A Positioning Alarm System for Explosive Impact Debris Protective Suit Based on an Accelerometer Array
Abstract
:1. Introduction
2. System Design
2.1. Piezoelectric Sensor Selection and Structural Analysis
2.2. Hardware Circuit
2.3. Software Program
2.4. State Machine Partitioning
2.4.1. Init State
2.4.2. Wait State
- Serial_Open Button: If the port is closed, this sets the port name and baud rate, opens the port, and moves to the GetData state. If open, it closes the port and stays in Wait.
- Clear Button: This resets all arrays to zero. If the port is open, it proceeds to GetData; if closed, it remains in Wait.
- Exit Button: This transitions to the Exit state, closing the serial port and terminating the LabVIEW program if open, or exits directly if the port is already closed.
2.4.3. GetData State
2.4.4. Exit State
2.5. Data Decoding
2.6. Error Data Handling
2.7. Three-Dimensional Model Visualization Post-Data Decoding
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, H.; Park, J.; Lin, S.-H.; Boorady, L.M. Assessment of Firefighters’ needs for personal protective equipment. Fash. Text. 2014, 1, 8. [Google Scholar] [CrossRef]
- Jin, Q.; Tan, S.; Zhang, G.; Yang, Z.; Wen, Y.; Xiao, H.; Wu, X. Visible and Infrared Image Fusion of Forest Fire Scenes Based on Generative Adversarial Networks with Multi-Classification and Multi-Level Constraints. Forests 2023, 14, 1952. [Google Scholar] [CrossRef]
- Raimundo, A.M.; Figueiredo, A.R. Personal protective clothing and safety of firefighters near a high intensity fire front. Fire Saf. J. 2009, 44, 514–521. [Google Scholar] [CrossRef]
- Monea, B.F.; Ionete, E.I.; Spiridon, S.I.; Ion-Ebrasu, D.; Petre, E. Carbon nanotubes and carbon nanotube structures used for temperature measurement. Sensors 2019, 19, 2464. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.; Mele, E.; Lee, R.; Fischer, J.; Petit, P.; Dai, H.; Thess, A.; Smalley, R.; Verschueren, A.; Tans, S. Temperature-dependent resistivity of single-wall carbon nanotubes. Europhys. Lett. 1998, 41, 683. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Zhao, Y.; Qin, Y.; Zhu, Z.; Yu, Z.; He, H. Temperature-triggered fire warning PEG@ wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos. Part B Eng. 2022, 247, 110348. [Google Scholar] [CrossRef]
- Baksi, A.; Bhattacharjee, M.; Ghosh, S.; Bishnu, S.K.; Chakraborty, A. Internet of Things (IOT) based ambulance tracking system using GPS and GSM modules. In Proceedings of the 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, 2–4 October 2020; pp. 1–4. [Google Scholar]
- Pettorru, G.; Pilloni, V.; Martalò, M. Trustworthy Localization in IoT Networks: A Survey of Localization Techniques, Threats, and Mitigation. Sensors 2024, 24, 2214. [Google Scholar] [CrossRef] [PubMed]
- Blecha, T.; Soukup, R.; Kaspar, P.; Hamacek, A.; Reboun, J. Smart firefighter protective suit-functional blocks and technologies. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17 August 2018; p. C4. [Google Scholar]
- Vallozzi, L.; Vandendriessche, W.; Rogier, H.; Hertleer, C.; Scarpello, M. Design of a protective garment GPS antenna. Microw. Opt. Technol. Lett. 2009, 51, 1504–1508. [Google Scholar] [CrossRef]
- Hong, W.; Guo, X.; Li, X.; Zhang, T.; Zhu, X.; He, J.; Zhang, R.; Yang, S.; Shao, Y.; Fang, Y. Fishbone and nettle fiber inspired stretchable strain sensor with high sensitivity and wide sensing range for wearable electronics. Chem. Eng. J. 2024, 492, 152281. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Hu, W.; Guo, X.; Wang, Y.; Liu, P.; Liu, C.; Zhang, Y. Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin. Smart Mater. Struct. 2019, 28, 035004. [Google Scholar] [CrossRef]
- Hong, W.; Guo, X.; Zhang, T.; Zhu, X.; Su, Z.; Meng, Y.; Zhao, Y.; Xu, D.; Pan, J.; Huang, Y. Dual bionic-inspired stretchable strain sensor based on graphene/multi-walled carbon nanotubes/polymer composites for electronic skin. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108043. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zou, H.; Che, L.; Sun, P.; Yan, J.; Liu, W.; Xu, Z.; Yang, W.; Dong, L. Integrated wearable smart sensor system for real-time multi-parameter respiration health monitoring. Cell Rep. Phys. Sci. 2023, 4, 101191. [Google Scholar] [CrossRef]
- Bruce-Low, S.; Cotterrell, D.; Jones, G. Effect of wearing personal protective clothing and self-contained breathing apparatus on heart rate, temperature and oxygen consumption during stepping exercise and live fire training exercises. Ergonomics 2007, 50, 80–98. [Google Scholar] [CrossRef]
- Tochihara, Y.; Lee, J.-Y.; Son, S.-Y. A review of test methods for evaluating mobility of firefighters wearing personal protective equipment. Ind. Health 2022, 60, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Zhang, N.; Yang, X.; Wang, Z.; Zhao, L.; Yang, W.; Dong, L.; Che, L.; Wang, G. A self-powered and high sensitivity acceleration sensor with VQa model based on triboelectric nanogenerators (TENGs). Nano Energy 2020, 67, 104228. [Google Scholar] [CrossRef]
- Liu, C.; Fang, L.; Zou, H.; Wang, Y.; Chi, J.; Che, L.; Zhou, X.; Wang, Z.; Wang, T.; Dong, L. Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extrem. Mech. Lett. 2021, 42, 101021. [Google Scholar] [CrossRef]
- Kester, W. Which ADC architecture is right for your application. In Proceedings of the EDA Tech Forum, Long Beach, CA, USA, 16 March 2005; pp. 22–25. [Google Scholar]
- Dan, S.; Yano, Y.; Wang, J. Batteryless BLE Module with a Piezoelectric Element Mounted on a Shoe Sole. Sensors 2024, 24, 2829. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, S.; Liu, K.; Lu, Y.; Mazzalai, A.; Tosi, C.; Wu, T. Al0.7Sc0.3N butterfly-shaped laterally vibrating resonator with a figure-of-merit (kt2· Qm) over 146. Appl. Phys. Lett. 2022, 120, 173508. [Google Scholar] [CrossRef]
- Shao, S.; Luo, Z.; Lu, Y.; Mazzalai, A.; Tosi, C.; Wu, T. High quality co-sputtering alscn thin films for piezoelectric lamb-wave resonators. J. Microelectromech. Syst. 2022, 31, 328–337. [Google Scholar] [CrossRef]
- Decharat, A.; Wagle, S.; Jacobsen, S.; Melandsø, F. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation. Sensors 2015, 15, 9210–9227. [Google Scholar] [CrossRef]
- Gandelli, A.; Ottoboni, R. Charge amplifiers for piezoelectric sensors. In Proceedings of the 1993 IEEE Instrumentation and Measurement Technology Conference, Irvine, CA, USA, 18–20 May 1993; pp. 465–468. [Google Scholar]
- Han, S.-J.; Jenkins, K.A.; Valdes Garcia, A.; Franklin, A.D.; Bol, A.A.; Haensch, W. High-frequency graphene voltage amplifier. Nano Lett. 2011, 11, 3690–3693. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Shi, L.; Chen, L.; Yu, Y.; Yu, G.; Zhu, M.; Zhou, H. A Wide-Band Magnetoelectric Sensor Based on a Negative-Feedback Compensated Readout Circuit. Sensors 2024, 24, 423. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhu, Z.; Lu, H.; Ju, H.; Huang, J.; Chen, Z. Development of a Sandwiched Piezoelectric Accelerometer for Low-Frequency and Wide-Band Seismic Exploration. Sensors 2023, 23, 9168. [Google Scholar] [CrossRef] [PubMed]
- Pinna, L.; Valle, M. Charge amplifier design methodology for PVDF-based tactile sensors. J. Circuits Syst. Comput. 2013, 22, 1350066. [Google Scholar] [CrossRef]
- Alnasser, E. A novel low output offset voltage charge amplifier for piezoelectric sensors. IEEE Sens. J. 2020, 20, 5360–5367. [Google Scholar] [CrossRef]
- Kodosky, J. LabVIEW. Proc. ACM Program. Lang. 2020, 4, 78. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Y.; Wang, Z.D.; Gao, Y. Serial communication based on LabVIEW for the development of an ECG monitor. Adv. Mater. Res. 2013, 734, 3003–3006. [Google Scholar] [CrossRef]
- Lin, J.Q.; Xia, M.H.; Yang, W.L.; Leng, J. Design of Labview based equipment for measuring Thermally Stimulated Current. Appl. Mech. Mater. 2013, 274, 555–558. [Google Scholar] [CrossRef]
- Machacek, J.; Drapela, J. Control of serial port (RS-232) communication in LabVIEW. In Proceedings of the 2008 International Conference—Modern Technique and Technologies, Tomsk, Russia, 24–28 March 2008; pp. 36–40. [Google Scholar]
- Win, M.T. Comparison Between Mealy and Moore State Models UsingSequence Detector with VHDL Coding Techniques. Int. J. Adv. Res. Comput. Eng. Technol. (IJARCET) 2018, 7, 651–656. [Google Scholar]
- Nedjah, N.; Mourelle, L.d.M. Mealy finite state machines: An evolutionary approach. Int. J. Innov. Comput. Inf. Control 2006, 2, 789–806. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Liu, C.; Wang, X.; Wang, Z.; Tong, X.; Li, F.; Jin, Z.; Wang, X.; Che, L.; Yu, J.; et al. A Positioning Alarm System for Explosive Impact Debris Protective Suit Based on an Accelerometer Array. Sensors 2024, 24, 4587. https://doi.org/10.3390/s24144587
Hu J, Liu C, Wang X, Wang Z, Tong X, Li F, Jin Z, Wang X, Che L, Yu J, et al. A Positioning Alarm System for Explosive Impact Debris Protective Suit Based on an Accelerometer Array. Sensors. 2024; 24(14):4587. https://doi.org/10.3390/s24144587
Chicago/Turabian StyleHu, Jianing, Chaoran Liu, Xucong Wang, Zai Wang, Xin Tong, Fangqi Li, Zhenyu Jin, Xiaoyuan Wang, Lufeng Che, Jing Yu, and et al. 2024. "A Positioning Alarm System for Explosive Impact Debris Protective Suit Based on an Accelerometer Array" Sensors 24, no. 14: 4587. https://doi.org/10.3390/s24144587
APA StyleHu, J., Liu, C., Wang, X., Wang, Z., Tong, X., Li, F., Jin, Z., Wang, X., Che, L., Yu, J., Yao, D., Wang, G., & Dong, L. (2024). A Positioning Alarm System for Explosive Impact Debris Protective Suit Based on an Accelerometer Array. Sensors, 24(14), 4587. https://doi.org/10.3390/s24144587