Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber
Abstract
1. Introduction
2. Design and Fabrication of Mach–Zehnder Interferometer
2.1. Design and Fabrication of Taper MZI
2.2. Design and Fabrication of Core-Offset MZI
3. Results
3.1. Analysis of Tapered MZI
3.2. Analysis of Core-Offset MZI
4. Discussion
Sensing Application
Configuration | Range of Temperature | Sensitivity | Sensitivity Every 1 °C | Ref. |
---|---|---|---|---|
Infrared region | ||||
Air cavities with capillary fiber between 2 SMFs | 50 to 400 °C | 0.8 pm/°C | - | [24] |
SMF + hollow-core photonic crystal fiber (PCF) | 17 to 900 °C | 0.94 pm/°C | - | [25] |
SMF + Hollow core tube + SMF | 50 to 450 °C | 0.902 pm/°C | - | [26] |
SMF + NCF | 100 to 700 °C | 6.8 pm/°C | - | [27] |
SMF + NCF (with a gold film) + SMF | 20 to 80 °C | 37.9 pm/°C | - | [31] |
Visible region | ||||
OF + polymer | 25 to 35 °C | - | 3.5%, 3% and 1% | [28] |
Core-offset (SMF) | 50 to 300 °C | - | 1% | This work |
Core-offset (SMF) | 50 to 150 °C | 20.3 pm/°C | - | This work |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hariharan, P. Basics of Interferometry; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Hao, X.; Tong, Z.; Zhang, W.; Cao, Y. A fiber laser temperature sensor based on SMF core-offset structure. Opt. Commun. 2015, 335, 78–81. [Google Scholar] [CrossRef]
- Mao, L.; Lu, P.; Lao, Z.; Liu, D.; Zhang, J. Highly sensitive curvature sensor based on single-mode fiber using core-offset splicing. Opt. Laser Technol. 2014, 57, 39–43. [Google Scholar] [CrossRef]
- Yu, F.; Xue, P.; Zheng, J. Study of a large lateral core-offset in-line fiber modal interferometer for refractive index sensing. Opt. Fiber Technol. 2019, 47, 107–112. [Google Scholar] [CrossRef]
- Pacheco-Chacon, E.; Sierra-Hernandez, J.; Gallegos-Arellano, E.; Avila-Garcia, M.; Bianchetti, M.; Hernandez-Romano, I.; Lopez-Dieguez, Y.; Herrera-Piad, L.; Rojas-Laguna, R. An aluminum-coated asymmetric core-offset Mach-Zehnder interferometer temperature sensor. Opt. Fiber Technol. 2021, 65, 102591. [Google Scholar] [CrossRef]
- Jauregui-Vazquez, D.; Haus, J.W.; Negari, A.B.H.; Sierra-Hernandez, J.M.; Hansen, K. Bitapered fiber sensor: Signal analysis. Sens. Actuators B Chem. 2015, 218, 105–110. [Google Scholar] [CrossRef]
- Yadav, T.K.; Narayanaswamy, R.; Abu Bakar, M.H.; Kamil, Y.M.; Mahdi, M.A. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 2014, 22, 22802–22807. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Xue, P.; Zhao, X.; Zheng, J. Investigation of an in-line fiber Mach–Zehnder interferometer based on peanut-shape structure for refractive index sensing. Opt. Commun. 2019, 435, 173–177. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Huang, T.; Shu, X. Multimode interferometer based on a core-offset singlemode-multimode-singlemode fiber structure. In Proceedings of the OSA Advanced Photonics Congress (AP) 2020 (IPR, NP, NOMA, Networks, PVLED, PSC, SPPCom, SOF), Washington, DC, USA, 13–16 July 2020; Optica Publishing Group: Washington, DC, USA, 2020; p. JTu3F.11. [Google Scholar] [CrossRef]
- Shao, M.; Qiao, X.; Fu, H.; Li, H.; Zhao, J.; Li, Y. A Mach–Zehnder interferometric humidity sensor based on waist-enlarged tapers. Opt. Lasers Eng. 2014, 52, 86–90. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, M.; Farrell, G.; Wang, R.; Lewis, E.; Wang, P. Highly sensitive strain sensor based on composite interference established within S-tapered multimode fiber structure. Opt. Express 2018, 26, 33982–33992. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Luo, B.-B.; Wu, D.; Fan, J.; Gu, H.; Guo, Y.; Zhao, M. Highly sensitive curvature sensor based on a sandwich multimode fiber Mach–Zehnder interferometer. Opt. Express 2022, 30, 40251–40264. [Google Scholar] [CrossRef]
- Dong, X.; Du, H.; Luo, Z.; Yin, K.; Duan, J. Highly sensitive refractive index sensor based on novel Mach–Zehnder interferometer with multimode fiber–thin core fiber–multimode fiber structure. Jpn. J. Appl. Phys. 2018, 57, 092501. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Zhang, J.; Rong, Q.; Liang, L.; Xu, Q.; Xiang, G.; Feng, D.; Du, Y.; Feng, Z.; et al. Temperature and refractive index sensing characteristics of an MZI-based multimode fiber–dispersion compensation fiber–multimode fiber structure. Opt. Fiber Technol. 2012, 18, 425–429. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, P.; Yu, Y.; Ou, Z.; Wang, J.; Chen, X.; Du, C. Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer. Opt. Commun. 2013, 297, 7–11. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Li, J.; Xu, T.; Sun, G. High fringe visibility Mach-Zehnder interferometric sensor based on a Four-Core fiber. Instrum. Sci. Technol. 2020, 48, 326–337. [Google Scholar] [CrossRef]
- Nazeri, K.; Ahmed, F.; Ahsani, V.; Joe, H.-E.; Bradley, C.; Toyserkani, E.; Jun, M.B.G. Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing. Sensors 2020, 20, 2807. [Google Scholar] [CrossRef]
- Gutiérrez, J.G.; Sierra-Hernández, J.; Vargas-Treviño, M.; López-Apreza, E.; Romero-Salazar, C.; Hernández-Flores, O.; Estudillo-Ayala, J.; Rojas-Laguna, R. A curvature sensing setup based on an asymmetric concatenated tapered Mach-Zehnder interferometer. Opt. Laser Technol. 2020, 132, 106490. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.-Y.; I Vai, M.; Shum, P.P.; Liu, S.; Liu, Y.; Zhao, F.; Xiao, D.; Liu, Y.; Tan, Y.; et al. In-Fiber Mach–Zehnder Interferometer Sensor Based on Er Doped Fiber Peanut Structure in Fiber Ring Laser. J. Light. Technol. 2021, 39, 3350–3357. [Google Scholar] [CrossRef]
- Eftimov, T.A.; Janik, M.; Bock, W.J. Microcavity In-Line Mach–Zehnder Interferometers Fabricated in Single-Mode Fibers and Fiber Tapers for Visible (VIS) and Near-Infrared (NIR) Operation. J. Light. Technol. 2019, 37, 3351–3356. [Google Scholar] [CrossRef]
- Eftimov, T.; Arapova, A.; Janik, M.; Bock, W. Broad range bimodal microcavity in-line Mach-Zehnder interferometers. Opt. Laser Technol. 2022, 145, 107503. [Google Scholar] [CrossRef]
- Li, Y.; Tong, L. Mach-Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett. 2008, 33, 303–305. [Google Scholar] [CrossRef]
- Bonilla, J.T.G.; Bonilla, A.G.; Zamora, A.C.; Bonilla, H.G.; Betancourtt, V.M.R.; Ortiz, L.G. The fringe visibility measurements on the complex s-plane: A novel method for the fringe visibility measurement. Results Phys. 2022, 38, 105586. [Google Scholar] [CrossRef]
- Costa, G.K.B.; Gouvêa, P.M.P.; Soares, L.M.B.; Pereira, J.M.B.; Favero, F.; Braga, A.M.B.; Palffy-Muhoray, P.; Bruno, A.C.; Carvalho, I.C.S. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing. Opt. Express 2016, 24, 14690–14696. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.Z.; Qiao, X.; Hu, M.; Feng, Z.; Wang, R.; Rong, Q.; Gunawardena, D.S.; Lim, K.-S.; Ahmad, H. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating. Sens. Actuators A Phys. 2016, 248, 199–205. [Google Scholar] [CrossRef]
- Tian, J.; Jiao, Y.; Ji, S.; Dong, X.; Yao, Y. Cascaded-cavity Fabry–Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation. Opt. Commun. 2018, 412, 121–126. [Google Scholar] [CrossRef]
- Novais, S.; Ferreira, C.I.A.; Ferreira, M.S.; Pinto, J.L. Optical Fiber Tip Sensor for the Measurement of Glucose Aqueous Solutions. IEEE Photon J. 2018, 10, 6803609. [Google Scholar] [CrossRef]
- Ahmed, I.; Ali, M.; Elsherif, M.; Butt, H. UV polymerization fabrication method for polymer composite based optical fiber sensors. Sci. Rep. 2023, 13, 10823. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 2018, 26, 1910–1917. [Google Scholar] [CrossRef]
- Dong, X.; Xie, Z.; Zhou, C.; Yin, K.; Luo, Z.; Duan, J. Temperature sensitivity enhancement of platinum-nanoparticle-coated long period fiber gratings fabricated by femtosecond laser. Appl. Opt. 2017, 56, 6549–6553. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Zhang, Y.; Liu, Z.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. Simultaneous measurement of temperature and refractive index based on a hybrid surface plasmon resonance multimode interference fiber sensor. Appl. Opt. 2020, 59, 1225–1229. [Google Scholar] [CrossRef]
#MZI | Taper 1 (T1) | Taper 2 (T2) | ||||
---|---|---|---|---|---|---|
Waist Diameter Relation | Waist Length [mm] | Waist Diameter | Length [mm] | Waist Length [mm] | Waist Diameter | Length [mm] |
#[T1-T2] | L1 | W1 | D1 | L2 | W2 | D2 |
1 [10-20] | 5.05 | 10 | 2.52 | 7.33 | 20 | 3.66 |
2 [45-45] | 6.13 | 45 | 3.06 | 6.13 | 45 | 3.06 |
3 [10-10] | 5.05 | 10 | 2.52 | 5.05 | 10 | 2.52 |
4 [50-60] | 1.83 | 50 | 0.91 | 29.35 | 60 | 14.67 |
5 [15-10] | 8.48 | 15 | 4.24 | 5.05 | 10 | 2.52 |
#MZI | Length L [cm] | First Splice Displacement | Second Splice Displacement |
---|---|---|---|
1 | 2.5 | [−4.6, 0.0] | [+4.6, 0.0] |
2 | 4 | [−3.0, 0.0] | [+3.0, 0.0] |
3 | 4 | [−3.0, 0.0] | [+4.0, 0.0] |
4 | 4 | [−4.0, 0.0] | [+4.0, 0.0] |
5 | 4 | [−4.6, 0.0] | [+4.6, 0.0] |
6 | 4 | [−5.0, 0.0] | [+4.0, 0.0] |
7 | 4 | [−5.0, 0.0] | [+4.5, 0.0] |
8 | 4 | [−6.0, 0.0] | [+5.0, 0.0] |
9 | 4 | [−6.0, 0.0] | [+6.0, 0.0] |
10 | 5 | [−4.6, 0.0] | [+4.6, 0.0] |
Interferometer Structure and Operation Region |
Core-Offset | Interferometer Length (cm) | FSR (nm) | Visibility | Ref. |
---|---|---|---|---|---|
Infrared region | |||||
Core-offset MZI (SMF) | 5 | 4 | 12 | 0.1 | [2] |
Core-Offset MZI (SMF) | 6 to 40 | 3 | 15 | 0.2 | [3] |
Core-offset (SMF-Al coated) | 30 | 2 | 16 | 0.7 | [4] |
Taper MZI (SMF) | - | 2 | 19 | 0.2 | [6] |
Taper MZI (EDF) | - | 4.5 | 12 | 0.25 | [13] |
Visible region | |||||
Microcavity MZI (SMF-800) | - | - | 50 | 0.5 | [15] |
Microcavity (MNF-SMF) | - | - | 8 | 0.09 | [17] |
Core-offset (SMF) | 4.6 | 2.5 | 23 | 0.3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Perez, J.L.; Gutiérrez-Gutiérrez, J.; Perezcampos-Mayoral, C.; Pérez-Campos, E.L.; Pina-Canseco, M.d.S.; Tepech-Carrillo, L.; Vargas-Treviño, M.; Guerra-Hernández, E.I.; Martínez-Helmes, A.; Estudillo-Ayala, J.M.; et al. Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors 2024, 24, 3026. https://doi.org/10.3390/s24103026
Cano-Perez JL, Gutiérrez-Gutiérrez J, Perezcampos-Mayoral C, Pérez-Campos EL, Pina-Canseco MdS, Tepech-Carrillo L, Vargas-Treviño M, Guerra-Hernández EI, Martínez-Helmes A, Estudillo-Ayala JM, et al. Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors. 2024; 24(10):3026. https://doi.org/10.3390/s24103026
Chicago/Turabian StyleCano-Perez, José Luis, Jaime Gutiérrez-Gutiérrez, Christian Perezcampos-Mayoral, Eduardo L. Pérez-Campos, María del Socorro Pina-Canseco, Lorenzo Tepech-Carrillo, Marciano Vargas-Treviño, Erick Israel Guerra-Hernández, Abraham Martínez-Helmes, Julián Moisés Estudillo-Ayala, and et al. 2024. "Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber" Sensors 24, no. 10: 3026. https://doi.org/10.3390/s24103026
APA StyleCano-Perez, J. L., Gutiérrez-Gutiérrez, J., Perezcampos-Mayoral, C., Pérez-Campos, E. L., Pina-Canseco, M. d. S., Tepech-Carrillo, L., Vargas-Treviño, M., Guerra-Hernández, E. I., Martínez-Helmes, A., Estudillo-Ayala, J. M., Sierra-Hernández, J. M., & Rojas-Laguna, R. (2024). Experimental Study of White Light Interferometry in Mach–Zehnder Interferometers Based on Standard Single Mode Fiber. Sensors, 24(10), 3026. https://doi.org/10.3390/s24103026