High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods
Abstract
1. Introduction
2. Experimental Setup and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikles, M.; Vogel, B.; Briffod, F.; Grosswig, S.; Sauser, F.; Luebbecke, S.; Bals, A.; Pfeiffer, T. Leakage detection using fiber optics distributed temperature monitoring. In Proceedings of the Smart Structures and Materials 2004: Smart Sensor Technology and Measurement Systems, San Diego, CA, USA, 14–18 March 2004; Volume 5384, pp. 18–25. [Google Scholar]
- Sun, M.; Tang, Y.; Yang, S.; Li, J.; Sigrist, M.; Dong, F. Fire source localization based on distributed temperature sensing by a dual-line optical fiber system. Sensors 2016, 16, 829. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Takinami, N.; Chino, T.; Amano, K.; Watanabe, K.; Nakamura, Y.; Shiseki, N. A new approach to cable fault location using fiber optic technology. IEEE Trans. Power Deliv. 1995, 10, 85–91. [Google Scholar] [CrossRef]
- Yang, C.; Wang, M.; Tang, M.; Wu, H.; Zhao, C.; Liu, T.; Fu, S.; Tong, W. Link optimized few-mode fiber Raman distributed temperature sensors. Appl. Opt. 2018, 57, 6923–6926. [Google Scholar] [CrossRef] [PubMed]
- Gasser, J.; Warpelin, D.; Bussieres, F.; Extermann, J.; Pomarico, E. Distributed temperature sensor combining centimeter resolution with hundreds of meters sensing range. Opt. Express 2022, 30, 6768–6777. [Google Scholar] [CrossRef]
- Iezzi, V.; Loranger, S.; Kashyap, R. High sensitivity distributed temperature fiber sensor using stimulated Brillouin scattering. Opt. Express 2017, 25, 32591–32601. [Google Scholar] [CrossRef]
- Wang, Y.; Krarup, O.; Chen, L.; Bao, X. Frequency sweep extension using the Kerr effect for static temperature measurement range enhancement in chirped pulse phi-OTDR. Opt. Express 2021, 29, 23202–23212. [Google Scholar] [CrossRef]
- Li, H.; Liu, Q.; Chen, D.; He, Z. Centimeter spatial resolution distributed temperature sensor based on polarization-sensitive optical frequency domain reflectometry. J. Light. Technol. 2021, 39, 2594–2602. [Google Scholar] [CrossRef]
- Clement, P.; Gabet, R.; Lanticq, V.; Jaouen, Y. B-OTDR solution for independent temperature and strain measurement in a single acquisition. J. Light. Technol. 2021, 39, 6013–6020. [Google Scholar] [CrossRef]
- Zhong, H.; Fu, C.; Li, P.; Du, B.; Du, C.; Meng, Y.; Wang, Y. Distributed high-temperature sensing based on optical frequency domain reflectometry with a standard single-mode fiber. Opt. Lett. 2022, 47, 882–885. [Google Scholar] [CrossRef]
- Li, P.; Fu, C.; Du, B.; He, J.; Zhong, H.; Du, C.; Wang, L.; Wang, Y. High-spatial-resolution strain sensor based on distance compensation and image wavelet denoising method in OFDR. J. Light. Technol. 2021, 39, 6334–6339. [Google Scholar] [CrossRef]
- Passy, R.; Gisin, N.; Vonderweid, J.; Gilgen, H. Experimental and theoretical investigations of coherent OFDR with semiconductor-laser sources. J. Light. Technol. 1994, 12, 1622–1630. [Google Scholar] [CrossRef]
- Ding, Z.; Yao, X.; Liu, T.; Du, Y.; Liu, K.; Jiang, J.; Meng, Z.; Chen, H. Compensation of laser frequency tuning nonlinearity of a long range OFDR using deskew filter. Opt. Express 2013, 21, 3826–3834. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Z.; Gui, X.; Fu, X.; Wang, F.; Wang, H.; Wang, J.; Bao, X. Micro-cavity array with high accuracy for fully distributed optical fiber sensing. J. Light. Technol. 2019, 37, 927–932. [Google Scholar] [CrossRef]
- Xu, B.; He, J.; Du, B.; Xiao, X.; Xu, X.; Fu, C.; He, J.; Liao, C.; Wang, Y. Femtosecond laser point-by-point inscription of an ultra-weak fiber Bragg grating array for distributed high-temperature sensing. Opt. Express 2021, 29, 32615–32626. [Google Scholar] [CrossRef]
- Fang, Z.; Liang, C.; Xu, S.; Bai, Q.; Wang, Y.; Zhang, H.; Jin, B. Spatial resolution enhancement of OFDR sensing system using phase-domain-interpolation resampling method. IEEE Sens. J. 2022, 22, 3202–3210. [Google Scholar] [CrossRef]
- Wang, C.; Liu, K.; Ding, Z.; Jiang, J.; Chen, Z.; Feng, Y.; Zheng, Y.; Liu, Q.; Liu, T. High sensitivity distributed static strain sensing based on differential relative phase in optical frequency domain reflectometry. J. Light. Technol. 2020, 38, 5825–5836. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, M.; Liu, J.; Luan, N. Numerical analysis and recursive compensation of position deviation for a sub-millimeter resolution OFDR. Sensors 2020, 20, 5540. [Google Scholar] [CrossRef]
- Jones, J.T.; Sweeney, D.C.; Birri, A.; Petrie, C.M.; Blue, T.E. Calibration of distributed temperature sensors using commercially available SMF-28 optical fiber from 22 degrees C to 1000 degrees C. IEEE Sens. J. 2022, 22, 4144–4151. [Google Scholar] [CrossRef]
- Sweeney, D.C.; Petrie, C.M. Expanding the range of the resolvable strain from distributed fiber optic sensors using a local adaptive reference approach. Opt. Lett. 2022, 47, 269–272. [Google Scholar] [CrossRef]
- Sweeney, D.C.; Schrell, A.M.; Petrie, C.M. An adaptive reference scheme to extend the functional range of optical backscatter reflectometry in extreme environments. IEEE Sens. J. 2021, 21, 498–509. [Google Scholar] [CrossRef]
- Sweeney, D.C.; Sweeney, D.M.; Petrie, C.M. Graphical optimization of spectral shift reconstructions for optical backscatter reflectometry. Sensors 2021, 21, 6154. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.Y. Long-range OFDR-based distributed vibration optical fiber sensor by multi-characteristics of Rayleigh scattering. IEEE Photonics J. 2017, 9, 6804410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Li, P.; Sui, R.; Peng, Z.; Zhong, H.; Yin, X.; Wang, Y. High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods. Sensors 2022, 22, 9972. https://doi.org/10.3390/s22249972
Fu C, Li P, Sui R, Peng Z, Zhong H, Yin X, Wang Y. High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods. Sensors. 2022; 22(24):9972. https://doi.org/10.3390/s22249972
Chicago/Turabian StyleFu, Cailing, Pengfei Li, Ronglong Sui, Zhenwei Peng, Huajian Zhong, Xiaoyu Yin, and Yiping Wang. 2022. "High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods" Sensors 22, no. 24: 9972. https://doi.org/10.3390/s22249972
APA StyleFu, C., Li, P., Sui, R., Peng, Z., Zhong, H., Yin, X., & Wang, Y. (2022). High-Spatial-Resolution OFDR Distributed Temperature Sensor Based on Step-by-Step and Image Wavelet Denoising Methods. Sensors, 22(24), 9972. https://doi.org/10.3390/s22249972