Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Cheng, W.; Tang, X.; Zhang, Y.; Wu, D.; Yang, W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci. Technol. 2021, 112, 268–282. [Google Scholar] [CrossRef]
- Razavi, S.A.A.; Masoomi, M.Y.; Morsali, A. Stimuli-responsive metal–organic framework (MOF) with chemo-switchable properties for colorimetric detection of CHCl3. Chem. A Eur. J. 2017, 23, 12559–12564. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Liu, J.; Gao, X.; Ji, G.; Wang, D.; Liu, Z. A multi-chemosensor based on Zn-MOF: Ratio-dependent color transition detection of Hg (II) and highly sensitive sensor of Cr (VI). Sens. Actuators B Chem. 2018, 269, 164–172. [Google Scholar] [CrossRef]
- Bermúdez-García, J.M.; Vicent-Luna, J.M.; Yanez-Vilar, S.; Hamad, S.; Sánchez-Andújar, M.; Castro-García, S.; Calero, S.; Senaris-Rodriguez, M.A. Liquid self-diffusion of H2O and DMF molecules in Co-MOF-74: Molecular dynamics simulations and dielectric spectroscopy studies. Phys. Chem. Chem. Phys. 2016, 18, 19605–19612. [Google Scholar] [CrossRef] [PubMed]
- Maity, T.; Malik, P.; Bawari, S.; Ghosh, S.; Mondal, J.; Haldar, R. Chemically routed interpore molecular diffusion in metal-organic framework thin films. Nat. Commun. 2023, 14, 2212–2220. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Wöll, C. Surface-mounted metal–organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications. Adv. Mater. 2019, 31, 1806324. [Google Scholar] [CrossRef] [PubMed]
- Tovar, T.M.; Zhao, J.; Nunn, W.T.; Barton, H.F.; Peterson, G.W.; Parsons, G.N.; LeVan, M.D. Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138, 11449–11452. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 2006, 45, 5974–5978. [Google Scholar] [CrossRef]
- An, J.; Geib, S.J.; Rosi, N.L. Cation-triggered drug release from a porous zinc–adeninate metal–organic framework. J. Am. Chem. Soc. 2009, 131, 8376–8377. [Google Scholar] [CrossRef]
- Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N.A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780. [Google Scholar] [CrossRef] [PubMed]
- Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J. CAF@ZIF-8: One-Step Encapsulation of Caffeine in MOF. ACS Appl. Mater. Interfaces 2012, 4, 5016–5021. [Google Scholar] [CrossRef] [PubMed]
- Ke, F.; Yuan, Y.-P.; Qiu, L.-G.; Shen, Y.-H.; Xie, A.-J.; Zhu, J.-F.; Tian, X.-Y.; Zhang, L.-D. Facile fabrication of magnetic metal-organic framework nanocomposites for potential targeted drug delivery. J. Mater. Chem. 2011, 21, 3843–3848. [Google Scholar] [CrossRef]
- Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of Iron-Carboxylate nanoscale Metal− Organic frameworks for imaging and drug delivery. J. Am. Chem. Soc. 2009, 131, 14261–14263. [Google Scholar] [CrossRef] [PubMed]
- Valencia, V. Diffusion of Vitamin B12 across a Mesoporous Metal Organic Framework. Undergrad. J. Math. Model. One Two 2013, 5, 3–14. [Google Scholar] [CrossRef]
- Imaz, I.; Rubio-Martínez, M.; García-Fernández, L.; García, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D. Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010, 46, 4737–4739. [Google Scholar] [CrossRef] [PubMed]
- Kärger, J. Diffusion Measurements by NMR Techniques. In Adsorption and Diffusion; Karge, H., Weitkamp, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 85–133. [Google Scholar]
- Jobic, H.; Theodorou, D.N. Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites. Microporous Mesoporous Mater. 2007, 102, 21–50. [Google Scholar] [CrossRef]
- Kortunov, P.V.; Heinke, L.; Arnold, M.; Nedellec, Y.; Jones, D.J.; Caro, J.; Kärger, J. Intracrystalline diffusivities and surface permeabilities deduced from transient concentration profiles: Methanol in MOF manganese formate. J. Am. Chem. Soc. 2007, 129, 8041–8047. [Google Scholar] [CrossRef] [PubMed]
- Heinke, L.; Chmelik, C.; Kortunov, P.; Ruthven, D.M.; Shah, D.B.; Vasenkov, S.; Kärger, J. Application of interference microscopy and IR microscopy for characterizing and investigating mass transport in nanoporous materials. Chem. Eng. Technol. 2007, 30, 995–1002. [Google Scholar] [CrossRef]
- Chmelik, C.; Hibbe, F.; Tzoulaki, D.; Heinke, L.; Caro, J.; Li, J.; Kärger, J. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution. Microporous Mesoporous Mater. 2010, 129, 340–344. [Google Scholar] [CrossRef]
- Tzoulaki, D.; Schmidt, W.; Wilczok, U.; Kärger, J. Formation of surface barriers on silicalite-1 crystal fragments by residual water vapour as probed with isobutane by interference microscopy. Microporous Mesoporous Mater. 2008, 110, 72–76. [Google Scholar] [CrossRef]
- Heinke, L.; Tzoulaki, D.; Chmelik, C.; Hibbe, F.; van Baten, J.M.; Lim, H.; Li, J.; Krishna, R.; Kärger, J. Assessing Guest Diffusivities in Porous Hosts from Transient Concentration Profiles. Phys. Rev. Lett. 2009, 102, 065901-1–065901-4. [Google Scholar] [CrossRef] [PubMed]
- Chmelik, C.; Kortunov, P.; Vasenkov, S.; Kärger, J. Internal Transport Resistances and their Influence on Diffusion in Zeolites as Traced by Microscopic Measuring Techniques. Adsorption 2005, 11, 455–460. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, S.; Fu, C.W.; Hoang, T.; Li, X.; Valencia, V.; Zhang, Z.; Perman, J.A.; Ma, S. Investigation of the mesoporous metal–organic framework as a new platform to study the transport phenomena of biomolecules. ACS Appl. Mater. Interfaces 2017, 9, 10874–10881. [Google Scholar] [CrossRef]
- Karşilayan, H. Quantitation of vitamin B12 by first-derivative absorption spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1996, 52, 1163–1168. [Google Scholar] [CrossRef]
- Archibong, E.; Stewart, J.; Pyayt, A. Optofluidic spectroscopy integrated on optical fiber platform. Sens. Bio Sens. Res. 2015, 3, 1–6. [Google Scholar] [CrossRef]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.L.; Brito, A.; Guéant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Choi, S.B.; Kim, H.; Kim, K.; Won, B.H.; Choi, K.; Choi, J.S.; Ahn, W.S.; Won, N.; Kim, S.; et al. Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 2007, 46, 8230–8233. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Synthesis, Characterization and Mechanistic Studies of Biomolecules@ mesoMOFs. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2014; pp. 1–149. [Google Scholar]
- Lykourinou, V.; Chen, Y.; Wang, X.S.; Meng, L.; Hoang, T.; Ming, L.J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@ mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385. [Google Scholar] [CrossRef]
- Costes, S.V.; Daelemans, D.; Cho, E.H.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 2004, 86, 3993–4003. [Google Scholar] [CrossRef]
- Constantino, B.T. The red cell histogram and the dimorphic red cell population. Lab. Med. 2011, 42, 300–308. [Google Scholar] [CrossRef]
- Kang, Y.; Choi, S.H.; Kim, Y.J.; Kim, K.G.; Sohn, C.H.; Kim, J.H.; Yun, T.J.; Chang, K.H. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging—Correlation with tumor grade. Radiology 2011, 261, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Crofts, A. Diffusion—Useful Equations. Available online: https://www-archiv.fdm.uni-hamburg.de/b-online/library/crofts/bioph354/diffusion1.html (accessed on 11 June 2024).
- Braga, J.; Desterro, J.M.; Carmo-Fonseca, M. Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol. Biol. Cell 2004, 15, 4749–4760. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, D.; Koppel, D.E.; Schlessinger, J.; Elson, E.; Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 1976, 16, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Sprague, B.L.; Pego, R.L.; Stavreva, D.A.; McNally, J.G. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 2004, 86, 3473–3495. [Google Scholar] [CrossRef] [PubMed]
- Pedron, I.T.; Mendes, R.S.; Buratta, T.J.; Malacarne, L.C.; Lenzi, E.K. Logarithmic diffusion and porous media equations: A unified description. Phys. Rev. E 2005, 72, 031106-1–031106-5. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, X.; Huang, S.; Xia, Q.; Li, Z. Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation. Ind. Eng. Chem. Res. 2011, 50, 2254–2261. [Google Scholar] [CrossRef]
- Amirjalayer, S.; Schmid, R. Mechanism of benzene diffusion in MOF-5: A molecular dynamics investigation. Microporous Mesoporous Mater. 2009, 125, 90–96. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Lin, Y. Adsorption and diffusion of carbon dioxide on metal− organic framework (MOF-5). Ind. Eng. Chem. Res. 2009, 48, 10015–10020. [Google Scholar] [CrossRef]
- Zhou, W.; Wöll, C.; Heinke, L. Liquid-and Gas-Phase Diffusion of Ferrocene in Thin Films of Metal-Organic Frameworks. Materials 2015, 8, 3767–3775. [Google Scholar] [CrossRef]
- Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal–organic frameworks—Prospective industrial applications. J. Mater. Chem. 2006, 16, 626–636. [Google Scholar] [CrossRef]
- Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C. A novel method to measure diffusion coefficients in porous metal–organic frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8093–8098. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheemalapati, S.; Konnaiyan, K.; Chen, Y.; Ma, S.; Pyayt, A. Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications. Sensors 2024, 24, 3842. https://doi.org/10.3390/s24123842
Cheemalapati S, Konnaiyan K, Chen Y, Ma S, Pyayt A. Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications. Sensors. 2024; 24(12):3842. https://doi.org/10.3390/s24123842
Chicago/Turabian StyleCheemalapati, Surya, Karthik Konnaiyan, Yao Chen, Shengqian Ma, and Anna Pyayt. 2024. "Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications" Sensors 24, no. 12: 3842. https://doi.org/10.3390/s24123842
APA StyleCheemalapati, S., Konnaiyan, K., Chen, Y., Ma, S., & Pyayt, A. (2024). Understanding Diffusion in a Single-Metal Organic Framework Crystal Used for Sensing Applications. Sensors, 24(12), 3842. https://doi.org/10.3390/s24123842