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Abstract: Trees in urban environments hold significant value in providing ecosystem services, which
will become increasingly important as urban populations grow. Tree phenology is highly sensitive to
climatic variation, and resultant phenological shifts have significant impact on ecosystem function.
Data on urban tree phenology is important to collect. Typical remote methods to monitor tree
phenological transitions, such as satellite remote sensing and fixed digital camera networks, are
limited by financial costs and coarse resolutions, both spatially and temporally and thus there exists
a data gap in urban settings. Here, we report on a pilot study to evaluate the potential to estimate
phenological metrics from imagery acquired with a conventional dashcam fitted to a car. Dashcam
images were acquired daily in spring 2020, March to May, for a 2000 m stretch of road in Melksham,
UK. This pilot study indicates that time series imagery of urban trees, from which meaningful
phenological data can be extracted, is obtainable from a car-mounted dashcam. The method based on
the YOLOv3 deep learning algorithm demonstrated suitability for automating stages of processing
towards deriving a greenness metric from which the date of tree green-up was calculated. These
dates of green-up are similar to those obtained by visual analyses, with a maximum of a 4-day
difference; and differences in green-up between trees (species-dependent) were evident. Further
work is required to fully automate such an approach for other remote sensing capture methods, and
to scale-up through authoritative and citizen science agencies.

Keywords: urban tree phenology; dashcam imagery; deep learning; vehicle sensors

1. Introduction

Street trees and urban forests influence quality of life for urban citizens. Trees lower
air temperature, improve air quality, provide carbon sequestration, intercept precipitation,
and regulate run-off and water quality [1]. Urban trees are a necessity for sustaining
urban ecology [2]. They provide health benefits to humans, but can also negatively impact
human well-being [3]. With an urbanisation projection of 68% for the global population by
2050 [4], there will be an increased dependence on urban trees [5]. Urban trees thus need
measurement and monitoring, with their phenological characteristics being a key dataset
that is required [6,7].

Phenology has long been monitored through field observations, with this perspec-
tive supplemented recently with fixed digital cameras capturing hyper-temporal imagery
(e.g., [8,9]). This is useful for object-based (individual tree) analysis, but deployment of
fixed sensors across space at fine spatial resolutions is challenging. Sensors on satellites
(Earth observation, EO) have also been usefully deployed [10,11], but may not be suitable
for individual tree phenological study within the urban context [12]. Sensors on unoccu-
pied aerial vehicles (UAVs) have also been shown to be useful, especially in fusion with
satellite data [13,14], but their deployment can be subject to regulatory restrictions. In
this paper, we suggest that image data captured by dashcams deployed in vehicles is a
new opportunity for urban-situated phenological measurement of trees. Such a remote
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sensing system offers a ground (road) level view of urban trees and if deployed as part of a
crowd-sourced sensor-network or as part of an authoritative network (e.g., work vans, etc.),
there is the opportunity to measure the phenology of urban trees beyond the local scale.
Furthermore, using dashcams in this way may present an opportunity to collect training
and validation data for UAV and satellite-based phenological studies. We present a pilot
study to explore the potential of using dashcams for phenological studies. As an initial step
this paper focuses on the extraction of tree green-up dynamics in an urban setting using a
singular vehicle dashcam sensor.

2. Materials and Methods
2.1. Data Capture

A survey transect along a road (2000 m in total) in Melksham, UK (51.3704, −2.1376)
was driven daily (between 07:45–08:30 GMT) across a 90-day capture period (3 March 2020
to 31 May 2020). Silver Birch, Lime, Chestnut, Hazel, Rowan, and London Plane trees
featured, with six locations (Area of Interest—AOIs), comprising single or multiple trees,
along the route selected for further study (Table 1). A commercially available dashcam,
the Nextbase 322GW (NBDVR322GW), was mounted to a car interior, connected by a
12-24Vdc car power cable, and used for data capture. The sensor resolution was 2.12M
Pixels (1936 × 1097) with a recording resolution of 1920 × 1080 (High Definition) at 60 RGB
frames per second (fps), with a 140◦ lens angle and f1.6 focal ratio. Pixel dimensions of a
single frame captured were 1366 × 768, with a resolution of 96 dpi and a 24-bit depth.

Table 1. Description of Area of Interest.

AOI Contextual
Descriptor

Number of
Images

Single or
Multiple Trees Species

AOI_1 LimeRow 88 Multiple Lime

AOI_2 Chestnut Tree 88 Single Horse Chestnut

AOI_3 Library Tree 87 Single Rowan

AOI_4 Roundabout Tree 87 Single Plane

AOI_5 Firestation 87 Multiple Acer

AOI_6 Semington Rd. 86 Multiple Birch, Long
Leaved Lime

2.2. Automatic Detection of Roadside Trees at Different Phenological Stages

Each of the 90-day video stream frames containing a tree(s) at the six AOIs were
manually extracted using the open-source ViedoLAN Client media player—video clips
were panned through, and then viewed frame by frame, to derive the frame which provided
what was deemed visually to be the optimum view (herein referred to as an image). There
was a slight variation to this ‘optimum view’ across the 90-day capture period for each
AOI, in part due to some minor movement of the dashcam position, and in part to vehicles
obscuring the tree. The six AOIs provided a 523-image dataset (see Table 1). Frames for
some days were lost due to connection failure in the car (speed bumps, etc.).

The You Only Look Once (YOLO) v.3 deep learning algorithm [15] was used to
automatically extract the tree(s) at each AOI from each of the 523 images. Microsoft’s Visual
Object Tagging Tool (VOTT) was used to annotate a subset of images—126 periodically
selected across the 90 days (Table 2). For each of the 126 training images, a bounding box
was manually drawn around each tree in every image and tagged with the ‘Tree’ class. The
YOLOv3 algorithm was deployed on the remaining images to output the original images
with bounding boxes and confidence scores for each tree in the image. The performance of
the object detection model was evaluated with the Mean Average Precision (mAP) metric
on the AOIs used in image analysis [16], which equated to 32 bounding boxes (due to some
AOIs featuring multiple trees).



Sensors 2022, 22, 7672 3 of 8

Table 2. Days on which a sample of images were annotated for each AOI with the aim of representing
the vegetation at various growth stages.

Day of Capture Period Day of Year Date
(DD/MM/YYYY)

DAY 1 63 3 March 2020
DAY 15 77 17 March 2020
DAY 30 92 1 April 2020
DAY 5 107 16 May 2020

DAY 60 122 1 May 2020
DAY 75 137 16 May 2020
DAY 90 152 31 May 2020

2.3. Image Post-Processing and Calculation of Phenological Metrics

Following a visual review of the object detector outputs, the detection results output
from the YOLO algorithm was used to filter results to remove any outliers. A total of
64 bounding boxes had a Y minimum coordinate of 0, suggesting that the bounding box
had reached the edges of the image. Based on an optimum view test image selection, it
was assumed that any coordinates with a Y minimum coordinate had not produced a good
enough bounding box for enclosing any trees. A further 62 bounding boxes were removed
where the tree class confidence score was <0.30 (determined via a visual analysis, where
accurate tree bounding boxes were observed despite a low confidence score of between 0.30
and 0.50). The remaining bounding box coordinates were then used to crop all test images
to coordinates, reducing the image size for analysis to a new area of interest—a single tree.

Images were then converted from RGB values to the Hue, Saturation, Value (HSV)
colour space to mitigate potential error due to solar variance and brightness in the image,
affecting scene illuminance [17,18]. Any images still containing background features (i.e.,
not the tree), had a user-defined region of interest (ROI) generated. The Green Chromatic
Coordinate (GCC) (GCC = green/(red + green + blue)) was then derived for each of all the
~90 image sets of cropped HSV ROI for the detected tree(s).

To further smooth the effects of variable scene illuminance in the data, the temporal
data for each tree was calculated as a three-day rolling mean [19]. The start of the leaf-on
season was calculated for each tree as per previous studies [9,10]. The image archive was
also visually inspected within a validation process in order to ascertain the quality of the
automatically computed phenological metric of green-up (following [9]).

3. Results
Tree Detection Evaluation Metrics

The evaluation dataset showed the YOLOv3 object detector model obtained a mAP
accuracy of 87.32% with the IoU threshold set at 50%; and a mAP accuracy of 70.73%
with the IoU threshold set at 75%. The detector consistently identified trees in the images;
however, there was some variation in the accuracy of the bounding boxes produced. For
example, sometimes the detector output multiple bounding boxes for a single tree (23%
of test images in AOI_2; 18% in AOI_3; 22% in AOI_4, and 12% in AOI_5). These were
straightforward to eliminate from further analysis, as typically where a tree had two or
more bounding boxes, one box had a much higher confidence score hence the others were
removed. A trend observed across all AOIs was that the detector performed poorer on trees
with leaf off, and better with leaf on (see Figure 1 for an example). AOI_1 and AOI_6 were
omitted from further analysis following the detector inference, due to the added complexity
of obtaining and organising the bounding boxes for image processing where a single image
contained >2 trees, particularly due to overlapping bounding boxes.
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Figure 2. Temporal GCC plotted for AOIs 2, 3, 4, and 5 (two trees) calculated using the ROI HSV; 
examples of clipped RGB images, the converted HSV image, and the ROI to the HSV colour space, 
which was then also clipped to new coordinates from each images’ centroid. 

The computed start of green-up (i.e., leaf on) based on the 3-day rolling mean GCC 
of each HSV ROI is shown in Table 3. Both the Horse Chestnut tree in AOI_2 and the 
Rowan tree in AOI_3 observed the onset of greenness in early- to mid-April (AOI_2 on 
the 10 April and AOI_3 on the 14 April. AOI_2 plateaued in greening just four days later 

Figure 1. Example comparison of detector outputs between leaf-off and leaf-on trees.

The GCC data for HSV ROI images and an example of images used, are plotted for
AOI_2, AOI_3, AOI_4, and AOI_5a and b (Figure 2). The phenological signal is clearly well-
defined for each AOI—for some AOIs the classic trapezoid phenology profile is displayed;
for all AOIs the greenness values are seen to increase rapidly from the start of the time
period (March) through to the end of the time period (May). This corresponded to a period
of leafing-on in the deciduous trees and associated increased photosynthetic activity. The
HSV processing had a stretching effect on the GCC values up until the start of green-up,
after which it relatively smoothed the values.
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Figure 2. Temporal GCC plotted for AOIs 2, 3, 4, and 5 (two trees) calculated using the ROI HSV;
examples of clipped RGB images, the converted HSV image, and the ROI to the HSV colour space,
which was then also clipped to new coordinates from each images’ centroid.

The computed start of green-up (i.e., leaf on) based on the 3-day rolling mean GCC
of each HSV ROI is shown in Table 3. Both the Horse Chestnut tree in AOI_2 and the
Rowan tree in AOI_3 observed the onset of greenness in early- to mid-April (AOI_2 on the
10 April and AOI_3 on the 14 April. AOI_2 plateaued in greening just four days later on the
18 April, with AOI_3 greening slower, reaching a plateau of greenness on approximately
the 9 May. The Plane tree of AOI_4 began green-up later in April, on the 24 April, reaching a
maximum greenness on approximately the 29 April. It was difficult to distinguish the onset
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of greenness in the trees in AOI_5. For both trees in the AOI_5 there was an evident positive
relationship between increases in greenness over time, although there were significant
fluctuations; however, green-up could be pin-pointed to 23 April for AOI 5 and the 4 May
for AOI_5b. In both cases, the fluctuations in the data made it impossible to ascertain if
greenness had plateaued, so it was assumed that increased productivity for these trees
continued beyond the time period of study. In all cases, these dates of green-up were
similar to those obtained by visual analyses with a maximum of a 4-day difference being
evident (Table 3).

Table 3. Start-of-green-up date for each AOI.

AOI Species of Tree Dashcam Estimated
(DD/MM/YYYY)

Visual Inspection Estimated
(DD/MM/YYYY)

2 Horse Chestnut 10 April 2020 13 April 2020
3 Rowan 14 April 2020 10 April 2020
4 Plane 24 April 2020 22 April 2020
5a Acer 23 April 2020 20 April 2020
5b Acer 4 May 2020 4 May 2020

4. Discussion

The potential of dashcams deployed on a vehicle (e.g., a commuter car) to capture
high resolution and repeat imagery, subsequently enabling specific object-based analysis on
urban trees (extraction of phenological metrics data) has been demonstrated. Of particular
note, is that local variability in the green-up start date was captured, which is extremely
important considering the heterogeneity of the urban fabric and morphology. The use of
dashcams in this way offers a particular advantage over other proximal remote sensing
approaches, for example Google Street View data [20,21], in the high temporal frequency
afforded (and determined by the user). Further research is required however, and the
aspects of this are discussed below.

The mAP accuracies obtained by the YOLOv3 detector were of sufficient quality
to calculate the green-up of extracted trees in subsequent image analyses—the YOLOv3
detection algorithm’s capacity to repeatedly detect the same tree from multiple images over
time was successful in the main, though further work using the YOLO detector should be
undertaken on a much wider range of urban situations and across the whole year. Particular
attention should be focused on ensuring the precise intersection of the validation bounding
boxes and the detection bounding boxes as this is a determining factor in data consistency
and it is important when deriving the greenness metric over time. Inconsistency in the
detector precision resulted in error when deriving the greenness metric as this analysis
subsequently could not be made to the same portion of the tree. Nonetheless, when used
on dashcam data, this deep learning approach did enable object-based analysis, which is
not a viable option from other remote sensing data-capture approaches, such as satellite
remote sensing techniques, at the temporal resolutions required. Additionally, the deep
learning approach largely reduced positioning issues related to the sensor itself. The
nature of the dashcam imagery and the urban environment meant that data was subject to
changing views; sensor movement and changing road position of the platform (vehicle)
due to overtaking cyclists and avoiding roadworks etc., resulted in a specific tree not being
repeatedly captured from the same position. However, by obtaining the bounding box
coordinates of a given tree, it could be extracted from the data captured by the sensor, and
any further analysis could be made solely on the tree, thus the ‘optimum view’ of a tree
was not a necessity.

A limitation of using deep learning algorithms is the requirement that the image anno-
tations produce a training dataset for the detector. Pre-existing labelled image catalogues
are frequently used for either training or testing (e.g., [22,23]), but this could not be achieved
for this application. Unlike previous work, this study aimed to detect trees across a section
of the phenological cycle, capturing trees during late winter through to early summer as
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part of the methodology. Hence, there was a requirement that the training dataset used to
train the YOLOv3 detector needed to include annotated images across the phenological
timeframe of interest, both trees with leaf off and leaf on, and the growth stages between
theses. The performance of the detector on trees with leaf off was comparably weaker than
when trees had greened up. It is possible that this is due to the added complexity of visible
bare branches, which requires more learning for the detector to work effectively. More
research on this is required.

The greenness results reported in this study were largely successful in informing the
dates of green-up in different species, and thus better representation of phenological varia-
tion could be obtained and incorporated into an improved detector. The difference between
the visual analyses and the automated calculation of green-up date (four days maximum)
concur with the timings of previous studies focusing on measuring phenological shifts
over time (e.g., [24,25]). Developing an optimum model will require balance in the training
dataset size in addition to proportional representation of tree phenology. Additionally,
when considering the potential reproducibility of the detector in other geographical lo-
cations, increased tree species heterogeneity is an advised area of improvement for the
training data. Once the desired portion of a tree was extracted from the dashcam RGB data,
there was success in capturing the green-up of the tree when applying the Green Chromatic
Coordinate metric. Unlike visual observations of phenological events throughout seasons,
the collection of repeat digital imagery allows for a quantitative analysis in capturing a
change in greenness from the leaf-off to the leaf-on change in trees. The data collected for
this study was largely captured during a morning commute, and subsequently there was
significant change in the scene illuminance as a result of changing daylight, particularly up
until the transition from daylight saving hours to British Summer Time. The HSV colour
space used was effective, though further work would be useful.

The potential demonstrated here for low-cost deployment, passive integration of the
sensor into a driver’s daily routine, the use of vehicles of both authoritative (e.g., buses
and local council vehicles) and non-authoritative bodies (e.g., a commuter), suggests that
further research on establishing a dashcam network should be conducted. This should
consider how citizen science could be used effectively (e.g., as per Citizens4EO—[26]).
Crimmins and Crimmins [27,28] have highlighted the opportunities for engaging the pub-
lic by encouraging the sharing of repeat photography for capturing phenological events.
OpenStreetCam (openstreetcam.org) and Treezilla (treezilla.org) are examples of platforms
for collecting and providing free and open data on trees, with the former affording the shar-
ing of dashcam footage and once shared, the automated extraction of phenological metrics
could be used to support satellite-based analyses (as training/validation data). A challenge
would be to co-ordinate citizen scientists on a larger scale. However, Crooks et al. [29]
have recognised that sensor-derived content from crowd-sourced data has great potential
in bettering the understanding of city systems, with Park et al. [30] and Rashid et al. [31]
acknowledging that sharing dashcam footage will greatly extend urban surveillance. In
2019, the AA Limited, a British motoring association, found that that 24% of respondents
already owned a dashcam, with an additional 18% stating that they were seriously consid-
ering purchasing one (www.theaa.com/about-us/public-affairs/aa-populus-driver-poll-
summaries-2019#june2019; accesses on 10 May 2021). This potential volume of temporal
data would be unmatched and offers real scope for the data capture of trees at a national
level. Data that is captured by those who make repeated commuter journeys would be of
particular interest.

5. Conclusions

The dashcam-capture approach presented in this paper points towards an automated
process for deriving green-up metrics for urban trees and indicates the scope to ascertain
more metrics relating to other aspects of vegetation such as species, health, and size. Further
methodological development is required to offer a fully automated process, including
improving detector performance, scaling-up capture, and the calculation of the phenological

www.theaa.com/about-us/public-affairs/aa-populus-driver-poll-summaries-2019#june2019
www.theaa.com/about-us/public-affairs/aa-populus-driver-poll-summaries-2019#june2019
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metric of green-up (and potentially senescence). Nonetheless, results obtained in this pilot
study suggests that this data capture method, and mobile computing advances in general,
could be employed to produce an input dataset, which is required by urban planners for
decision making, in addition to acting as a suitable measure for key actions as part of the
UN SDG targets (i.e., around sustainable cities (SDG 11); life on land (SDG 15) and climate
action (SDG13).
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