Evaluating the Non-Invasive Measurement of Apple Aroma Using Electronic Nose Device through Comparison with Direct Mass Spectrometry, Sugar Content, and Ripeness Measurements
Abstract
1. Introduction
2. Materials and Methods
2.1. Specifications of the E-Nose Device and Aroma Measurement Procedure
2.2. Direct Mass Spectrometry Analysis
2.3. Repeatability and Intermediate Precision of the E-Nose Device
2.4. Determination of Sugar Contents and Ripeness
2.5. Statistical Analysis
3. Results and Discussion
3.1. Comparison of Mass Spectrometry Intensity and E-Nose Values for Apple Aroma
3.2. Repetability and Intermediate Precision of the E-Nose Measurement
3.3. Comparison of the Value of E-Nose Sensor with Sugar Contents or Ripeness
4. Conclusions
5. Patents
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakaya, D.; Ulucan, O.; Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020, 17, 179–209. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Oyenihi, A.B.; Belay, Z.A.; Mditshwa, A.; Caleb, O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022, 87, 2291–2309. [Google Scholar] [CrossRef] [PubMed]
- Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15, 899–931. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wang, C.; Luo, M.; Ren, Q.; Liu, Y.; Zhang, S.; Bai, Y.; Meng, J.; Zhang, W.; Su, S.W. Design of Electronic Nose Detection System for Apple Quality Grading Based on Computational Fluid Dynamics Simulation and K-Nearest Neighbor Support Vector Machine. Sensors 2022, 22, 2997. [Google Scholar] [CrossRef] [PubMed]
- Saevels, S.; Lammertyn, J.; Berna, A.Z.; Veraverbeke, E.A.; Di Natale, C.; Nicolaï, B.M. An electronic nose and a mass spectrometry-based electronic nose for assessing apple quality during shelf life. Postharvest Biol. Technol. 2004, 31, 9–19. [Google Scholar] [CrossRef]
- Saevels, S.; Lammertyn, J.; Berna, A.Z.; Veraverbeke, E.A.; Di Natale, C.; Nicolaï, B.M. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples. Postharvest Biol. Technol. 2003, 30, 3–14. [Google Scholar] [CrossRef]
- Jia, W.; Liang, G.; Tian, H.; Sun, J.; Wan, C. Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy Apples. Sensors 2019, 19, 1526. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, F.; Okazaki, K.; Kashimura, T.; Ohwaki, Y.; Tatsuki, M.; Sawada, A.; Ito, T.; Miyazawa, T. Profiles and Physiological Mechanisms of Sensory Attributes and Flavor Components in Watercored Apple. Nippon. Shokuhin Kagaku Kogaku Kaishi 2016, 63, 101–116. [Google Scholar] [CrossRef]
- Bowen, A.J.; Blake, A.; Tureček, J.; Amyotte, B. External preference mapping: A guide for a consumer-driven approach to apple breeding. J. Sens. Stud. 2019, 34, e12472. [Google Scholar] [CrossRef]
- Yahia, E.M. Apple Flavor. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 197–234. [Google Scholar]
- Komthong, P.; Hayakawa, S.; Katoh, T.; Igura, N.; Shimoda, M. Determination of potent odorants in apple by headspace gas dilution analysis. LWT-Food Sci. Technol. 2006, 39, 472–478. [Google Scholar] [CrossRef]
- Tanaka, F.; Hayakawa, F.; Tatsuki, M. Flavor and Texture Characteristics of ‘Fuji’ and Related Apple (Malus domestica L.) Cultivars, Focusing on the Rich Watercore. Molecules 2020, 25, 1114. [Google Scholar] [CrossRef] [PubMed]
- Usmanov, D.T.; Hiraoka, K.; Wada, H.; Matsumura, M.; Sanada-Morimura, S.; Nonami, H.; Yamabe, S. Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source. Anal. Chim. Acta 2017, 973, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K. Comparison of Cheese Aroma Intensity Measured Using an Electronic Nose (E-Nose) Non-Destructively with the Aroma Intensity Scores of a Sensory Evaluation: A Pilot Study. Sensors 2021, 21, 8368. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K. Aroma Measuring Devices for Measuring the Aroma of Agricultural and Livestock Products from Below. Available online: https://www.naro.go.jp/project/results/4th_laboratory/rcait/2020/rcait20_s01.html (accessed on 5 March 2024). (In Japanese)
- Ministry of Health, Labour and Welfare of Japan. Guideline for Validation of Test Methods for Pesticide Residues in Food. Available online: https://www.nihs.go.jp/food/_src/sc877/validation_guideline.pdf (accessed on 5 March 2024). (In Japanese)
- Qin, L.; Wei, Q.; Kang, W.; Zhang, Q.; Sun, J.; Liu, S. Comparison of Volatile Compounds in ‘Fuji’ Apples in the Different Regions in China. Food Sci. Technol. Res. 2017, 23, 79–89. [Google Scholar] [CrossRef]
- Ozaki, A.; Kishi, E.; Kaneko, R.; Ooshima, T.; Shimizu, M.; Kawamura, Y. Validation Study on Headspace-GC Analytical Method for Residual Volatile Substances in Food Contact Polystyrene and Its Application for Surveillance (1998–2014). Food Hyg. Saf. Sci. 2015, 56, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Kudo, S. Effect of Defoliation Time on Fruit Quality of ‘Fuji’ Apples. Tohoku Agric. Res. 2014, 67, 77–78. [Google Scholar]
- Shimizu, T.; Hattori, Y.; Ogami, S.; Imayoshi, Y.; Moriya, S.; Okada, K.; Sawamura, Y.; Abe, K. Identification of aroma compounds responsible for apple flavor via palatability score prediction in tree-based regression models. LWT 2024, 192, 115737. [Google Scholar] [CrossRef]
- Yumoto, M.; Kawata, Y.; Abe, T.; Matsuyama, T.; Wada, S. Non-destructive mid-IR spectroscopy with quantum cascade laser can detect ethylene gas dynamics of apple cultivar ‘Fuji’ in real time. Sci. Rep. 2021, 11, 20695. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Wang, H.; Zhou, Z.; Yang, P.; Wu, W.; Li, Z.; Li, X. Ethylene Emission as a Potential Indicator of Fuji Apple Flavor Quality Evaluation Under Low Temperature. Hortic. Plant J. 2020, 6, 231–239. [Google Scholar] [CrossRef]
Molecules | MW | Low | Medium | High | p-Value | |||
---|---|---|---|---|---|---|---|---|
Average | SD | Average | SD | Average | SD | |||
C4H8O2 | 89.0597 | 446,425.0 | 41,647.57 | 858,083.0 # | 101,785.00 | 901,960.3 # | 60,553.19 | 0.554 |
C5H10O2 | 103.0754 | 2,142,152.0 | 374,563.86 | 3,613,496.3 | 652,776.12 | 5,090,150.3 # | 771,583.74 | 0.003 * |
C6H12O2 | 117.091 | 4,082,257.0 | 427,804.85 | 6,282,441.3 # | 475,569.82 | 5,623,528.3 # | 239,404.42 | 0.001 * |
C7H14O2 | 131.1067 | 213,769.7 | 21,742.91 | 290,570.0 # | 24,511.42 | 299,218.7 # | 14,073.09 | 0.004 * |
C8H16O2 | 145.1223 | 1,787,431.0 | 168,114.28 | 2,489,897.3 # | 215,742.40 | 2,777,455.0 # | 187,333.04 | 0.002 * |
C9H18O2 | 159.138 | 166,709.0 | 8951.05 | 469,390.0 # | 61,167.42 | 616,414.3 # | 89,630.53 | 0.0003 * |
C10H20O2 | 173.1536 | 716,778.3 | 128,842.77 | 3,041,954.7 # | 577,358.99 | 3,015,308.0 # | 613,751.16 | 0.002 * |
C11H22O2 | 187.1693 | 1,967,774.0 | 547,087.39 | 4,809,816.3 # | 1,011,165.44 | 6,857,352.7 # | 1,288,562.06 | 0.003 * |
C12H24O2 | 201.1849 | 2,528,008.0 | 570,220.21 | 5,359,085.3 # | 802,980.68 | 5,358,540.0 # | 459,690.10 | 0.002 * |
Total | — | 13,604,879.0 | 2,133,274.22 | 26,356,651.3 | 3,459,975.26 | 29,637,967.3 | 3,087,390.22 | 0.001 * |
Area of Apple Lip Balm (cm2) | Sensor Values (Mean) | Repeatability (RSD%) | Intermediate Precision (RSD%) |
---|---|---|---|
0 | 146.2 | 1.36 | 9.96 |
0.25 | 208.2 | 4.98 | 6.23 |
1 | 260.1 | 7.81 | 8.21 |
4 | 363.7 | 6.25 | 7.88 |
Apples | E-Nose Values (Mean) | Standard Deviation | RSD% | Sugar Content (%) | Ripeness (%) |
---|---|---|---|---|---|
A | 240.3 | 6.03 | 2.51 | 12.4 | 59.7 |
B | 317.3 | 11.72 | 3.69 | 12.8 | 76.3 |
C | 308.0 | 11.27 | 3.66 | 13.0 | 63.7 |
D | 290.0 | 11.00 | 3.79 | 13.7 | 85.0 |
E | 258.0 | 9.54 | 3.70 | 11.5 | 73.3 |
F | 272.3 | 7.37 | 2.71 | 12.4 | 78.0 |
G | 269.0 | 5.29 | 1.97 | 11.3 | 66.7 |
H | 258.3 | 5.69 | 2.20 | 15.5 | 76.3 |
I | 223.3 | 3.51 | 1.57 | 11.4 | 74.7 |
J | 336.7 | 32.08 | 9.53 | 14.7 | 80.7 |
K | 320.7 | 10.69 | 3.33 | 14.5 | 85.3 |
L | 234.3 | 16.26 | 6.94 | 14.7 | 63.3 |
M | 289.3 | 7.09 | 2.45 | 13.4 | 55.3 |
N | 213.0 | 4.00 | 1.88 | 14.5 | 68.7 |
O | 223.7 | 10.02 | 4.48 | 14.0 | 70.3 |
P | 207.7 | 9.07 | 4.37 | 14.5 | 77.7 |
Q | 253.0 | 2.00 | 0.79 | 12.1 | 79.7 |
R | 237.7 | 4.51 | 1.90 | 13.6 | 76.7 |
S | 285.0 | 19.52 | 6.85 | 12.4 | 36.3 |
T | 218.3 | 12.42 | 5.69 | 13.6 | 69.7 |
Mean | 262.8 | 9.95 | 3.70 | 13.3 | 70.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujioka, K. Evaluating the Non-Invasive Measurement of Apple Aroma Using Electronic Nose Device through Comparison with Direct Mass Spectrometry, Sugar Content, and Ripeness Measurements. Sensors 2024, 24, 3114. https://doi.org/10.3390/s24103114
Fujioka K. Evaluating the Non-Invasive Measurement of Apple Aroma Using Electronic Nose Device through Comparison with Direct Mass Spectrometry, Sugar Content, and Ripeness Measurements. Sensors. 2024; 24(10):3114. https://doi.org/10.3390/s24103114
Chicago/Turabian StyleFujioka, Kouki. 2024. "Evaluating the Non-Invasive Measurement of Apple Aroma Using Electronic Nose Device through Comparison with Direct Mass Spectrometry, Sugar Content, and Ripeness Measurements" Sensors 24, no. 10: 3114. https://doi.org/10.3390/s24103114
APA StyleFujioka, K. (2024). Evaluating the Non-Invasive Measurement of Apple Aroma Using Electronic Nose Device through Comparison with Direct Mass Spectrometry, Sugar Content, and Ripeness Measurements. Sensors, 24(10), 3114. https://doi.org/10.3390/s24103114