Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Over-Expression and Purification of Recombinant SARS-CoV-2 Spike RBD
2.3. Construction of the Optical Biosensor
2.4. Measurement
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awassa, L.; Jdey, I.; Dhahri, H.; Hcini, G.; Mahmood, A.; Othman, E.; Haneef, M. Study of Different Deep Learning Methods for Coronavirus (COVID-19) Pandemic: Taxonomy, Survey and Insights. Sensors 2022, 22, 1890. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lillehoj, P.B. Microfluidic Magneto Immunosensor for Rapid, High Sensitivity Measurements of SARS-CoV-2 Nucleocapsid Protein in Serum. ACS Sens. 2021, 6, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Abayomi-Alli, O.O.; Damaševičius, R.; Maskeliūnas, R.; Misra, S. An Ensemble Learning Model for COVID-19 Detection from Blood Test Samples. Sensors 2022, 22, 2224. [Google Scholar] [CrossRef] [PubMed]
- Narita, F.; Wang, Z.; Kurita, H.; Li, Z.; Shi, Y.; Jia, Y.; Soutis, C. A Review of Piezoelectric and Magnetostrictive Biosensor Materials for Detection of COVID-19 and Other Viruses. Adv. Mater. 2021, 33, e2005448. [Google Scholar] [CrossRef]
- Blaškovičová, J.; Labuda, J. Effect of Triclosan and Silver Nanoparticles on DNA Damage Investigated with DNA-Based Biosensor. Sensors 2022, 22, 4332. [Google Scholar] [CrossRef]
- Bandeliuk, O.; Assaf, A.; Bittel, M.; Durand, M.-J.; Thouand, G. Development and Automation of a Bacterial Biosensor to the Targeting of the Pollutants Toxic Effects by Portable Raman Spectrometer. Sensors 2022, 22, 4352. [Google Scholar] [CrossRef]
- Funari, R.; Chu, K.Y.; Shen, A.Q. Detection of antibodies against SARS-CoV-2 spike protein by gold nanospikes in an opto-microfluidic chip. Biosens. Bioelectron. 2020, 169, 112578. [Google Scholar] [CrossRef]
- Leonardi, A.A.; Lo Faro, M.J.; Petralia, S.; Fazio, B.; Musumeci, P.; Conoci, S.; Irrera, A.; Priolo, F. Ultrasensitive Label- and PCR-Free Genome Detection Based on Cooperative Hybridization of Silicon Nanowires Optical Biosensors. ACS Sens. 2018, 3, 1690–1697. [Google Scholar] [CrossRef]
- Prajapati, D.G.; Kandasubramanian, B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. [Google Scholar] [CrossRef]
- Burg, S.; Cohen, M.; Margulis, M.; Roth, S.; Danielli, A. Magnetically aggregated biosensors for sensitive detection of biomarkers at low concentrations. Appl. Phys. Lett. 2019, 115, 103702. [Google Scholar] [CrossRef]
- Steglich, P.; Lecci, G.; Mai, A. Surface Plasmon Resonance (SPR) Spectroscopy and Photonic Integrated Circuit (PIC) Biosensors: A Comparative Review. Sensors 2022, 22, 2901. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.D.; Kim, K.R.; Lee, K.W.; Yoon, H.C. Retroreflection-based optical biosensing: From concept to applications. Biosens. Bioelectron. 2022, 207, 114202. [Google Scholar] [CrossRef]
- Oliveira, M.E.; Lopes, B.V.; Rossato, J.H.H.; Maron, G.K.; Gallo, B.B.; La Rosa, A.B.; Balboni, R.D.C.; Alves, M.L.F.; Ferreira, M.R.A.; da Silva Pinto, L.; et al. Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. Surfaces 2022, 5, 187–201. [Google Scholar] [CrossRef]
- Xu, M.; Yadavalli, V.K. Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites. ACS Sens. 2019, 4, 1040–1047. [Google Scholar] [CrossRef]
- Soylemez, S.; Kaya, H.Z.; Udum, Y.A.; Toppare, L. A multipurpose conjugated polymer: Electrochromic device and biosensor construction for glucose detection. Org. Electron. 2019, 65, 327–333. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.M.; Zhu, W.Y.; Zhang, C.H.; Tang, H.; Jiang, J.H. Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal. Chim. Acta 2018, 1012, 60–65. [Google Scholar] [CrossRef]
- Burkarter, E.; Saul, C.K.; Thomazi, F.; Cruz, N.C.; Zanata, S.M.; Roman, L.S.; Schreiner, W.H. Electrosprayed superhydrophobic PTFE: A non-contaminating surface. J. Phys. D Appl. Phys. 2007, 40, 7778–7781. [Google Scholar] [CrossRef]
- Ates, M. A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng. C 2013, 33, 1853–1859. [Google Scholar] [CrossRef]
- Zeglio, E.; Rutz, A.L.; Winkler, T.E.; Malliaras, G.G.; Herland, A. Conjugated Polymers for Assessing and Controlling Biological Functions. Adv. Mater. 2019, 31, 1806712. [Google Scholar] [CrossRef]
- Liu, S.; He, P.; Hussain, S.; Lu, H.; Zhou, X.; Lv, F.; Liu, L.; Dai, Z.; Wang, S. Conjugated Polymer-Based Photoelectrochemical Cytosensor with Turn-On Enable Signal for Sensitive Cell Detection. ACS Appl. Mater. Interfaces 2018, 10, 6618–6623. [Google Scholar] [CrossRef]
- Avelino, K.Y.P.S.; dos Santos, G.S.; Frías, I.A.M.; Silva-Junior, A.G.; Pereira, M.C.; Pitta, M.G.R.; de Araújo, B.C.; Errachid, A.; Oliveira, M.D.L.; Andrade, C.A.S. Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal. 2021, 206, 114392. [Google Scholar] [CrossRef] [PubMed]
- Canestraro, C.D.; Rodrigues, P.C.; Marchiori, C.F.N.; Schneider, C.B.; Akcelrud, L.; Koehler, M.; Roman, L.S. The role of the double peaked absorption spectrum in the efficiency of solar cells based on donor-acceptor-donor copolymers. Sol. Energy Mater. Sol. Cells 2011, 95, 2287–2294. [Google Scholar] [CrossRef]
- Yamamoto, N.A.D.; MacEdo, A.G.; Roman, L.S. Thickness effect on F8T2/C 60 bilayer photovoltaic devices. J. Nanotechnol. 2012, 2012, 513457. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Basabe, Y.; Yamamoto, N.A.D.; Roman, L.S.; Rocco, M.L.M. The effect of thermal annealing on the charge transfer dynamics of a donor-acceptor copolymer and fullerene: F8T2 and F8T2: PCBM. Phys. Chem. Chem. Phys. 2015, 17, 11244–11251. [Google Scholar] [CrossRef]
- Lourenco, O.D.; Benatto, L.; Marchiori, C.F.N.; Avila, H.C.; Yamamoto, N.A.D.; Oliveira, C.K.; Da Luz, M.G.E.; Cremona, M.; Koehler, M.; Roman, L.S. Conformational Change on a Bithiophene-Based Copolymer Induced by Additive Treatment: Application in Organic Photovoltaics. J. Phys. Chem. C 2017, 121, 16035–16044. [Google Scholar] [CrossRef]
- Roozbeh, A.; de Jesus Bassi, M.; Pereira, A.B.; Roman, L.S.; Buckup, T.; Heisler, I.A. Energy transfer in aqueously dispersed organic semiconductor nanoparticles. J. Phys. Chem. C 2020, 124, 27946–27953. [Google Scholar] [CrossRef]
- de Jesus Bassi, M.; Wouk, L.; Renzi, W.; Oliveira, C.K.; Duarte, J.L.; Heisler, I.A.; Roman, L.S. Non-radiative energy transfer in aqueously dispersed polymeric nanoparticles for photovoltaic applications. Synth. Met. 2021, 275, 116740. [Google Scholar] [CrossRef]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Murugan, D.; Bhatia, H.; Sai, V.V.R.; Satija, J. P-FAB: A Fiber-Optic Biosensor Device for Rapid Detection of COVID-19. Trans. Indian Natl. Acad. Eng. 2020, 5, 211–215. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Tu, L.P.; Zeng, Q.H.; Kong, X.G. Effect of protein molecules on the photoluminescence properties and stability of water-soluble CdSe/ZnS core-shell quantum dots. Chin. Sci. Bull. 2013, 58, 2616–2621. [Google Scholar] [CrossRef] [Green Version]
- Vizzini, P.; Braidot, M.; Vidic, J.; Manzano, M. Electrochemical and optical biosensors for the detection of Campylobacter and Listeria: An update look. Micromachines 2019, 10, 500. [Google Scholar] [CrossRef] [Green Version]
- Tam, P.D.; Hieu, N. Van Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole. Appl. Surf. Sci. 2011, 257, 9817–9824. [Google Scholar] [CrossRef]
- Borole, D.D.; Kapadi, U.R.; Mahulikar, P.P.; Hundiwale, D.G. Conducting polymers: An emerging field of biosensors. Des. Monomers Polym. 2006, 9, 1–11. [Google Scholar] [CrossRef]
- Trojanowicz, M. Application of Conducting Polymers in Chemical Analysis. Microchim. Acta 2003, 143, 75–91. [Google Scholar] [CrossRef]
- Şenel, M. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film. Mater. Sci. Eng. C 2015, 48, 287–293. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Nature of the antigen-antibody interaction. Primary and secondary bonds: Optimal conditions for association and dissociation. J. Chromatogr. B Biomed. Sci. Appl. 1986, 376, 111–119. [Google Scholar] [CrossRef]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassi, M.d.J.; Araujo Todo Bom, M.; Terribile Budel, M.L.; Maltempi de Souza, E.; Müller dos Santos, M.; Roman, L.S. Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. Sensors 2022, 22, 5673. https://doi.org/10.3390/s22155673
Bassi MdJ, Araujo Todo Bom M, Terribile Budel ML, Maltempi de Souza E, Müller dos Santos M, Roman LS. Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. Sensors. 2022; 22(15):5673. https://doi.org/10.3390/s22155673
Chicago/Turabian StyleBassi, Maiara de Jesus, Maritza Araujo Todo Bom, Maria Luisa Terribile Budel, Emanuel Maltempi de Souza, Marcelo Müller dos Santos, and Lucimara Stolz Roman. 2022. "Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19" Sensors 22, no. 15: 5673. https://doi.org/10.3390/s22155673
APA StyleBassi, M. d. J., Araujo Todo Bom, M., Terribile Budel, M. L., Maltempi de Souza, E., Müller dos Santos, M., & Roman, L. S. (2022). Optical Biosensor for the Detection of Infectious Diseases Using the Copolymer F8T2 with Application to COVID-19. Sensors, 22(15), 5673. https://doi.org/10.3390/s22155673