguide Grating. J. Light. Technol. 2009, 27, 4097–4104. [Google Scholar] [CrossRef]
- Sakamaki, Y.; Kamei, S.; Hashimoto, T.; Kitoh, T.; Takahashi, H. Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method. J. Light. Technol. 2009, 27, 5710–5715. [Google Scholar] [CrossRef]
- Sheng, Z.; Dai, D.; He, S. Improve channel uniformity of an Si-nanowire AWG demultiplexer by using dual-tapered auxiliary waveguides. J. Light. Technol. 2007, 25, 3001–3007. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Units |
---|---|---|---|
Channel spacing | Δλ | 1.6 | nm |
Central wavelength | λc | 1549.3 | nm |
Length increment | ΔL | 28.29 | μm |
Number of input/output channels | Ni/No | 1/8 | |
Spacing of input/output waveguide | di/do | 2.7 | μm |
Spacing of array waveguides | da | 1.7 | μm |
Diffraction order | m | 43 | |
Gap between adjacent tapers | ga | 0.2 | μm |
Length of the tapers | Lt | 5 | μm |
Diameter of Rowland circle | D | 103 | μm |
Waveguide width | w | 0.45 | μm |
Parameter | Simulation | Measurement | Units |
---|---|---|---|
Central wavelength | 1549.3 | 1550.09 | nm |
Insertion loss | 3.17 | 4.18 | dB |
Crosstalk | −15.28 | −12.68 | dB |
Nonuniformity | 0.627 | 0.494 | dB |
3-dB bandwidth | 1.08 | 1.22 | dB |
FSR | 19.42 | 19.4 | nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhou, Z.; Gao, X.; Xu, Z.; Han, S.; Chong, Y.; Min, R.; Yue, Y.; Duan, Z. Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors 2024, 24, 5303. https://doi.org/10.3390/s24165303
Yang C, Zhou Z, Gao X, Xu Z, Han S, Chong Y, Min R, Yue Y, Duan Z. Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors. 2024; 24(16):5303. https://doi.org/10.3390/s24165303
Chicago/Turabian StyleYang, Chengkun, Zhonghao Zhou, Xudong Gao, Zhengzhu Xu, Shoubao Han, Yuhua Chong, Rui Min, Yang Yue, and Zongming Duan. 2024. "Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity" Sensors 24, no. 16: 5303. https://doi.org/10.3390/s24165303
APA StyleYang, C., Zhou, Z., Gao, X., Xu, Z., Han, S., Chong, Y., Min, R., Yue, Y., & Duan, Z. (2024). Compact Silicon-Arrayed Waveguide Gratings with Low Nonuniformity. Sensors, 24(16), 5303. https://doi.org/10.3390/s24165303