Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells
Abstract
:1. Introduction
2. Antimicrobials and the Mechanism of Their Action on Bacteria
2.1. Antimicrobials
- -
- Bactericidal groups of medicines. These destroy bacteria by disrupting the synthesis of microbial cell wall components and the structure and functions of membranes. These antibiotics include β-lactams, aminoglycosides, fluoroquinolones, glycopeptides, and others (trimethoprim, metronidazole, rifampicin, etc.);
- -
- Bacteriostatic groups of medicines. These inhibit the growth and reproduction of pathogens so that the human immune system is able to cope with infections on its own. Bacteriostatic drugs include macrolides, clindamycin, streptogramins, chloramphenicol, and tetracyclines.
- -
- Drugs that disrupt the synthesis of polymers necessary for the construction of the cell membrane;
- -
- Drugs that affect the permeability of the cell membrane. This allows active components to penetrate the cell and gradually destroy it;
- -
- Medicines that suppress the synthesis of nucleic acids necessary for the normal functioning of microbes;
- -
- Drugs that inhibit the synthesis of proteins in the cell.
2.2. Antibiotic Resistance
2.3. Mechanisms of Antibacterial Resistance
3. Methods for Determining Antibacterial Sensitivity
3.1. Classic Methods
- -
- Diffusion of the drug into a solid nutrient medium from paper discs;
- -
- Serial dilutions in broth;
- -
- Phase-contrast microscopy.
3.2. Automated Methods
3.3. Sensor Systems for Antibiotic Susceptibility Analysis
4. Acoustic Biosensors to Evaluate Antibiotic Effects on Microbial Cells
4.1. Acoustic Sensors with the Active Immobilized Layers
4.2. Acoustic Sensors to Evaluate Antibiotic Effects on Bacteria Directly in Liquid
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín, D.S.; Wrande, M.; Sandegren, L.; Zardán Gómez de la Torre, T. Naked-eye detection of antibiotic resistance gene sul1 based on aggregation of magnetic nanoparticles and DNA amplification products. Biosens. Bioelectron. X 2022, 12, 100277. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Y.; Zheng, Y.; Meng, F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. Environ. Pollut. 2022, 293, 11854. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, B.; Liu, M.; Mao, S. Demand, status, and prospect of antibiotics detection in the environment. Sensor. Actuat. B-Chem. 2022, 369, 132383. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Central Asian and European Surveillance of Antimicrobial Resistance. Annual Report 2020. Document Number: WHO/EURO:2020-3469-43228-60585. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/publications/2016/central-asian-and-eastern-european-surveillance-of-antimicrobial-resistance-annual-report-2016 (accessed on 27 May 2023).
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Kodan, L.R.; Verschueren, K.J.C.; Kanhai, H.H.H.; van Roosmalen, J.J.M.; Bloemenkamp, K.W.M.; Rijken, M.J. The golden hour of sepsis: An in-depth analysis of sepsis-related maternal mortality in middle-income country Suriname. PLoS ONE 2018, 13, e0200281. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [Green Version]
- Yoo, I.Y.; Kang, O.K.; Shim, H.J.; Huh, H.J.; Lee, N.Y. Linezolid resistance in methicillin-resistant staphylococcus aureus in Korea: High rate of false resistance to linezolid by the VITEK 2 system. Ann. Lab. Med. 2020, 40, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, N. Antimicrobial resistance and infection control for gram-positive bacteria. Yakugaku Zasshi 2021, 141, 235–244. [Google Scholar] [CrossRef]
- Duan, W.; Cui, H.; Jia, X.; Huang, X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Sci. Total Environ. 2022, 820, 153178. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Antimicrobial Resistance. 2015. Available online: File:///C:/Users/User/Downloads/9789241509763_eng.pdf (accessed on 27 May 2023).
- Domingo-Roca, R.; Lasserre, P.; Riordan, L.; Macdonald, A.R.; Dobrea, A.; Duncan, K.R.; Hannah, S.; Murphy, M.; Hoskisson, P.A.; Corrigan, D.K. Rapid assessment of antibiotic susceptibility using a fully 3D-printed impedance-based biosensor. Biosens. Bioelectron. X 2023, 13, 100308. [Google Scholar] [CrossRef]
- Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002, 1, 895–910. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, K.M.; Hodgkinson, J.T.; Sore, H.F.; Welch, M.; Salmond, G.P.; Spring, D.R. Combating multidrug-resistant bacteria: Current strategies for the discovery of novel antibacterials. Angew. Chem. Int. Ed. Engl. 2013, 52, 10706–10733. [Google Scholar] [CrossRef] [PubMed]
- Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007, 128, 1037–1050. [Google Scholar] [CrossRef] [Green Version]
- Le Page, G.; Gunnarsson, L.; Snape, J.; Tyler, C.R. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environ. Int. 2017, 109, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial resistance to antimicrobial agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef]
- Amyes, S.G.; Smith, J.T. R-factor mediated dihydrofolate reductases which confer trimethoprim resistance. J. Gen. Microbiol. 1978, 107, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M. British society for antimicrobial chemotherapy working party on the urgent need: Regenerating antibacterial drug discovery and development. Discovery research: The scientific challenge of finding new antibiotics. J. Antimicrob. Chemother. 2011, 66, 1941–1944. [Google Scholar] [CrossRef] [Green Version]
- Van Bambeke, F.; Balzi, E.; Tulkens, P.M. Antibiotic efflux pumps. Biochem. Pharmacol. 2000, 60, 457–470. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Medeiros, A.A. More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 1991, 35, 1697–1704. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Molecular mechanisms of antibiotic resistance. Chem. Commun. 2011, 47, 4055–4061. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef]
- Egorov, A.M.; Ulyashova, M.M.; Rubtsova, M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat. 2018, 10, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Rahman, T.; Yarnall, B.; Doyle, D.A. Efflux drug transporters at the forefront of antimicrobial resistance. Eur. Biophys. J. EBJ 2017, 46, 647–653. [Google Scholar] [CrossRef]
- Pérez-Varela, M.; Corral, J.; Aranda, J.; Barbé, J. Roles of efflux pumps from different superfamilies in the surface-associated motility and virulence of Acinetobacter baumannii ATCC 17978. Antimicrob. Agents Chemother. 2019, 63, e02190-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1998, 1, 516–523. [Google Scholar] [CrossRef]
- Alvarez-Ortega, C.; Olivares, J.; Martínez, J.L. RND multidrug efflux pumps: What are they good for? Front. Microbiol. 2013, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef]
- Wood, T.K.; Knabel, S.J.; Kwan, B.W. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 2013, 79, 7116–7721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, N.R.; Lobritz, M.A.; Collins, J.J. Microbial persistence and the road to drug resistance. Cell Host Microbe 2013, 13, 632–642. [Google Scholar] [CrossRef] [Green Version]
- Lewis, K.; Shan, Y. Why tolerance invites resistance. Science 2017, 355, 796. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Mayoral, S.; Graña-Miraglia, L.; Pérez-Morales, D.; Peña-Miller, R.; Fuentes-Hernández, A. Evolutionary history and strength of selection determine the rate of antibiotic resistance adaptation. Mol. Biol. Evol. 2022, 39, msac185. [Google Scholar] [CrossRef] [PubMed]
- Lamrabet, O.; Martin, M.; Lenski, R.E.; Schneider, D. Changes in intrinsic antibiotic susceptibility during a long-term evolution experiment with Escherichia coli. mBio 2019, 10, e00189-19. [Google Scholar] [CrossRef] [Green Version]
- Medernach, R.L.; Logan, L.K. The Growing threat of antibiotic resistance in children. Infect. Dis. Clin. N. Am. 2018, 32, 1–17. [Google Scholar] [CrossRef]
- Card, K.J.; LaBar, T.; Gomez, J.B.; Lenski, R.E. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection. PLoS Biol. 2019, 17, e3000397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Card, K.J.; Thomas, M.D.; Graves, J.L., Jr.; Barrick, J.E.; Lenski, R.E. Genomic evolution of antibiotic resistance is contingent on genetic background following a long-term experiment with Escherichia coli. Proc. Natl. Acad. Sci. USA 2021, 118, e2016886118. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, E.C.; Laschi, S.; Palchetti, I.; Torres, E. Advances in antimicrobial resistance monitoring using sensors and biosensors: A review. Chemosensors 2021, 9, 232. [Google Scholar] [CrossRef]
- Kulapina, E.G.; Barinova, O.V.; Kulapina, O.I.; Uts, I.A.; Snesarev, S.V. Modern methods of antibiotic determination in biological samples and drugs (review). Antibiot. Khimioter. 2009, 54, 53–60. (In Russian) [Google Scholar]
- Flowers, D.J. Use of sensitivity discs as primary antibiotic standards in MIC determination. J. Clin. Pathol. 1978, 31, 855–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puttaswamy, S.; Gupta, S.K.; Regunath, H.; Smith, L.P.; Sengupta, S. A comprehensive review of the present and future antibiotic susceptibility testing (AST) systems. Arch. Clin. Microbiol. 2018, 9, 83. [Google Scholar] [CrossRef]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial susceptibility testing: Currently used methods and devices and the near future in clinical practice. J. Appl. Microbiol. 2020, 129, 806–822. [Google Scholar] [CrossRef] [PubMed]
- ISO 20776-1:2019; Clinical Laboratory Testing and in vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Reference Method for Testing the in vitro Activity of Antimicrobial Agents against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. 2019. Available online: https://www.iso.org/standard/41630.html (accessed on 27 May 2023).
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2015; Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Switzerland, 2017. [Google Scholar]
- Zhang, X.; Wang, X.; Bao, Y.; Shen, Z.; Xu, Y.; Wang, B.; Zhang, H.; Guan, T.; He, Y. Phase contrast image-based rapid antimicrobial susceptibility testing of bacteria in liquid culture media. Sensors 2022, 23, 59. [Google Scholar] [CrossRef] [PubMed]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and emerging methods of antibiotic susceptibility testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, A.; Vranken, T.; Malhotra, A.; Arts, J.J.C.; Habibovic, P. In vitro antimicrobial susceptibility testing methods: Agar dilution to 3D tissue-engineered models. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 187–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gumbo, T.; Siyambalapitiyage Dona, C.S.W.; Meek, C.; Leff, R. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: A paradigm for faster assessment of new antituberculosis drugs. Antimicrob. Agents Chemother. 2009, 53, 3197–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musuka, S.; Srivastava, S.; Siyambalapitiyage Dona, C.W.; Meek, C.; Leff, R.; Pasipanodya, J.; Gumbo, T. Thioridazine pharmacokinetic-pharmacodynamic parameters “Wobble” during treatment of tuberculosis: A theoretical basis for shorter-duration curative monotherapy with congeners. Antimicrob. Agents Chemother. 2013, 57, 5870–5877. [Google Scholar] [CrossRef] [Green Version]
- van Belkum, A.; Burnham, C.-A.D.; Rossen, J.W.A.; Mallard, F.; Rochas, O.; Dunne, W.M. Innovative and rapid antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2020, 18, 299–311. [Google Scholar] [CrossRef]
- Isenberg, H.D.; Reichler, A.; Wiseman, D. Prototype of a fully automated device for determination of bacterial antibiotic susceptibility in the clinical laboratory. Appl. Microbiol. 1971, 22, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Anahtar, M.N.; Yang, J.H.; Kanjilal, S. Applications of machine learning to the problem of antimicrobial resistance: An emerging model for translational research. J. Clin. Microbiol. 2021, 59, e0126020. [Google Scholar] [CrossRef] [PubMed]
- Baltekin, Ö.; Boucharin, A.; Tano, E.; Andersson, D.I.; Elf, J. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. USA 2017, 114, 9170–9175. [Google Scholar] [CrossRef]
- Muntean, M.M.; Muntean, A.-A.; Preda, M.; Manolescu, L.S.C.; Dragomirescu, C.; Popa, M.-I.; Popa, G.L. Phenotypic and genotypic detection methods for antimicrobial resistance in ESKAPE pathogens (Review). Exp. Ther. Med. 2022, 24, 508. [Google Scholar] [CrossRef]
- Bueno, J. Biosensors in antimicrobial drug discovery: Since biology until screening platforms. J. Microb. Biochem. Technol. 2014, S10, 002. [Google Scholar] [CrossRef] [Green Version]
- Guliy, O.I.; Zaitsev, B.D.; Teplykh, A.A.; Borodina, I.A. Biological acoustic sensors for microbial cell detection. In Nanobiomaterial Engineering: Concepts and Their Applications in Bio-Medicine and Diagnostic; Chandra, P., Prakash, R., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; Chapter 11; pp. 205–227. [Google Scholar] [CrossRef]
- Purohit, B.; Vernekar, P.R.; Shetti, N.P.; Chandra, P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens. International. 2020, 1, 100040. [Google Scholar] [CrossRef]
- Conteduca, D.; Brunetti, G.; Dell’Olio, F.; Armenise, M.N.; Krauss, T.F.; Ciminelli, C. Monitoring of individual bacteria using electro-photonic traps. Biomed. Opt. Express 2019, 10, 3463–3471. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S. Electrochemical sensors for antibiotic susceptibility testing: Strategies and applications. Chemosensors 2022, 10, 53. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Q.Y.; Chen, F.; Cao, Y. Paper-based electrochemical sensor. Electrochem. Sci. Adv. 2022, 2, e2100057. [Google Scholar] [CrossRef]
- Qiu, W.; Nagl, S. Automated miniaturized digital microfluidic antimicrobial susceptibility test using a chip-integrated optical oxygen sensor. ACS Sens. 2021, 6, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Vasala, A.; Hytonen, V.P.; Laitinen, O.H. Modern tools for rapid diagnostics of antimicrobial resistance. Front. Cell. Infect. Microbiol. 2020, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Guliy, O.I.; Bunin, V.D. Electrooptical analysis as sensing system for detection and diagnostics bacterial cells. In Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery; Chandra, P., Pandey, L.M., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; Chapter 11; pp. 233–254. [Google Scholar] [CrossRef]
- Pujol-Vila, F.; Villa, R.; Alvarez, M. Nanomechanical sensors as a tool for bacteria detection and antibiotic susceptibility testing. Front. Mech. Eng. 2020, 6, 44. [Google Scholar] [CrossRef]
- Gfeller, K.Y.; Nugaevam, N.; Hegner, M. Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli. Appl. Environ. Microbiol. 2005, 71, 2626–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, I.; Pynem, A.L.B.; McKendry, R.A. Cantilever sensors for rapid optical antimicrobial sensitivity testing. ACS Sens. 2020, 5, 3133–3139. [Google Scholar] [CrossRef]
- Jain, M.C.; Nadaraja, A.V.; Narang, R.; Zarifi, M.H. Rapid and real-time monitoring of bacterial growth against antibiotics in solid growth medium using a contactless planar microwave resonator sensor. Sci. Rep. 2021, 11, 14775. [Google Scholar] [CrossRef]
- Lu, W.; Li, H.; Qiu, H.; Wang, L.; Feng, J.; Fu, Y.V. Identification of pathogens and detection of antibiotic susceptibility at single-cell resolution by Raman spectroscopy combined with machine learning. Front. Microbiol. 2023, 13, 1076965. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.-Y.; Li, D.; Liu, Y.; Mao, Z.-S.; Yu, Y.; Zhu, P.; Xu, Q.; Sun, Y.; Hu, L.; Wang, J.; et al. Recyclable and green AuBPs@MoS2@tinfoil box for high throughput SERS tracking of diquat in complex compounds. Sens. Actuators B Chem. 2021, 344, 130290. [Google Scholar] [CrossRef]
- Premasiri, W.R.; Chen, Y.; Williamson, P.M.; Bandarage, D.C.; Pyles, C.; Ziegleret, L.D. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): Identification and antibiotic susceptibilities. Anal. Bioanal. Chem. 2017, 409, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.-Y.; Cui, X.; Sun, Y.; Mao, Z.; Wang, J.; Chen, F.; Wang, J.; Cao, Y. Crown monitoring: Trace the dynamic changes of caspase-3 and H2O2 in real-time imaging based on FRET/SERS. Biosens. Bioelectron. 2021, 192, 113539. [Google Scholar] [CrossRef] [PubMed]
- Gözde Durmuşa, N.; Linb, R.L.; Kozbergc, M.; Dermicid, D.; Khademhosseinie, A.; Demirci, U. Acoustic-based biosensors. In Encyclopedia of Microfluidics and Nanofluidics; Springer Science + Business Media: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.I.; March-Iborra, C.; Montoya-Baides, A.; Arnau-Vives, A. Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors 2009, 9, 5740–5769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruhl, F.J.; Länge, K. Surface acoustic wave (SAW) biosensor for rapid and label-free detection of penicillin G in milk. Food Anal. Methods 2014, 7, 430–437. [Google Scholar] [CrossRef]
- Wark, M.; Kalanyanm, B.; Ellis, L. A lateral field excited acoustic wave sensor for the detection of saxitoxin in water. In Proceedings of the 2007 IEEE Ultrasonics Symposium Proceedings, New York, NY, USA, 28–31 October 2007; pp. 1217–1220. [Google Scholar] [CrossRef]
- Pinkham, W.; Wark, M.; Winters, S.; French, L.; Frankel, D.J.; Vetelino, J.F. A lateral field excited acoustic wave pesticide sensor. In Proceedings of the IEEE Ultrasonics Symposium, Rotterdam, The Netherlands, 18–21 September 2005; pp. 2279–2283. [Google Scholar] [CrossRef]
- York, C.; French, L.A.; Millard, P.; Vetelino, J.F. A lateral field excited acoustic wave biosensor. In Proceedings of the IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, 18–21 September; 2005; pp. 44–48. [Google Scholar] [CrossRef]
- Vetelino, J.F. A lateral field excited acoustic wave sensor platform. In Proceedings of the 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 2269–2272. [Google Scholar] [CrossRef]
- Kim, Y.W.; Meyer, M.T.; Berkovich, A.; Subramanian, S.; Iliadis, A.A.; Bentley, W.E.; Ghodssi, R. A surface acoustic wave biofilm sensor integrated with a treatment method based on the bioelectric effect. Sens. Actuators A Phys. 2016, 238, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.L.; France, D.C.; Rentz, N.S.; Cordell, W.T.; Walls, F.L. Sensing bacterial vibrations and early response to antibiotics with phase noise of a resonant crystal. Sci. Rep. 2017, 7, 12138. [Google Scholar] [CrossRef] [Green Version]
- Guliy, O.I.; Zaitsev, B.D.; Shikhabudinov, A.M.; Borodina, I.A.; Larionova, O.S.; Zhnichkova, Y.G. Determination of microbial sensitivity to polymyxinby the method of electroacoustic analysis. Antibiot. Khimioter = Antibiot. Chemother. 2017, 62, 3–9. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Karavaeva, O.A.; Lovtsova, L.G.; Mehta, S.K.; Borodina, I.A. Rapid analysis of the sensitivity of bacteria to beta-lactam antibiotics by using a resonator with a lateral electric field. Antibiot. Khimioter = Antibiot. Chemother. 2019, 64, 3–8. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Kuznetsova, I.E.; Shikhabudinov, A.M.; Vasilyev, A.A. New method of parasitic mode suppression in lateral-field-excited piezoelectric resonator. Tech. Phys. Lett. 2011, 37, 503–506. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Alsowaidi, A.K.M.; Karavaeva, O.A.; Semyonov, A.P.; Borodina, I.A. Rapid analysis of the effect of aminoglycosides on bacteria by using a sensor system based on a piezoelectric resonator with a lateral electric field. Antibiot. Khimioter = Antibiot. Chemother. 2023, 68, 4–10. [Google Scholar] [CrossRef]
- Zaitsev, B.; Borodina, I.; Alsowaidi, A.; Karavaeva, O.; Teplykh, A.; Guliy, O. Microbial acoustical analyzer for antibiotic indication. Sensors 2022, 22, 2937. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Q.; Luo, J.K.; Nguyen, N.T.; Walton, A.J.; Flewitt, A.J.; Zu, X.T.; Li, Y.; McHale, G.; Matthews, A.; Iborra, E.; et al. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef] [Green Version]
- Länge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef]
- Borodina, I.A.; Zaitsev, B.D.; Burygin, G.L.; Guliy, O.I. Sensor based on the slot acoustic wave for the non-contact analysis of the bacterial cells–antibody binding in the conducting suspensions. Sens. Actuators B 2018, 268, 217–222. [Google Scholar] [CrossRef]
- Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor. Appl. Microbiol. Biotechnol. 2020, 104, 1283–1290. [Google Scholar] [CrossRef]
- Kim, D.-W.; Cha, C.-J. Antibiotic resistome from the one-health perspective: Understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef]
- Hobson, C.; Chan, A.N.; Wright, G.D. The Antibiotic resistome: A guide for the discovery of natural products as antimicrobial agents. Chem. Rev. 2021, 121, 3464–3494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guliy, O.I.; Zaitsev, B.D.; Borodina, I.A. Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells. Sensors 2023, 23, 6292. https://doi.org/10.3390/s23146292
Guliy OI, Zaitsev BD, Borodina IA. Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells. Sensors. 2023; 23(14):6292. https://doi.org/10.3390/s23146292
Chicago/Turabian StyleGuliy, Olga I., Boris D. Zaitsev, and Irina A. Borodina. 2023. "Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells" Sensors 23, no. 14: 6292. https://doi.org/10.3390/s23146292
APA StyleGuliy, O. I., Zaitsev, B. D., & Borodina, I. A. (2023). Electroacoustic Biosensor Systems for Evaluating Antibiotic Action on Microbial Cells. Sensors, 23(14), 6292. https://doi.org/10.3390/s23146292