Developing a Multi-Spectral NIR LED-Based Instrument for the Detection of Pesticide Residues Containing Chlorpyrifos-Methyl in Rough, Brown, and Milled Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Rice Grain Samples
2.2. Instrumentation
2.3. Spectral Data Acquisition
2.4. Data Analysis
3. Results and Discussion
Model Data | Calibration (Training Set) | Independent Validation (Test Set) | ||||
---|---|---|---|---|---|---|
Numb of False Positives | Number of False Negatives | Overall % CC | Number of False Positives | Number of False Negatives | Overall % CC | |
Rough Rice (Low: ≤3.0 ppm, High: ≥6.0 ppm) | ||||||
ALL varieties [a] | 126/405 | 52/405 | 78.0 (632/810 [N]) | - | - | - |
CL151 [b] | 107/324 | 44/324 | 76.7 (497/648) | 21/81 | 2/81 | 85.8 (21/162) |
Diamond [b] | 102/324 | 42/324 | 77.8 (504/648) | 20/81 | 8/81 | 82.7 (28/162) |
Hybrid1 [b] | 99/324 | 41/324 | 78.4 (508/648) | 15/81 | 17/81 | 80.3 (32/162) |
Gemini [b] | 87/324 | 37/324 | 80.9 (524/648) | 27/81 | 19/81 | 71.6 (46/162) |
Hybrid2 [b] | 100/324 | 27/324 | 80.4 (521/648) | 36/81 | 9/81 | 72.2 (45/162) |
Brown Rice (Low: ≤1.5 ppm, High: ≥3.0 ppm) | ||||||
ALL varieties [a] | 153/405 | 163/405 | 61.0 (494/810 [N]) | - | - | - |
CL151 [b] | 126/324 | 137/324 | 59.4 (385/648) | 6/81 | 55/81 | 62.4 (101/162) |
Diamond [b] | 116/324 | 138/324 | 60.8 (394/648) | 34/81 | 25/81 | 63.6 (103/162) |
Hybrid1 [b] | 111/324 | 138/324 | 61.6 (399/648) | 57/81 | 5/81 | 61.7 (100/162) |
Gemini [b] | 118/324 | 133/324 | 61.3 (397/648) | 4/81 | 62/81 | 59.3 (96/162) |
Hybrid2 [b] | 133/324 | 136/324 | 58.5 (379/648) | 32/81 | 36/81 | 58.0 (94/162) |
Milled Rice (Low: ≤0.2 ppm, High: ≥0.4 ppm) | ||||||
ALL varieties [a] | 120/405 | 143/405 | 67.5 (547/810 [N]) | - | - | - |
CL151 [b] | 139/324 | 144/324 | 56.3 (365/648) | 62/81 | 1/81 | 61.1 (99/162) |
Diamond [b] | 120/324 | 145/324 | 59.1 (383/648) | 12/81 | 58/81 | 56.8 (92/162) |
Hybrid1 [b] | 112/324 | 140/324 | 61.1 (396/648) | 34/81 | 33/81 | 58.6 (95/162) |
Gemini [b] | 101/324 | 119/324 | 66.0 (428/648) | 24/81 | 47/81 | 56.2 (91/162) |
Hybrid2 [b] | 119/324 | 129/324 | 61.7 (400/648) | 32/81 | 40/81 | 55.6 (90/162) |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Codex Alimentarius Commission. Report of the 49th Session of the Codex Committee on Pesticide Residue; 40th Session. REP17/PR; Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission: Rome, Italy, 2017; Available online: www.codexalimentarius.org (accessed on 8 October 2018).
- European Food Safety Authority (EFSA). Statement on the available outcomes of the human health assessment in the context of the pesticides peer review of the active substance chlorpyrifos-methyl. EFSA J. 2019, 17, e05810. [Google Scholar] [CrossRef]
- Mie, A.; Rudén, C.; Grandjean, P. Safety of Safety Evaluation of Pesticides: Developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl. Environ. Health 2018, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Philippine Daily Inquirer. NFA: 330,000 Bags of Imported Rice Infested with Weevils. 2018. Available online: https://newsinfo.inquirer.net/1024529/nfa-330000-bags-of-imported-rice-infested-with-weevils (accessed on 8 October 2018).
- González-Curbelo, M.Á.; Herrera-Herrera, A.V.; Ravelo-Pérez, L.M.; Hernández-Borges, J. Sample-preparation methods for pesticide-residue analysis in cereals and derivatives. TrAC Trends Anal. Chem. 2012, 38, 32–51. [Google Scholar] [CrossRef]
- Williams, P.C.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American Association of Cereal Chemists, Inc.: St Paul, MN, USA, 2001. [Google Scholar]
- Rodriguez, F.S.; Armstrong, P.R.; Maghirang, E.B.; Yaptenco, K.F.; Scully, E.D.; Arthur, F.H.; Brabec, D.L.; Adviento-Borbe, A.D.; Suministrado, D.C. NIR Spectroscopy Detects Chlorpyrifos-Methyl Pesticide Residue in Rough, Brown, and Milled Rice. Appl. Eng. Agric. 2020, 36, 983–993. [Google Scholar] [CrossRef]
- Pearson, T.; Maghirang, E.; Dowell, F. A multispectral sorting device for wheat kernels. Am. J. Agric. Sci. Technol. 2013, 2, 45–60. [Google Scholar] [CrossRef]
- Perten Industries. Diode Array 7200: At-Line and Lab NIR Analysis System. Available online: www.perten.com (accessed on 8 October 2018).
- Bayer Crop Science. Safety Data Sheet: StorcideTM II Grain, Bin and Warehouse Insecticide; Version 4; Bayer CropScience: Research Triangle Park, NC, USA, 2016. [Google Scholar]
- Shenk, J.S.; Workman, J.J., Jr.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. In Handbook of Near-Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1992; pp. 383–431. [Google Scholar]
- Rizwana, S.; Hazarika, M.K. Application of Near-Infrared Spectroscopy for Rice Characterization Using Machine Learning. J. Inst. Eng. India Ser. A 2020, 101, 579–587. [Google Scholar] [CrossRef]
- Yao, L.; Shi, X.; Pan, T.; Chen, J. Wavelength Selection Method Based on Absorbance Value Optimization to Near-Infrared Spectroscopic Analysis. Front. Physics. Orig. Res. 2021, 9, 663573. [Google Scholar] [CrossRef]
- Workman, J., Jr.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Marubeni America Corporation, Silicon Valley Branch. Datasheet. 2019. Available online: https://tech-led.com/en/product/ir-nir-leds/ (accessed on 3 August 2020).
- Dors, G.C.; Primel, E.G.; Fagundes, C.A.A.; Mariot, C.H.P.; Badiale-Furlong, E. Distribution of pesticide residues in rice grain and in its coproducts. J. Brazil. Chem. Soc. 2011, 22, 1921–1930. [Google Scholar] [CrossRef]
LED Wavelength, nm | [a] Marubeni LED | DA7200 Significant Prediction Wavelengths | USDA-ARS NIR LED-Based Prototype 1 (LEDPrototype1) | Proposed USDA-ARS NIR LED-Based Prototype 2 (LEDPrototype2) | ||
---|---|---|---|---|---|---|
Rough Rice | Brown Rice | Milled Rice | ||||
850 | √ | |||||
910 | √ | |||||
940 | √ | |||||
970 | √ | |||||
980 | L980-06 | √√ | ||||
1050 | X | √√ | ||||
1070 | √ | |||||
1200 | L1200-06 | X | X | X | √ | √√ |
1300 | L1300-06 | X | √ | √√ | ||
1360 | X | X | X | * | ||
1390 | X | * | ||||
1410 | X | X | * | |||
1425 | X | * | ||||
1450 | L1450-06 | X | √ | √√ | ||
1470 | X | * | ||||
1480 | X | * | ||||
1510 | X | * | ||||
1540 | X | X | * | |||
1550 | L1550-06 | √ | √√ | |||
1580 | X | * | ||||
1600 | L1600-06 | √√ | ||||
1650 | L1650-06 | √√ |
Model Data | Calibration | Independent Validation | |||||||
---|---|---|---|---|---|---|---|---|---|
N | nF | R2 Cal | RMSEC | R2 CV | SECV | N | R2 | SEP | |
Rough Rice (0 to 12 ppm) | |||||||||
ALL varieties | 270 | 8 | 0.68 | 2.39 | 0.60 | 2.66 | - | - | - |
CL151 | 216 | 8 | 0.70 | 2.31 | 0.63 | 2.58 | 54 | 0.56 | 2.91 |
Diamond | 216 | 8 | 0.70 | 2.32 | 0.62 | 2.62 | 54 | 0.52 | 2.95 |
Hybrid1 | 216 | 8 | 0.66 | 2.47 | 0.57 | 2.79 | 54 | 0.71 | 2.28 |
Gemini | 216 | 8 | 0.67 | 2.41 | 0.58 | 2.74 | 54 | 0.63 | 2.66 |
Hybrid2 | 216 | 8 | 0.69 | 2.35 | 0.60 | 2.68 | 54 | 0.62 | 2.65 |
Brown Rice (0 to 6 ppm) | |||||||||
ALL varieties | 269 * | 7 | 0.66 | 1.24 | 0.63 | 1.30 | - | - | - |
CL151 | 216 | 7 | 0.67 | 1.22 | 0.63 | 1.29 | 53 | 0.63 | 1.31 |
Diamond | 215 | 7 | 0.66 | 1.23 | 0.63 | 1.30 | 54 | 0.63 | 1.29 |
Hybrid1 | 215 | 7 | 0.67 | 1.22 | 0.64 | 1.28 | 54 | 0.58 | 1.38 |
Gemini | 215 | 7 | 0.66 | 1.23 | 0.62 | 1.30 | 54 | 0.67 | 1.22 |
Hybrid2 | 215 | 7 | 0.65 | 1.26 | 0.61 | 1.33 | 54 | 0.70 | 1.17 |
Milled Rice (0 to 0.8 ppm) | |||||||||
ALL varieties | 270 | 8 | 0.73 | 0.15 | 0.69 | 0.16 | - | - | - |
CL151 | 216 | 8 | 0.76 | 0.14 | 0.71 | 0.15 | 54 | 0.58 | 0.19 |
Diamond | 216 | 8 | 0.74 | 0.15 | 0.69 | 0.16 | 54 | 0.67 | 0.16 |
Hybrid1 | 216 | 8 | 0.74 | 0.15 | 0.69 | 0.16 | 54 | 0.68 | 0.16 |
Gemini | 216 | 7 | 0.69 | 0.16 | 0.65 | 0.17 | 54 | 0.71 | 0.16 |
Hybrid2 | 216 | 6 | 0.68 | 0.16 | 0.64 | 0.17 | 54 | 0.70 | 0.16 |
Model Data | Calibration (Training Set) | Independent Validation (Test Set [b]) | ||||
---|---|---|---|---|---|---|
Number of False Positives | Number of False Negatives | Overall % CC | Number of False Positives | Number of False Negatives | Overall CC | |
Rough Rice (Low: ≤3.0 ppm, High: >3 ppm) | ||||||
ALL varieties | 9/135 | 12/135 | 92.2 (249/270) | - | - | - |
CL151 | 7/108 | 7/108 | 93.5 (202/216) | 5/27 | 4/27 | 83.3 (45/54) |
Diamond | 6/108 | 8/108 | 93.5 (202/216) | 7/27 | 5/27 | 77.8 (42/54) |
Hybrid1 | 4/108 | 6/108 | 95.4 (206/216) | 2/27 | 8/27 | 81.5 (44/54) |
Gemini | 7/108 | 10/108 | 92.1 (199/216) | 4/27 | 1/27 | 90.7 (49/54) |
Hybrid2 | 10/108 | 7/108 | 92.1 (199/216) | 4/27 | 0/27 | 92.6 (50/54) |
Brown Rice (Low: ≤1.5 ppm, High: >1.5 ppm) | ||||||
ALL varieties | 30/134 [c] | 7/135 | 86.2 (232/269) | - | - | - |
CL151 | 17/108 | 6/108 | 89.4 (193/216) | 4/26 | 2/27 | 88.6 (47/53) |
Diamond | 20/107 | 6/108 | 87.9 (189/215) | 7/27 | 4/27 | 79.6 (43/54) |
Hybrid1 | 24/107 | 6/108 | 86.0 (185/215) | 9/27 | 1/27 | 81.5 (44/54) |
Gemini | 23/107 | 6/108 | 86.5(186/215) | 3/27 | 13/27 | 70.4 (38/54) |
Hybrid2 | 20/107 | 5/108 | 88.4 (190/215) | 9/27 | 1/27 | 81.5 (44/54) |
Milled Rice (Low: ≤0.2 ppm, High: >0.2 ppm) | ||||||
ALL varieties | 0/135 | 0/135 | 100.0 (270/270) | - | - | - |
CL151 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Diamond | 0/108 | 0/108 | 100.0 (216/216) | 5/27 | 0/27 | 90.7 (47/54) |
Hybrid1 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Gemini | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Hybrid2 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Model Data | Calibration | Independent Validation | |||||||
---|---|---|---|---|---|---|---|---|---|
N | nF | R2 Cal | RMSEC | R2 CV | SECV | N | R2 | SEP | |
Rough Rice (0 to 12 ppm) | |||||||||
ALL varieties [a] | 810 | 4 | 0.43 | 3.20 | 0.42 | 3.23 | - | - | - |
CL151 [b] | 648 | 4 | 0.39 | 3.30 | 0.38 | 3.33 | 162 | 0.59 | 2.75 |
Diamond [b] | 648 | 5 | 0.42 | 3.23 | 0.40 | 3.27 | 162 | 0.51 | 2.98 |
Hybrid1 [b] | 648 | 5 | 0.41 | 3.23 | 0.40 | 3.28 | 162 | 0.53 | 2.92 |
Gemini [b] | 648 | 5 | 0.50 | 2.98 | 0.49 | 3.03 | 162 | 0.23 | 3.87 |
Hybrid2 [b] | 648 | 4 | 0.47 | 3.06 | 0.46 | 3.10 | 162 | 0.24 | 3.71 |
Brown Rice (0 to 6 ppm) | |||||||||
ALL varieties [a] | 810 | 1 | 0.01 | 2.10 | 0.01 | 2.11 | - | - | - |
CL151 [b] | 648 | 5 | 0.10 | 2.00 | 0.07 | 2.04 | 162 | 0.03 | 2.10 |
Diamond [b] | 648 | 5 | 0.10 | 2.00 | 0.07 | 2.04 | 162 | 0.01 | 2.13 |
Hybrid1 [b] | 648 | 6 | 0.10 | 2.00 | 0.07 | 2.04 | 162 | 0.01 | 2.13 |
Gemini [b] | 648 | 1 | 0.01 | 2.10 | 0.00 | 2.11 | 162 | 0.03 | 2.11 |
Hybrid2 [b] | 648 | 1 | 0.01 | 2.10 | 0.01 | 2.11 | 162 | 0.00 | 2.11 |
Milled Rice (0 to 0.8 ppm) | |||||||||
ALL varieties [a] | 810 | 3 | 0.05 | 0.27 | 0.04 | 0.28 | - | - | - |
CL151 [b] | 648 | 3 | 0.04 | 0.28 | 0.03 | 0.28 | 162 | 0.01 | 0.28 |
Diamond [b] | 648 | 3 | 0.06 | 0.27 | 0.04 | 0.28 | 162 | 0.01 | 0.29 |
Hybrid1 [b] | 648 | 3 | 0.08 | 0.27 | 0.07 | 0.27 | 162 | 0.01 | 0.29 |
Gemini [b] | 648 | 3 | 0.08 | 0.27 | 0.06 | 0.27 | 162 | 0.01 | 0.28 |
Hybrid2 [b] | 648 | 1 | 0.00 | 0.28 | 0.00 | 0.28 | 162 | 0.02 | 0.28 |
Model Data | Calibration | Independent Validation | |||||||
---|---|---|---|---|---|---|---|---|---|
N | nF | R2 Cal | RMSEC | R2 CV | SECV | N | R2 | SEP | |
Rough Rice (0 to 12 ppm) | |||||||||
ALL RR varieties | 270 | 10 | 0.74 | 2.2 | 0.63 | 2.6 | - | - | - |
CL151 | 216 | 9 | 0.72 | 2.2 | 0.64 | 2.5 | 54 | 0.59 | 2.85 |
Diamond | 216 | 10 | 0.75 | 2.1 | 0.64 | 2.5 | 54 | 0.63 | 2.62 |
Hybrid1 | 216 | 10 | 0.73 | 2.2 | 0.63 | 2.6 | 54 | 0.74 | 2.24 |
Gemini | 216 | 10 | 0.76 | 2.1 | 0.65 | 2.5 | 54 | 0.64 | 2.71 |
Hybrid2 | 216 | 10 | 0.76 | 2.1 | 0.66 | 2.5 | 54 | 0.61 | 2.70 |
Brown Rice (0 to 6 ppm) | |||||||||
ALL BR varieties | 269 * | 8 | 0.78 | 0.99 | 0.75 | 1.07 | - | - | - |
CL151 | 216 | 8 | 0.78 | 0.99 | 0.74 | 1.07 | 53 | 0.74 | 1.12 |
Diamond | 215 | 8 | 0.77 | 1.01 | 0.74 | 1.08 | 54 | 0.77 | 1.03 |
Hybrid1 | 215 | 8 | 0.77 | 1.01 | 0.74 | 1.08 | 54 | 0.78 | 1.02 |
Gemini | 215 | 8 | 0.79 | 0.98 | 0.76 | 1.05 | 54 | 0.75 | 1.07 |
Hybrid2 | 215 | 8 | 0.78 | 1.00 | 0.74 | 1.08 | 54 | 0.78 | 1.02 |
Milled Rice (0 to 0.8 ppm) | |||||||||
ALL MR varieties | 270 | 8 | 0.76 | 0.14 | 0.73 | 0.15 | - | - | - |
CL151 | 216 | 8 | 0.78 | 0.13 | 0.74 | 0.14 | 54 | 0.67 | 0.17 |
Diamond | 216 | 8 | 0.76 | 0.14 | 0.72 | 0.15 | 54 | 0.75 | 0.14 |
Hybrid1 | 216 | 8 | 0.78 | 0.13 | 0.73 | 0.15 | 54 | 0.74 | 0.14 |
Gemini | 216 | 8 | 0.76 | 0.14 | 0.71 | 0.15 | 54 | 0.82 | 0.13 |
Hybrid2 | 216 | 8 | 0.78 | 0.13 | 0.73 | 0.15 | 54 | 0.71 | 0.16 |
Model Data | Calibration (Training Set) | Independent Validation (Test Set [b]) | ||||
---|---|---|---|---|---|---|
Number of False Positives | Number of False Negatives | Overall % CC | Number of False Positives | Number of False Negatives | Overall % CC | |
Rough Rice (Low: ≤3.0 ppm, High: >3.0 ppm) | ||||||
ALLQualRR | 5/135 | 8/135 | 95.2 (257/270) | - | - | - |
CL151 | 3/108 | 6/108 | 95.8 (207/216) | 2/27 | 3/27 | 90.7 (49/54) |
Diamond | 0/108 | 5/108 | 97.7 (211/216) | 4/27 | 5/27 | 83.3 (45/54) |
Hybrid1 | 1/108 | 4/108 | 97.7 (211/216) | 0/27 | 4/27 | 92.6 (50/54) |
Gemini | 2/108 | 7/108 | 95.8 (207/216) | 5/27 | 2/27 | 87.0 (47/54) |
Hybrid2 | 6/108 | 4/108 | 95.4 (206/216) | 1/27 | 1/27 | 96.3 (52/54) |
Brown Rice (Low: ≤1.5 ppm, High: >1.5 ppm) | ||||||
ALLQualBR | 27/134 [c] | 4/135 | 88.5 (238/269) | - | - | - |
CL151 | 13/108 | 5/108 | 91.7 (198/216) | 13/26 | 5/27 | 66.0 (35/53) |
Diamond | 19/107 | 1/108 | 90.7 (195/215) | 6/27 | 6/27 | 77.8 (42/54) |
Hybrid1 | 19/107 | 4/108 | 89.3 (192/215) | 9/27 | 3/27 | 77.8 (42/54) |
Gemini | 17/107 | 2/108 | 91.2 (196/215) | 10/27 | 2/27 | 77.8 (42/54) |
Hybrid2 | 17/107 | 4/108 | 90.2 (194/215) | 8/27 | 4/27 | 77.8 (42/54) |
Milled Rice (Low: ≤0.2 ppm, High: >0.2 ppm) | ||||||
ALLQualMR | 0/135 | 0/135 | 100.0 (270/270) | - | - | - |
CL151 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Diamond | 0/108 | 0/108 | 100.0 (216/216) | 1/27 | 1/27 | 96.3 (52/54) |
Hybrid1 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 1/27 | 98.2 (53/54) |
Gemini | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Hybrid2 | 0/108 | 0/108 | 100.0 (216/216) | 0/27 | 0/27 | 100.0 (54/54) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Macadaeg, F.; Armstrong, P.R.; Maghirang, E.B.; Scully, E.D.; Brabec, D.L.; Arthur, F.H.; Adviento-Borbe, A.D.; Yaptenco, K.F.; Suministrado, D.C. Developing a Multi-Spectral NIR LED-Based Instrument for the Detection of Pesticide Residues Containing Chlorpyrifos-Methyl in Rough, Brown, and Milled Rice. Sensors 2024, 24, 4055. https://doi.org/10.3390/s24134055
Rodriguez-Macadaeg F, Armstrong PR, Maghirang EB, Scully ED, Brabec DL, Arthur FH, Adviento-Borbe AD, Yaptenco KF, Suministrado DC. Developing a Multi-Spectral NIR LED-Based Instrument for the Detection of Pesticide Residues Containing Chlorpyrifos-Methyl in Rough, Brown, and Milled Rice. Sensors. 2024; 24(13):4055. https://doi.org/10.3390/s24134055
Chicago/Turabian StyleRodriguez-Macadaeg, Fatima, Paul R. Armstrong, Elizabeth B. Maghirang, Erin D. Scully, Daniel L. Brabec, Frank H. Arthur, Arlene D. Adviento-Borbe, Kevin F. Yaptenco, and Delfin C. Suministrado. 2024. "Developing a Multi-Spectral NIR LED-Based Instrument for the Detection of Pesticide Residues Containing Chlorpyrifos-Methyl in Rough, Brown, and Milled Rice" Sensors 24, no. 13: 4055. https://doi.org/10.3390/s24134055
APA StyleRodriguez-Macadaeg, F., Armstrong, P. R., Maghirang, E. B., Scully, E. D., Brabec, D. L., Arthur, F. H., Adviento-Borbe, A. D., Yaptenco, K. F., & Suministrado, D. C. (2024). Developing a Multi-Spectral NIR LED-Based Instrument for the Detection of Pesticide Residues Containing Chlorpyrifos-Methyl in Rough, Brown, and Milled Rice. Sensors, 24(13), 4055. https://doi.org/10.3390/s24134055