Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Capture
2.2. Automatic Detection of Roadside Trees at Different Phenological Stages
2.3. Image Post-Processing and Calculation of Phenological Metrics
3. Results
Tree Detection Evaluation Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, L. Green with phenology. Science 2020, 374, 1065–1066. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T.; Trueman, S.J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 2015, 134, 157–166. [Google Scholar] [CrossRef]
- Wolf, K.L.; Lam, S.T.; McKeen, J.K.; Richardson, G.R.A.; van den Bosch, M.; Bardekjian, A.C. Urban trees and human health: A scoping review. Int. J. Environ. Res. Public Health 2020, 17, 4371. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Department of Economic and Social Affairs. In World Urbanisation Prospects; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Dallimer, M.; Tang, Z.; Gaston, K.J.; Davies, Z.G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 2016, 6, 1942–1953. [Google Scholar] [CrossRef]
- Li, X.; Yuyu, Z.; Asrar, G.; Mao, J.; Li, X.; Li, W. Response of vegetation phenology to urbanization in the conterminous United States. Glob. Chang. Biol. 2017, 23, 2818–2830. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef]
- Morris, D.E.; Boyd, D.S.; Crowe, J.A.; Johnson, C.S.; Smith, K.L. Exploring the potential for automatic extraction of vegetation phenological metrics from traffic webcams. Remote Sens. 2013, 5, 2200–2218. [Google Scholar] [CrossRef]
- Li, F.; Song, G.; Liujun, Z.; Yanan, Z.; Di, L. Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban For. Urban Green. 2017, 25, 43–57. [Google Scholar] [CrossRef]
- Moon, M.; Richardson, A.D.; Milliman, T.; Friedl, M.A. A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites. Sci. Data 2022, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, D.M.; Looze, A.C.M.; Raleigh, M.S.; Miller, B.W.; Friedman, J.-M.; Wessman, C.A. From flowering to foliage: Accelerometers track tree sway to provide high-resolution insights into tree phenology. Agric. For. Meteorol. 2022, 318, 108900. [Google Scholar] [CrossRef]
- Park, J.Y.; Muller-Landau, H.C.; Lichstein, J.W.; Rifai, S.W.; Dandois, J.P.; Bohlman, S.A. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 2019, 11, 1534. [Google Scholar] [CrossRef]
- Thapa, S.; Garcia Millan, V.E.; Eklundh, L. Assessing forest phenology: A multi-scale comparison of near-surface (UAV, spectral reflectance sensor, phenocam) and satellite (MODIS, SENTINEL-2) remote sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Padilla, R.; Netto, S.L.; da Silva, E.A. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Yang, W.; Wang, S.; Zhao, X.; Zhang, J.; Feng, J. Greenness identification based on HSV decision tree. Inf. Process. Agric. 2015, 2, 149–160. [Google Scholar] [CrossRef]
- Chaves-González, J.M.; Vega-Rodríguez, M.A.; Gómez-Pulido, J.A.; Sánchez-Pérez, J.M. Detecting skin in face recognition systems: A colour spaces study. Digit. Signal Process. 2010, 20, 806–823. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 2018, 135, 3–30. [Google Scholar] [CrossRef]
- Rodríguez-Puerta, F.; Barrera, C.; García, B.; PérezRodríguez, F.; García-Pedrero, A.M. Mapping tree canopy in urban environments using point cloudsfrom airborne laser scanning and street level imagery. Sensors 2022, 22, 3269. [Google Scholar] [CrossRef] [PubMed]
- Wegner, J.D.; Branson, S.; Hall, D.; Schindler, K.; Perona, P. Cataloging public objects using aerial and street-level images-urban trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 6014–6023. [Google Scholar]
- Jodas, D.S.; Yojo, T.; Brazolin, S.; Velasco, G.D.N.; Papa, J.P. Detection of trees on street-view images using a convolutional neural network. Int. J. Neural Syst. 2022, 32, 2150042. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Sparks, T.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Berra, E.F.; Gaulton, R. Remote sensing of temperate and boreal forest phenology: A review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. For. Ecol. Manag. 2021, 480, 118663. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Brown, C.; Mazumdar, S.; Marshall, H.; Wardlaw, J. Citizen science for Earth Observation (Citzens4EO): Understanding current use in the UK. Int. J. Remote Sens. 2022, 43, 2965–2985. [Google Scholar] [CrossRef]
- Crimmins, M.A.; Crimmins, T.M. Monitoring plant phenology using digital repeat photography. Environ. Manag. 2008, 41, 949–958. [Google Scholar] [CrossRef]
- Crimmins, T.M.; Crimmins, M.A. Large-scale citizen science programs can support ecological and climate change assessments. Environ. Res. Lett. 2022, 17, 065011. [Google Scholar] [CrossRef]
- Crooks, A.T.; Croitoru, A.; Jenkins, R.; Mahabir, P.; Agouris, P.; Stefanidis, A. User-generated big data and urban morphology. Built Environ. 2016, 42, 396–414. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Mizouni, R.; Lee, U. Motives and concerns of dashcam video sharing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 4758–4769. [Google Scholar]
- Rashid, M.T.; Zhang, D.Y.; Wang, D. DASC: Towards a road Damage-Aware Social-media-driven Car sensing framework for disaster response applications. Pervasive Mob. Comput. 2020, 67, 101207. [Google Scholar] [CrossRef]
AOI | Contextual Descriptor | Number of Images | Single or Multiple Trees | Species |
---|---|---|---|---|
AOI_1 | LimeRow | 88 | Multiple | Lime |
AOI_2 | Chestnut Tree | 88 | Single | Horse Chestnut |
AOI_3 | Library Tree | 87 | Single | Rowan |
AOI_4 | Roundabout Tree | 87 | Single | Plane |
AOI_5 | Firestation | 87 | Multiple | Acer |
AOI_6 | Semington Rd. | 86 | Multiple | Birch, Long Leaved Lime |
Day of Capture Period | Day of Year | Date (DD/MM/YYYY) |
---|---|---|
DAY 1 | 63 | 3 March 2020 |
DAY 15 | 77 | 17 March 2020 |
DAY 30 | 92 | 1 April 2020 |
DAY 5 | 107 | 16 May 2020 |
DAY 60 | 122 | 1 May 2020 |
DAY 75 | 137 | 16 May 2020 |
DAY 90 | 152 | 31 May 2020 |
AOI | Species of Tree | Dashcam Estimated (DD/MM/YYYY) | Visual Inspection Estimated (DD/MM/YYYY) |
---|---|---|---|
2 | Horse Chestnut | 10 April 2020 | 13 April 2020 |
3 | Rowan | 14 April 2020 | 10 April 2020 |
4 | Plane | 24 April 2020 | 22 April 2020 |
5a | Acer | 23 April 2020 | 20 April 2020 |
5b | Acer | 4 May 2020 | 4 May 2020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyd, D.S.; Crudge, S.; Foody, G. Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments. Sensors 2022, 22, 7672. https://doi.org/10.3390/s22197672
Boyd DS, Crudge S, Foody G. Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments. Sensors. 2022; 22(19):7672. https://doi.org/10.3390/s22197672
Chicago/Turabian StyleBoyd, Doreen S., Sally Crudge, and Giles Foody. 2022. "Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments" Sensors 22, no. 19: 7672. https://doi.org/10.3390/s22197672
APA StyleBoyd, D. S., Crudge, S., & Foody, G. (2022). Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments. Sensors, 22(19), 7672. https://doi.org/10.3390/s22197672